
ANNALES DE L’I. H. P., SECTION A

FRANCO GALLONE

ALESSANDRO MANIA’
Group representations by automorphisms
of a proposition system
Annales de l’I. H. P., section A, tome 15, no 1 (1971), p. 37-59
<http://www.numdam.org/item?id=AIHPA_1971__15_1_37_0>

© Gauthier-Villars, 1971, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1971__15_1_37_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


37

Group representations by automorphisms
of a proposition system (*)

Franco GALLONE and Alessandro MANIA’

Istituto di Scienze Fisiche dell’Universita, Milano, Italy

Ann. Inst. Henri Poincaré,

Vol. XV, n° 1, 1971

Section A :

Physique théorique.

SUMMARY. - A representation of a group G is defined to be a homo-
morphism of G into the group of automorphisms of the proposition
system of the « quantum logic » approach to axiomatic quantum mecha-
nics. After a systematic formulation of the concepts of homomorphism
between proposition systems and of direct union thereof, the decomposi-
tion theory of group representations is dealt with: results analogous to
Schur’s lemma and theorem are derived and the uniqueness of a decomposi-
tion into irreducibles is shown. A physical interpretation of the results
is discussed briefly.

RESUME. - On appelle representation d’un groupe G un homomor-
phisme de G dans le groupe des automorphismes du systeme des propo-
sitions relatif a l’approche « logique » a l’axiomatique de la mecanique
quantique. Apres avoir donne une formulation systématique des concepts
de homomorphisme entre systemes de propositions et de leur union directe,
on affronte la theorie de la decomposition des representations des groupes :
on deduit des resultats analogues aux lemme et theoreme de Schur et on
montre l’unicité d’une decomposition en representations irréductibles.
On discute brievement une interpretation physique des resultats.

INTRODUCTION

From the very beginning [1] of the philosophy that the « logical » structure
of the system of propositions of a quantum system determines completely

(*) Work supported in part by the Consiglio Nazionale delle Ricerche (Comitato
Nazionale per le Scienze Matematiche).
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the character of quantum laws as well as the mathematical formalism
employed in quantum theory, one of the most important problems in the
axiomatic approach to quantum mechanics has been probably to find
reasonable axioms for the structure of the system of propositions so that
it may be represented by a lattice of closed subspaces (or projections, which
is the same) of some Hilbert space [2]. This problem seems to be solved
today as a result of the work of Piron [3] ; in fact, assuming the proposition
system to be a weakly modular, orthocomplemented and complete lattice
(what is also called croc) equipped with atomicity and covering law, Piron
is able to show that propositions may be represented by linear subspaces
of a vector space over a field, if the proposition system is irreducible. If
we want the field to contain the real numbers as a subfield, we are left to
choose between the reals [4], complexes and quaternions [5]. If then we
take into account a result of Amemiya ’and Araki we get that a proposi-
tion system is isomorphic to the lattice of all projections from a family of
Hilbert spaces { ~~ ~ (~ E Z) [7]; two different Hilbert spaces of the family
have not to be over the same field and nothing can be said about the index
set Z.

Dropping the request of atomicity and of covering law, the natural
result to expect is that the proposition system is then isomorphic to the
lattice of all projections from a family {A(()} (~ E Z) of von Neumann
algebras in a family ~ ~~ ~ of Hilbert spaces. We shall in fact define a

proposition system to be a croc not necessarily atomic, to gain a little in
generality.

If the system of propositions has to embody all the properties of a physical
system, it seems very natural to call symmetry of a physical system an
automorphism of its system of propositions [8], and to call representation
of a symmetry group G a group-homomorphism of G into the group of all
automorphisms of the system of propositions. This to be the right defini-
tion of symmetry is argued by a theorem of Emch and Piron (see ref. [8])
and by Theorems 7.27 and 7.29 of Varadarajan’s book quoted in ref. [2]
(these two theorems show in fact that, if a proposition system F is the
lattice of all projections from a Hilbert space :?f, then automorphisms of F
and automorphisms of the ray Hilbert space underlying 1#f coincide;
Theorem 7.29 is in fact Wigner’s theorem [9]).
A motivation to study representations of groups yet in the proposition

system, without overpassing to Hilbert space, is furnished by two works
of Mielnik [10], who is able to show that, if some « geometric properties »
of a proposition system are taken into account, the physical reality could
be too complex in order to fit in any Hilbert space. Another motivation
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to study group-homomorphisms of a group into the group of automor-
phisms of a proposition system is that this kind of representation is a part
of a definition of symmetry group more involved than that given above [11].
The aim of the present paper is in fact to study representations of groups by
automorphisms of proposition systems; to be definite, we shall study
decomposition theory.
To perform this program, a theory of homomorphisms between crocs

has to be settled (Sections 1 and 2); results like Schur’s lemma and theorem
for linear representations are then derived (Section 3) and, in the completely
decomposable case, the uniqueness of a decomposition into irreducibles
is shown (Section 4). Differences between Hilbert unitary representations
and croc-representations of groups are easily understood if one takes into
account that Hilbert space is in a sense « void », whilst a system of propo-
sitions represents a physical system (for instance superselection rules are
embodied in it). These differences will be briefly discussed (Section 5).
An appendix is added, in which few well known facts and results are

collected in order to introduce notations and basic definitions.

1. HOMOMORPHISMS AND SUBCROCS

Here and in the sequel, 2 (with or without any sign attached to it) is a
croc (that is a proposition system). When we speak about lattices and
sublattices, we mean that they are complete.

DEF. 1.1. - A homomorphism of 2 into 2’ is a mapping 2 ~ 2/
such that for any family of elements of (i E J) with index set ~,
and for each element x of j5f:

Being cp a homomorphism, it is easy to show that ~(C) = 1&#x3E;’ and that

if qJ is injective then
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if ~p is bijective then

If a homomorphism qJ is bijective, it is called an isomorphism; the set
of homomorphisms (isomorphisms) of 2 into (onto) J5f’ is denoted by
Hom (2, 2’) (Is (2, J~’)).
When 2/ = 2 it is usual to call endomorphism a homomorphism and

automorphism an isomorphism. The set Aut (2) of all the automorphisms
of 2 is a group if the product (a o = Vx E 2, for

a, f3 E Aut (J~f), is assumed to be the composition law.
When dealing with a homomorphism 03C6, of paramount importance are

the two subsets and 
A very important endomorphism of a croc 2 must be noticed : given

z E ~(2), define P z : P z(x) = z n x. Taking into account (A. 6)
and (A. 7) it is easy to show that P~ is an idempotent endomorphism;
moreover Im P~ = [0, z] and from (A. 5) it follows that Ker P~ = [0, cz].
The endomorphism P~ is called projection related to z, and we define

= { P~; z E ~(~) ~. The null-endomorphism and the identity endo-
morphism are the projections related to 03A6 and I respectively. They will
be called trivial projections.

DEF. 1.2.2014 We say that the croc 2’ is a subcroc of 2 and then we

write J5f’« 2, when as a set 2’ c 2 and the canonical injection

is a homomorphism from ~’ into ~f.
We notice that

where

then it holds that

The notion of subcroc being very important in what follows, we charac-
terize it by means of the following theorem:

PROP. 1.1. - If 2’ j 2, then 2/ is a sublattice of 2 and cx n I’ E J~,
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Proof - For any family {xk} (k E K) of elements of 

holds and, in the same way,

whence Ie’ is a sublattice of 4£’ ; moreover,

A subcroc 2/ :J 2 is said to be trivial if it is a trivial sublattice of 2.

We can also show a sort of a converse statement of Prop. 1.1 :

PROP. 1. 2. - If the lattice 2’ is a sublattice of 2 and if ex n I’ E 2’,
then it is possible to define an orthocomplementation on J5f’

such that with it 2/ is a croc and 2’ o 2.

Proof. - Since 2’ is a sublattice, it is a lattice; now, if we define

c’ : 2’ ~ c’x = ex n I’, we can show that c’ is an orthocomple-
mentation on ~; in fact, as a result of weak modularity (A. 3) in of

property (A. 6) and of the very definition of sublattice, we get for x, y E 

iii) x n/ c’x = (x n cx) n I’ = C, whence 03A6 E 2’; then D’ = D and
x n’ c’x = 0’; in the same way we get x u’ c’x = I’.

Moreover, taking into account weak modularity (A. 4) in we can

show that it holds also in the orthocomplemented lattice 2’, which is
therefore a croc: x and y being elements of J~’,

As a result of this theorem, the segment [C, a] (with the orthocomple-
mentation c’: [I&#x3E;, a] - [C, a], c’x = cx n a) for any and the

center ~(J~f) (with the orthocomplementation ¿: ~(~) --~ c’x = cx)
are subcrocs of As a corollary of Prop. 1.2, we have

PROP. 1.3. - qJ E Hom (2, 2/) =&#x3E; Im qJ ! ~~.

Proof - It is an immediate consequence of Prop. 1.2 if we notice that,
because of a) and b) of Def. 1.1, 2 == Im rp is a sublattice of 2’ with
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16 = and I = p(I) and if we use c) of Def. 1.1. The ortho-
complementation in Im cp results to be ex = c’x n’ cp(I).
Then we can state

PROP. 1 . 4. - Given cp E Hom (2, 2/), if x, y E 2 then

both in Im qJ and in 

Proof. - Compatibility in 2 == Im ~ follows straightforwardly from
the very definition of homomorphism and from I = if one uses for
instance property (A. 8). It is then trivial to show that compatibility
of two elements of a subcroc with respect to operations defined in it results
into compatibility with respect to the total croc.
As an immediate consequence we have (Im qJ). Finally

we state a theorem which characterizes injective homomorphisms:

PROP. 1. 5. - Given ~p E Hom 2’), then Ker q = { c1&#x3E;} iff q is

injective.

Proof. The « if » part of this theorem is trivial, and what we have in
fact to show is the « only if » part. Let it be q(x) = q( y) : we want to
show that x = y . then follows; set z == x m y and rp _ q r [I&#x3E;, x] (notice
that [~ x] --_ taking into account c) of Def. 1.1 and

as well, we get

whence cz n x = dz = 0; on the other hand it is also true that cz - x,
because z  x and (A. 3) holds; then, because of (A. 5), we have x  c(cz) = z
which, along with z  x, implies x = z. In the same way we can show

y = z, from which x = y follows.

2. DIRECT UNION

In this section we shall define direct union of crocs, both in an « external »
and in an « internal » way; we shall prove the equivalence of the two defi-
nitions and we shall be able to define decomposition of a croc into compo-
nents ; we shall also define direct union of homomorphisms.



43GROUP REPRESENTATIONS BY AUTOMORPHISMS OF A PROPOSITION SYSTEM

PROP. 2.1. - Let X be an index set and { 2i } (i E J) a family of crocs.
On the product set

~~~~~ here denotes the set underlying the croc ’p(i» define the relation

and the mapping

Then the relation  is a partial ordering on the poset (2,  ) is a
lattice (we shall indicate it shortly by 2) and the mapping c is an ortho-
complementation on it. The lattice 2 with this orthocomplementation
is a croc.

Proof - It is clear that the relation  turns out to be anti-symmetric,
reflexive and transitive, namely a partial ordering. Moreover, if A is an
index set (a E A) a family of elements of 2, then for all x E 2

iff

iff x  y, where

then for { the g. 1. b. exists and equals y. In the same way we can show
the existence of the 1. u. b., with

Then !£ is a lattice with 0(!) = I&#x3E;(i) and I(i) = 1~. It is now very easy
to show that c satisfies properties (A. 2) and that for ~ and c property (A. 4)
holds.

. DEF. 2.1. - The croc ~ of Prop. 2.1 will be denoted by

and it is referred to as the direct union of the family of crocs { ~~t~ ~ (i E J).
For the sake of clarity, the preceding definition of direct union will be

called « external ». Parallel to this definition, we shall introduce another
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definition of direct union, that will be called « internal ». Before stating
it, we need to define two classes of homomorphisms related to « external »
direct union and which will prove useful in finding the equivalence of the
two definitions of direct union.

to be 1t : ~t~~, 7r,(x) = x(i) and e-injection of 2(i) to be j; : 2(i) - 2
such that is the identity mapping onto when k = and the null-

homomorphism from into ~~k~ otherwise.

It is easy to see that jI is injective, 7r~ E Hom (~, ~~t~), j~ E Hom (2(i), 
We shall now characterize a class of families of elements of ~ which

will play an important role in the definition of « internal » direct union.

PROP. 2 . 2. - 2 being a croc, let f be an index set and { (i E ~) a
family of elements of the following properties are equivalent :

c) If Pi is the projection related to zi, then U = x, Vx E 2, and

Pj is the null-endomorphism of 2 if i # j.

Proof

a) ==&#x3E; b) Fix then as a consequence of (A . 6)
i*k

and whence Uzi is a compatible complement of zk ;
i*k ~~

since in a croc the compatible complement is unique [12], we get U z; = czk.
~~

b) ==&#x3E; a) It follows simply from (A. 5).
a) =&#x3E; c) It follows simply from (A. 6).
c) ==&#x3E; a) Write down c) with x = I and transform I by Pi 0 Pj.

DEF. 2 . 3. - A family of elements for which properties of Prop. 2.2
hold is called a d-family; the family of projections related to the elements
of a d-family is called a d-family of projections.

As an useful example we notice that in v0153 2(i) the 
- 

i

is a d-family. We notice also that an isomorphism maps a d-family into

a d-family. We can now define the « internal » direct union.
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DEF. 2 . 4. - f being an index set, if { zi } (i E f) is a d-family of elements
of a croc then ffl is said to be the direct union of its subcrocs { [I&#x3E;, 
(i E J) and it is denoted by UEÐ [I&#x3E;, z~].

t~~

We shall now show what is the link between the « internal » definition

of direct union and the « external » one. As a first result, the remark after
Def. 2. 3 shows that every « external » direct union is in fact also an « inter-

nal » one. The next theorem states that the converse statement holds

up to an isomorphism.

PROP. 2.3. - f being an index set, the following ones are equivalent
properties for a croc 2:

a) (i E f) is a d-family in 2.
b) The mapping

is such that

Proof

a) ~ b) Let A be an index set and ~ x~ ~ (a E A) a family of elements
of 2/ ; taking into account the homomorphic character of e-projections
and of projections, we can prove:

whence ~p( n’ xa) _ n the similar result holds for the 1. u. b.; in
a a

the same way we can find = c({J(x) for all x E 2’; because = I

holds, cp E Hom (2’, 2) then follows. Moreover ~p is surjective : given
y E 2, take w --_ is easy to show that cp(w) = y. It is in

fact injective as well: using Prop. 1. 5 this is easily shown.
b) ~ a) The family {z,} (i E J) is the isomorphic image according

to cp of the of 
"

This theorem shows that any « internal » direct union is isomorphic
to an « external » one, and accomplishes the proof of the equivalence of
the two definitions. From now on, we shall simply speak of direct union
and we shall always use the internal definition: the direct union of the
family of crocs { 2(i) } (i E J) will be an « internal » direct union of subcrocs
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of v0153 2(i), namely U~ [eI&#x3E;, = UEÐ ji(L(i)), and it will be denoted

shortly by U~ L(i) (notice that to replace UEÐ by U0153 L(i) amounts
i i i

to replace ~-projections by projections and e-injections by injections);
each 2(i) will be called a component of UEÐ L(i) and, given a subcroc g

of 2, we shall write !i  2 if there is a decomposition of 2 into a direct
union of which  is a component;  will be said shortly to be a component
of 2. A component is said to be trivial if it is a trivial subcroc.

DEF. 2.5. - A croc 2 is called reducible if it is a direct union of non-

trivial subcrocs; otherwise it is called irreducible.
From the very definitions it follows that a subcroc 2/ is a compo-

nent iff 2’ = [0, z] with z E ~(2), that a croc is irreducible iff its center
is trivial, that ’dP E and that reducibility
or irreducibility is preserved through an isomorphism. In fact isomor-

phisms preserve much more, as it is shown by

PROP. 2 . 4. - J being an index set a family of crocs,

and the components are pairwise isomorphic.

Proof - The is an isomorphic image of the d-family
{ 1~ } of ~ and ~p [ ~~i~ e Is (~~t~~ [~~ ~(I~)]).
Now a theorem follows in which it is shown how a croc decomposes if

a homomorphism is defined on it and how, relating to this decomposition,
the homomorphism results in fact to be the product of a projection and
of an isomorphism.

PROP. 2.5. - Given cp E Hom (2, J5f’), Ker rp is a component of 2 and,
if P is the projection such that Ker P = Ker cp, then 03C6 =  o P, where 
is an isomorphism of Im P onto Im cpo

Proof - If a is the 1. u. b. of Ker E Ker cp is easily seen and then
holds; we want now to show that In fact,

for any we have:

but (cx u a) n x  x holds, whence (cx u a) n x  a n x. On the other
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hand cx u a &#x3E; a ~ (cx u a) n x &#x3E; a n x, and then (cx u a) n x = a n x,
Vx E hence a E follows as a consequence of (A. 9) and, along with
it, Ker lfJ  J~ also follows. Let P be the projection related to ca (that
is the projection for which Ker P = [C, a] = Ker lfJ) and

it is easy to show that  E Is (Im P, Im rp) ; moreover, since {a, ca} is

a d-family, if Q is the projection related to a then we have

We notice that Prop. 2 . 5 could be stated in this way : given
q E Hom (2, J~f’), if q is not the null-homomorphism, there is a projec-
tion P such that Im P is a non-null component of 2 and it is isomorphic
to Im q, which is a subcroc of 2/.

We turn now to the definition of direct union of homomorphisms.
We need the following theorem: ,

PROP. 2.6. (i e Y) (i E J) be two families of
crocs with the same index set (i E J) a family of mappings such
that ~p~ E Hom (2(i), ~~‘~), Vi E ~, and define

where Pi is the projection related to 1~; then ~ E Hom ~~t~, UEÐ 2(i).
i f

Proof - We shall prove this theorem by means of a technique similar
to that used for Prop. 2.3; if Pe is the projection related to 1~, for any
family {~ } (a E A) of elements of 2 with index set A we can prove

from which y5( n n follows; the similar result holds for the
oc Cl

1. u. b. and moreover we have

which proves the theorem.

DEF. 2.6. - The homomorphism of Prop. 2.6 will be denoted by
and it is referred to as the direct union of the family of homomor-

phisms { (i E J).
ANN. INST. POINCARE, A-XV-1 4
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It is easy to prove that an isomorphism (automorphism) iff

it is a direct union of isomorphisms (automorphisms).

3. SCHUR’S LEMMA AND THEOREM

Now the theory previously developed will be used to study group repre-
sentations ; to define them, set:

DEF. 3.1. - Let G be a group and 2 a croc. A croc-representation
(we could also call it a proposition system representation) or simply a,
of G on 2 is a group-homomorphism of G into the group Aut (J~f). The

automorphism corresponding to g is written a~.
The croc 2 will be called (as suggested by Weyl’s terminology for linear

representations of groups) the substratum of a and, when necessary to
avoid confusion, it will be written 2 0152. Croc-representations will be called
simply representations. Most of the results that we shall get do not

depend on the assumption for G to be a group; also in conventional repre-
sentation theory many results may in fact be obtained with much more
general conditions on G [13].

DEF. 3.2. - A representation of a group G is said reducible if
there is a non-trivial component 2/  2 such that (Xg(2’) c J~’, 
otherwise it is called irreducible.

Since this notion is a basic one in the theory of group representations,
we characterize it by the following theorem:

PROP. 3.1. - being a representation of the group G, the following
are equivalent properties :

a) is reducible.

b) There is a non-trivial component 2’  2 such that (Xg(2’) = J~’,

c) There is a non-trivial projection P in &#x26;’(2) such that (Xg o P = P ~ ~,

Proof 
’

a) ~ b) Let 2’ be the component involved in the definition of reduci-
bility ; then there is z E ~(J~f) such that 2/ = [0, z] and x  z ~ ag(x)  z,

hence for each g E G we have ag(z)  z along with  z,
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which in turn implies z  ag(z); it follows that ag(z) = z, there-

fore b) holds because reducibility of a entails non-triviality of J~.
b) =&#x3E; c) z being the greatest element of J~’ and P the projection related

to z, non-triviality of J~’ implies non-triviality of P; besides, for any g E G
and x E E9, we have (ag o P)(x) = n x) = z n ag)(x).

c) =&#x3E; a) If z is the element of to which P is related, then { z, cz }
is a d-family with respect to which S is reducible; if we denote P by Pi and
the projection related to cz by P2, we get and,

This result is nothing but a particular case of a more general situation ;
to tackle it, we need a couple of definitions :

DEF. 3 . 3. - Given a representation of a group G, if ’p’ ] J~ and

L’, Vg E G, then 03B1g r ’p’ ~Aut (L’) is easily seen ; then the

mapping a’ : G --~ Aut (J~’), ag = CXg J~’, is a new representation 
of G ; we say that a’ is a subrepresentation of a and we write a’ ] a or
a’ = r ’p’ to express this fact.

DEF. 3 . 4. 2014 V being an index set, is a family of
representations of a group G, construct the mapping

this to be a representation of G on U~L(i) is easily proved; u will be

denoted by UEÐ and it will be called direct union of the family of

representations {03B1(i)} (i E f). Each 03B1(i) (i E J) will be called a component
of UEÐ and we shall write a’  a to mean a’ to be a component of a

representation A component is said to be trivial if its substratum
is a trivial subcroc of J~f.

PROP. 3.2. - Given a representation of a group G, let J5f be a

direct union L = UEÐ with index set f; then the following are

equivalent properties:
a) 0153g(!fJ(i» = Vi E f.

b) P~ being the element of related to I~B

If these properties hold, then a = U0153 where = Ef~~~.
t
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Proof.

a) ==&#x3E; b) Since 2(i) = 1~~ then [cD, = 1~], holds,
whence = I(i), ~i~J follows; now the proof runs exactly as the
second part of the proof of Prop. 3.1.

b) =~ a) Since 2(i) = P~t~)~ then (Xg(2(i» = = Pi(2) = 2(i),

Finally, from b) we get easily for any x E 2 and g E G :

The family ( P; ) (i E J) of projections in this theorem is said to reduce
the representation a. The theorem now stated is a sort of a generalization
of Prop. 3.1 ; the family { (i E J) has in fact the same role as the projec-
tions P~ (i = 1, 2) of c) =&#x3E; a) part of Prop. 3.1, which can now be

reexpressed by saying that a representation is reducible iff it is the direct
union of two non-trivial components.

DEF. 3.5. - Given two representations and (X’(J~’) of the same

group G, we define an intertwining homomorphism for a and a’ to be

q E Hom (2, 2’) such that Vg E G. Being R(a, x’) the

set of all intertwining homomorphisms for a and a’, we say that the two

representations are equivalent if there is in R(a, a’) an isomorphism from 2
onto J~f’. In this case we write a ~ a’.

Notice that this definition is reasonable, since the relation ~ now

introduced is indeed an equivalence relation.
The next theorem shows how an intertwining homomorphism links

representations together.

PROP. 3.3 (Schur’s lemma). - and ~(J~) being two representa-
tions of the same group G, the following are equivalent assertions:

a) There are a component a’  a, the substratum of which is not the

trivial croc, and a subrepresentation 03B2’03B2 such that a’ ~ 03B2’.
b) There is a non-null homomorphism q E R(a, ~).

Proof

a) ==&#x3E; b) a’ means that there exists an isomorphism of 2~,
the substratum of a’, onto L’03B2, the substratum of /3’, such that o03B1’g = /3;oip,
Vg E G; if P is the projection related to a’ by Prop. 3 .1, then its range is 2~
and a o P = P o VgeG, holds. P is not the null-homomorphism
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because 2~ is not the trivial croc. If we define q : 2 IX ~ q(x) = 
then clearly q E Hom (2 IX’ is non-null and for each x E and

g E G we get : 
.

b) =&#x3E; a) If a is the 1. u. b. of Ker lfJ, then we have for each g E G :

whence ag(a)  a ; as a particular case you get  a, from which

a  ag(a) follows; in this way we get ag(a) = a, ’dg E G. If P is then the

projection related to ca as in Prop. 2 . 5, we get (Xg o p = P ~ ag, Vg E G :
hence a’ --_ a Im P may be defined according to Prop. 3.1 and it is a

component of a with non-trivial substratum because Ker cp does not

equal ~Q. Moreover, ~g(~p(~a)) _ b’g E G, so that

Im cp may be defined and it is a subrepresentation of ~. If we

set cp --_ Im P, then by Prop. 2 . 5 we get  E Is (Im P, Im cp) ; by direct
computation we have for each g E G

whence a’ follows.

Using this theorem, we can further characterize irreducible represen-
tations :

PROP. 3 . 4 (Schur’s theorem). - x(J5f) being a representation of a group G,
the following are equivalent properties :

a) a is irreducible.

b) If a projection belongs to R(a, a), then it is trivial.

c) Each endomorphism in R(a, a) is either the null-endomorphism or
injective.

Proof - The equivalence of a) and b) is shown by Prop. 3.1.

a) ==&#x3E; c) Let ~p be an endomorphism in R(a, a); if P is the projection such
that Ker P = Ker q, then from Prop. 3.3 it follows that Im P is a

component of a and Im P has to be a trivial subcroc, because of irreduci-
bility of a and Prop. 3.1 ; hence either Im P = { I)}, from which Ker cp 
follows, or Im P = 2, from which Ker q = { C } follows ; the result is
then proved by Prop. 1.5.

c) =&#x3E; b) Let P belong to R(a, a); then either it is the null-endomorphism
or Ker P = {D}; it is now easy to show that in the latter case P is the
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identity endomorphism : if z is the element of S~(~) to which P is related
then Ker P = { 0, cz }.
We have called Prop. 3.3 and Prop. 3.4 Schur’s lemma and theorem

because they are the equivalents, in the theory of croc-representations, of
well known propositions which were proved for finite dimensional linear
representations by Schur [14] and for unitary representations by
Mackey [15]. The analogue of the usual formulation of Schur’s lemma
(see for instance Kahan or Pontryagin [16]) may be obtained as an easy
corollary from Prop. 3.3 and Prop. 3.4:

PROP. 3 . 5. - A representation C(2) of a group G is irreducible iff each
homomorphism in R(a, 13), P being any representation of the same group,
is either null or injective.

4. THE UNIQUENESS
OF THE DIRECT UNION DECOMPOSITION

Let us say that a representation is completely decomposable if it is

a direct union of irreducible components; in the same way as in the theory
of unitary representations of groups, for a reducible representation of a
group G there is no need to be completely reducible, as it is shown by a
simple example. Let 2 be a Boolean croc such that for each element x

of 2 an element x’ exists for which x’  x, x’ ~ x, x’ ~ ~ hold; otherwise
stated, let 2 be a Boolean croc in which no atom exists (see ref. [7] ] and [3]).
If is the trivial representation of G which maps every element of the
group into the identity automorphism of then it is highly reducible:
any projection reduces this representation, and projections are in fact as
many as the elements of it is then easy to see that the lack of atoms

entails that no irreducible subrepresentation can occur.
We shall show that a decomposition into irreducible components is

quite unique. Before doing this, we will prove a theorem which shows
how a reduction of a representation is transported through equivalence.

PROP. 4.1. - Let a = UEÐ be a decomposition with index set of

of a representation a of a group G and 13 another representation of the
same group such that a ~ ~8. Then 13 admits of the decomposition
13 = U~ with index set of and the components of a and 13 are pairwise

i

equivalent, that is x~ ~ ~3~I~, Vi E ~.
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Proof - Let q be the isomorphism from onto which sets up
the equivalence; then by Prop. 2 . 4 we get = U ® ~a ~, with

if is the projection related to 1~, the projection related to is

P~ = Pa~~ ~ ~p -1; then, taking into account that q E R(a, P) ==&#x3E; qJ - 1 E a)
and that if a is reduced by a family { P~ ~ V) of projections then
Pi E R(a, a), Vi e X (see Prop. 3 . 2), we get : 03B2 o P(i)03B2 = 03B2, Vi E V. By
Prop. 3 . 2 now we get p = U0153 ~~ ~ ; moreover

and

whence x~ ~ /3~‘~, Vi E f, follows.
As a consequence of this theorem, if then a is irreducible iff f3 is.

PROP. 4. 2. - Let { a~t~ ~ (i E f) be a family of representations of a group G
and a another representation (with non-trivial substratum) such that

E  a = U0153 ~’~ then there is at least one value of the index i such that à
i

and have a common component with non-trivial substratum.

Proof. 2014 Let { P~ } (i E f) be the family of projections related by Prop. 3 . 2
to the reduction of and let Q be the projection related by

Prop. 3 .1 to the component oc; as U Q(P;(x)) = Q(x), there is

at least one index such that Q o Pt is a projection different from the null
one. Moreover Q 0 P~ is a non-null projection also with respect to

= and  = Q(2) and it is easy to get :

whence, by Prop. 3.2, a t (Q o is a component of oe and C(i) t (Q o 
is a component of finally we notice that

The above theorem enables us to state that if a representation is

completely decomposable then its decomposition into irreducible compo-
nents is quite unique; in fact the proofs of the next two theorems rely
essentially on Prop. 4.2.
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PROP. 4. 3. - If for a completely decomposable representation a the two
decompositions into irreducible components and UEB hold,

i k

y and K being the respective index sets, then to each a k E K corres-

ponds such that = and the same holds with K and J interchanged.

Proof. - It is an immediate consequence of Prop. 4. 2, when one remem-
bers the irreducibility of the components involved.
The uniqueness of a decomposition into irreducible components is

retained also through equivalence, as it is shown by :

into irreducibles, with index set f and K respectively, of two representa-
tions a and {3 of a group G and if holds, then to each i e V a k E K

corresponds such that oc~ ~ ~3~k~ and the same is true with f and K inter-
changed.

Proof - By Prop. 4.1, 03B2 admits of the decomposition (3 = UEÐ 
with index set Y, and 03B1(i) ~ (i), Vi E J; to get the result it is now sufficient
to notice that and UEÐ ~3~k~ fulfil the requests of Prop. 4 . 3.

i k

The meaning of the above theorem is that if two equivalent represen-
tations are decomposed into irreducibles, then the decomposition is

essentially unique : there is in fact an up to equivalence uniqueness.

5. CONCLUDING REMARKS

In this last section we will draw a brief sketch of a possible interpretation
of some of the results that we have obtained; without any claim of definite-

ness, we want to outline some physical differences between Hilbert unitary
and croc-representations of groups. The main difference relies on the

different role played by superselection rules [17], which have to be super-
imposed on the Hilbert space description of quantum mechanics, while
they are completely embodied in the proposition system approach; a croc
to be decomposable means in fact that superselection rules act in it [18].
We divide our discussion into two parts : in the first one the decomposi-

tion theory will be examined while in the second one a physical interpre-
tation of Schur’s lemma will be inquired..
To perform the first half of this program, we assume 2 to be the croc J~(j~)

related to a von Neumann algebra j~ in some Hilbert space Jf [19], we
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take into account some results by von Neumann discussed by Jauch and
Misra [20] and we assume superselection rules to be purely discrete (this
assumption is useful in order to avoid some trouble, but it could be further
justified : see for instance Antoine [21]). If we now examine the decomposi-
tion of the proposition system 2, that of a unitary representation of a
group on Jf and that of a croc-representation of a group on then the

third decomposition is easily seen to embody in a sense the other two
ones. In fact, the proposition system 2 is decomposed by superselection
rules, that is by any projection from ~(~f) (see Def. 2.4; this is seen to be
nothing else that Jauch and Misra’s decomposition of / with respect to
its center if one reminds that ~(J~) = Besides, a unitary
representation in Hilbert space Jf is decomposed by any projection
from R(U), which is the commutant of (see for instance ref. [15]).
Finally, if the proposition system 2 bears a symmetry group G, namely
if 2 is the substratum of some croc-representation of G, then in its decom-
position both superselection rules and symmetry have to be taken into
account : a theorem by Guenin [22] shows that the croc representation of G
is implemented by a unitary representation of the same group (at
least when a ray representation is reducible to a unitary vector represen-
tation) and the proposition system with symmetry is decomposed in fact
by projections from ~(J~) n R(U). When 2 = 2(d) this is indeed the
significance of Prop. 3.2 and we could say that to decompose a croc-
representation amounts to restrict the decomposition of a unitary repre-
sentation to the « superselected sectors » singled out by superselection
rules. It is also possible to see that this is the reason for the complete
uniqueness of a decomposition into irreducibles of a croc-representation
(see Prop. 4.3): it should be noticed that in the unitary Hilbert case only
an up to equivalence uniqueness holds (see Prop. 1.11 of Pozzi’s paper
quoted in ref. [15]).

Let us now consider Schur’s lemma (Prop. 3.3); comparing it with

Prop. 2.5 we become aware that these two propositions interchange if
the set of projections and the narrower one of intertwining projections
interchange: if compared with Prop. 2. 5, Prop. 3. 3 amounts then to

taking into account, along with superselection rules, symmetries as well;
moreover, inasmuch Prop. 2.5 characterize the imbedding of a physical
system into another, the same is done by Prop. 3.3 when symmetries
partecipate in the description of a physical system. On Prop. 3.3 relies
then the construction of simplified physical systems, in the way to be now
illustrated by an example.

Let 2 be a croc and let it be the direct union of two elementary spin
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systems of spin s and s’ respectively (this to be definite; what is important
is in fact 2 to contain the elementary spin s system as a component) and 2’
the croc of a Galilean quantal particle with spin s ; 2 and 2’ are the
substrata of two croc-representations of SO(3), a and a’ respectively,
to be defined in a very natural way ; a homomorphism from 2 into 2’
may now be constructed such that Prop. 3.3 holds; this is a very easy
task because the superselection rule which is embodied in the construction

. of 2 is compatible with the representation of SO(3) defined on it. We
notice that the subrepresentation of a’, which is asserted by Prop. 3.3
to be the isomorphic image of the elementary system of spin s with SO(3)
as symmetry group, is not a component; its substratum is not in fact a

component of 2/, since it is the subcroc related to the von Neumann

algebra of the spectral projections of spin observables and then it contains 1&#x3E;’
and I’ but it does not equal 2’. This is a suggestion to use Prop. 3.3
to define simplified systems, as for instance a spin system if compared
with a particle with the same spin. We notice that, as a consequence of
Prop. 3. 3, a subrepresentation of a croc-representation of a group may be
imbedded into another one of the same group only if it is a component :
this amounts to say that a subsystem of a physical system with symmetries
may be considered to be a simplified physical system in the way previously
explained only if it is a « superselected sector » of the complete system.
The procedure now discussed to introduce simplified physical systems

has not an Hilbert analogue, as it is shown straightforwardly by this
remark : the spectral projections of spin observables do not span an Hilbert
subspace of the Hilbert space of states of a Galilean quantal particle,
whence no Hilbert subrepresentation may be attached to them.
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APPENDIX

Here we give some accounts on the theory of proposition systems. Many of the results
of this section may be found in ref. [3]. Many of the definitions we shall give (e. g. that
of orthocomplementation) are not the most general and standard ones : in order to shorten
at the highest degree this section, they are restricted according to the use we want to make
of them.

A) A poset is a pair (X,  ) where X is a set and  is a partial ordering on it. A poset
(X,  ) is said to be a complete lattice if, for any family { (i E f) of elements of X with
index set ~, both the least upper bound (1. u. b.) and the greatest lower bound (g.1. b.) exist;
these two bounds will be denoted by U x; and n x; respectively or, when confusion can
not occur, simply by U x; and n xi; if the family consists of two elements, x and y, we
shall write x u y and x n y respectively. The least and the greatest elements of X will
be denoted by 03A6 and I respectively and a complete lattice By elements of L we
shall mean elements of the underlying X. A complete lattice is called trivial if it contains
only one element. A complete lattice is said to be distributive if for any three elements x,
y, z of J~, the identities

are satisfied.
Given the complete lattice ~ == (X,  ), a complete sublattice of J~f is a complete lattice

J5f = (X’, ’) such that

for any family { x; ~ (i E J) of elements of X’. It is easy to show that, if ~" is a sublattice
of ~f, then : X’ is a subset of X closed with respect to u and n and ’ is the restriction of 
to X’. If conversely, given the complete lattice ~ X’ is a subset of X closed with respect
to u and n, the prescription defines a partial ordering relation on X’
and (X’, ’) turns out to be a complete sublattice In this way it is easy to make
any segment [a,~]={xe~;ax&#x26;} } into a complete sublattice of ~, with least
and greatest element a and b respectively. It is noteworthy that a complete lattice can be
regarded to as an algebraic structure with u and n as binary operations [23] : then a complete
sublattice turns out to be a subalgebra.
From now on we shall call shortly lattice (sublattice) a complete lattice (sublattice).

A sublattice J~’ of £f is called trivial if either j~’ equals ~ or ~’ is the trivial lattice.

B) An orthocomplementation on a lattice !R is a mapping c : !R -+ Ef such that, for
x, 

Let F be an index set and { (t e F) a family of elements then it is c( )J x,) = F) cxi
a

An orthocomplemented lattice (that is a lattice on which an orthocomplementation is
defined) is called Boolean algebra if it is distributive. Two elements x and y of ~ are
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said compatible if the sublattice generated by S = { x, ex, y, } (that is the smallest
sublattice which contains S) is a Boolean algebra, namely if it is a Boolean sublattice; in
this case we write x ..... y. It is trivial that x iff x H cy and that x ..... ex, Vx E 2.
The set of elements of 2 which are compatible with all the elements of 2 is called
the center of 2. It is a Boolean sublattice of 2. The center is called trivial if

~(~) _ ~ { 1&#x3E;, I }.
Two elements x and y of 2 are said orthogonal if x  ey; in this case we write x L y.

C) A proposition system is an orthocomplemented lattice such that

In an orthocomplemented lattice, let x and y be such that x  y ; then x H y iff
x u (ex n y) = y and y n (cy u x) = x. As a consequence, an orthocomplemented
lattice is a proposition system iff

A proposition system will be called shortly croc (for the motivation of this name see
Theorem VI of ref. [3]) and its elements are sometimes called propositions. Property (A.3),
or equivalently (A. 4), is called weak modularity. -

In a croc these statements are true:

if { x~} } (i E f) is a family of propositions, then

A croc is said to be trivial if it is the trivial lattice. In this paper, Ef is always meant
for a croc. If a sign is needed to specify a croc (for instance J~), the same sign is attached
to anything relating to it (for instance n, iv, 1 and also  , 4$ and I).
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