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Section A :

Physique théorique.

ABSTRACT. - A thermodynamic limit of a quantum lattice system is
considered in the microcanonical, the canonical and the grand canonical
ensembles. It is shown that we can deduce some properties in one ensemble
if they are proved in another.

It is shown that the van Hove limit of the thermodynamic functions
exists in the canonical and microcanonical formalism and also a property
of convexity and monotony in the microcanonical ensemble.

1. INTRODUCTION

To describe macroscopic phenomena in equilibrium statistical mechanics,
one can consider several ensembles namely the microcanonical, the cano-
nical and the grand canonical ensemble. They differ essentially by the
choice of basic macroscopic variables.

it is interesting to show the equivalence of their formalisms, i. e. that
they describe macroscopic phenomena in equivalent manners. Actually
this allows us to show some properties in one ensemble if they are proved
in another. This article gives some such examples in the case of quantum
lattice systems.
We consider a quantum lattice system on Zv. We associate with each
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lattice site x E ZV a Hilbert space ~x of dimension two, and with each
finite region A in ZV the tensor product

If Ai 1 c A2 we can identify each bounded operator A on :Yf(A1) with
A (8) lAlIAt on ~(A2), where 1~,~~ is the identity of :Yf(A2/A1). With
this convention one defines the algebra of observables by the following

when d(A) is the set of bounded operators on :Yf(A).
We note that the group ZV of space translations is a subgroup of the

automorphism group of z and we denote the action of this group by
A E /(A) - E ~{A + a), a E ZV.
We consider interactions, i. e. functions ~ from the set of finite subsets

of zv to d such that

where the last sum extends over all finite subsets of ZV containing 0 and
N(X) is the number of joints of X.
We denote by B the set of such interactions and B0 the set of finite

range interactions, i. e. the dense subset of B containing those C for which
there exists a finite c Zv such that I&#x3E;(X u { 0 } ) = 0 unless X c 
We note O S "F, if ~ for all X c Zy.

We consider a system of particles on the finite set A and the energy
operator E corresponding to the interaction 1&#x3E;, defined by

Further we denote by { ~B ~ } an orthonormal basis of for each

xeZB

Now, for each finite region A c ZB we define a configuration 
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which is at once a subset and an element defined

by ~

where ~(x) = 1 if x e { ..., and 0 if not.
If A 1 c A2 we can identify every configuration X ~ of with

I X ~ 0 l/JA2IAl of .1e(A2), where l/JA2IAt is the vacuous subset of A2/A1.
Clearly the set of all configurations of A is an orthonormal basis 
We define projectors PN(A) E ~(_~1), 0 ~ N ~ N(A), by

We consider interactions ø such that

In order to consider thermodynamic limits we denote by {A~ },
m = 0, 1, 2, ... the sequences of cubes of Z with volume given by 
Lo being any integer and being constructed in such a manner that A~
contains Z~ disjoints copies of Am -1’ Next we shall consider the limit of A

going to infinity in the sense of van Hove (*).

2. ENSEMBLES

First we give a review of definitions and some results in the three
ensembles which will be used in the following.

21 The microcanonical ensemble.

In the microcanonical formalism variables are the energy per unit of
volume e, and the density n, 0 ~ n  1.
For each finite region A of ZV and interaction 03A6 E B, we can define the

microcanonical partition function by

where E = e . N(A), N is an integer such that 0  N  N(A) and
~ ~.i(~, A) }i~ o is the set of eigenvalues of repeated according to
multiplicity and { E).A) ~~, o is the corresponding set of spectral projectors.

(*) See, for example [4], p. 13.

ANN. INST. POINCARÉ, A-XV-1 5
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We define the microcanonical thermodynamic function, actually the

entropy, by

For each A c Zv and 03A6~B this is an increasing function of e and we
can define an « inverse » function [1],

We can extend (*) this function by linearity with respect to the second
variable, to all n such that 0  n  I.

Furthermore we know that the following is true.

THEOREM 1. - The following limits exist and are finite

Furthemore, if ~, ‘Il E ~

The first statement is proved by combining the arguments of [7] and [2].
The last inequality follows from the following

where A and B are n x n matrices is

the set of eigenvalues of A (resp. B) in increasing order and repeated accord-

ing to multiplicity.

2.2. The canonical ensemble.

In the canonical formalism variables are the density n and the inverse

temperature /3.
For each finite region A c ZV and interaction ~ E ~, we can also define

a canonical partition function

where N is an integer such that 0 ~ N ~ N(A).

(*) As in [2] for the canonical case.
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We define the canonical thermodynamic function, actually the free

energy, by

and as in the microcanonical case one can extend this function by linearity
with respect to the first variable, to all n such that 0 ~ n  1. Furthermore

we know that the following is true.

THEOREM 2. E The following limit exists and is finite

Furthermore the fonction O - ~3) is concave and decreasing, and for

The first statement is proved as in [2]. The proofs of the remaining
statements are identical’ to those of [3].

2.3. The grand canonical ensemble.

In the grand canonical formalism variables are the inverse temperature ~3
and the chemical potential 1l.
For each finite region A ci Z~ and interaction ~ E, we can also define

a grandcanonical partition function

where E is defined by

We define the grandcanonical thermodynamic function, actually the

pressure, by
1

Then we know that the following is true.

THEOREM 3. E ~. The following limit exists and is finite

where A ~ 00 in the sense of van Hove.
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Furthermore the function ~ ~ ~c) is convex and increasing and
for E ~

See [3] for the proof of this theorem.

2.4. Equivalence of ensembles.

We shall consider the following connection between the above forma-
lisms :

THEOREM 4. - T herefore

In the quantum lattice system case we can prove, using only the previous
definitions the following statement

In particular, it is easy to prove that

From (4.2) and Theorems 2 and 3, we find immediately

Now f03A6(., 13) is a convex function of n, so for 13 and 03A6 fixed

Therefore, for each n

where we have used (4.1) and (4.4) and, in the second step, the fact that
we take a supremum of a continuous function on a compact. Combin-

ing (4. 3) and (4. 5), the Theorem yields.
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Remark. We have also proved that for each n, there exists at least
one Jln E R, actually the angular coefficient of a tangent line in n, such
that

Assuming differentiability of {3) at n, i. e. no phase transition, yields
the standard thermodynamic relation

For sake of simplicity the case of derivative - oo at n = 0 and + o0

at n = 1 was excluded, but it is easy to derive, in this case, the same result
for n = 1 and we can take this formulas as definitions for n = 0. It is

easy to find a similar result in the opposite direction, starting with (4.1).

THEOREM 5. - Let C E f!4. T herefore

The proof is identical to the previous one.

3. OTHER PROPERTIES

Now we shall consider some properties which follow from the previous
sections.

PROPOSITION 1. 13 &#x3E; 0 and n such that 0  n  1. Then
the following limit exists and is finite :

where A -~ oo in the sense of van Hove.

First we prove the proposition Let A a finite region in
the lattice, i = 1, 2, ..., the translated of A~ contained in A

and rm = !~jA~; using subadditivity of we have

where S~ = and A is the range of C, i. e. the diameter of 
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Therefore V8 &#x3E; 0 3M M and A large enough in the sense of
van Hove

Furthermore VA

But Jl) tends to Jl) when A ~ oo in the sense of van Hove,
hence Vs &#x3E; 0 and A large enough in the sense of van Hove,

Moreover

We extend the property to 4Y e £3 using the equicontinuity of f% in 1&#x3E;.

PROPOSITION 2. - Let 03A6 E B, n such that 0  n  1. The following
limit exists and is finite

when A tends to infinity in the sense of van Hove. Furthermore the func-
tion 03A6 ~ e03A6(s, n) is concave and decreasing.
We prove the existence of the limit as previously. Concavity follows

from the concavity of f ~(n, Hence, if 1&#x3E;, q E ~‘ and 0 ~ h K 1

Moreover, if ~  W

We can prove a similar proposition for the limit of n), which exists
when A tends to infinity in the sense of van Hove and which is increasing
and convex with respect to C.
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