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Classification of the irreducible representations
of the groups 10(n)

by

Fritz SCHWARZ

Universitat Kaisers-Lautern

ABSTRACT. — By IO(n) we denote the semidirect product O(n)EIT",
where O(n) is the n-dimensional orthogonal group, and T" is the group
of translations of the n-dimensional vector space of real n-tupels (x,, . . ., x,).
We classify the irreducible representations of the group ISO(n), the identity
component of the group 10(n), and determine the conditions under which
an irreducible representation is unitary. These representations are
extended in all possible ways to representations of the whole group I10(n).
The general results are specialized to the cases n = 2, 3 and 4.

1. INTRODUCTION

Let R" be the n-dimensional real vector space with elements (x;, . . ., x,),
in which a positive definite quadratic form x? + ... + x2 is given. By
IO(n) we denote the group of linear transformations of this vector space
which leave the distance (x; — y;)*> + ... + (x, — y,)*> between the
vectors (xy, ..., x,) and (yy, ..., y,) invariant. It is the semidirect product
of the n-dimensional orthogonal group O(n) and the group T".of pure
translations, i. e., IO(n) = O(n)[ET". The group 1O(n) consists of two
disconnected pieces. The identity component is the semidirect product
ISO(n) = SO(n) 51 T", where SO(n) is the identity component of the
group O(n), whose elements are the proper rotations. The other piece
of I0(n), the coset with respect to the identity component, is the semi-
direct product of the improper rotations and the translations. The
identity component ISO(n) is a normal subgroup of index two in the whole
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16 FRITZ SCHWARZ

group IO(n). It is a noncompact, connected, non simply connected Lie
group and has a basic set of n(n + 1)/2 one parameter subgroups, n(n — 1)/2
of which are for example the rotations in the coordinate planes. The
remaining n ones are the pure translations along the coordinate axes.
To each one parameter subgroup of the first type we assign a
(n + 1) x (n + 1) matrix of the form

1 ............. 0 1
cosa ... sin o <l
gij(a)= y . . 1J
— sin o cos o
10(n
[0« ¢ v e e 01]n+1
1 i j nn+1

[[1 ¢ ¢ o ¢ ¢« o o o . 011
gt)=| - : t)i
10]|n

[0« - v e 01)n+1
1 nn+1

The basis elements A;; and T, of the Lie algebra iso(n) are defined by

d
(1) Aij = 2&8;‘,(“) la=0

and p
2 T, = it g =0
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respectively. A simple calculation shows that they obey the following
commutation relations

(3) [Aij’ Ayl = 5jkAiz + 5uAjk - 5ikAjt - 5j1Aik

) [Aija Tk] =9 jkTi - 5.‘ij

) T, T]=0

where all indices run from 1 to n. From relations (3), (4) and (5) it is easy
to see that a representation of the Lie algebra iso(n) of the group ISO(n)
is completely determined, if one knows the operators which correspond
to the generators A,,, A,; ... A,_;, and one of the translations, we
take T,, because the operators corresponding to the other generators A;;
and T; can be expressed through them using (3), (4) and (5). In a unitary
representation of the group the infinitesimal generators are represented
by antihermitian operators, i. e, we have D(A;) = — D*(A;) and
D(T) = — D¥(T).

The generators A;; with 1 £i < j < n — 1 are a basis of the Lie algebra
so(n) of the n-dimensional rotation group, the irreducible representa-
tions (IR’s) of which have been determined by Gelfand and Zetlin [/].
Therefore the problem of determining the IR’s of the Lie algebra iso(n)
reduces to determining the operator which corresponds to the generator T,.
It turns out that this can be done by methods similar to those which were
used in [/] to determine the IR’s of the Lie algebras so(n). This is essentially
a consequence of two facts: we reduce with respect to the maximal compact
subalgebra, so that within an IR of iso(n) a state vector is completely labelled
by discrete indices only. Further, in an IR of iso(n) an IR of so(n) occurs
either with multiplicity one or not at all. From this it follows in addition
that each IR of the Lie algebra iso(n) can be extended to an IR of the
group ISO(n), because the representation space is a discrete sum of finite
dimensional subspaces, i. €., the classification of the IR’s of the groups ISO(n)
is essentially reduced to determining the IR’s of the Lie algebra iso(n).
In section 2 we describe the IR’s of the Lie algebras so(n). In section 3 we
determine all IR’s of the Lie algebras iso(n) and give the additional condi-
tions, which must be fulfilled, so that the corresponding representation of
the group is unitary. In section 4, the representations determined in
section 3 are extended to the group IO(n). This is essentially based on a
paper by A. H. Clifford [2] in which the connection between the represen-
tations of a group and those of a normal subgroup is derived. We need
the general theorems of [2] only for the special case where the normal
subgroup is of index 2, and therefore we describe this case in the appendix.
In the last section we specialize the results of the preceding ones to the cases
n=2 3and 4.
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2. THE IRREDUCIBLE REPRESENTATIONS
OF THE LIE ALGEBRAS so(n)

We give in this section the results of [/] with some slight modifications
of the notation which turn out to be convenient for the further calculations.
The generators A;; with 1 <i < j < n are defined by (1) and obey the
commutation relations (3). There are some characteristic differences
for n = 2p, even, or n = 2p + 1, odd. In either case an IR is determined
by a set of p numbers m;;, which are all integer or halfinteger at the same
time. We denote a vector in a representation space by | m;; ), where m;;
is an abbreviation for a complete set of labels, which determine an IR and
specify each vector within a representation space aniquely. For n = 2p
the complete scheme is

[ My, Map2 oo Mgy, g Mypp |
Map—1,1 Map-1,2 .-+ Myp_gp-1
Myp-2,1 Map-2,2 ... Mzp_3 1
(6) |mij> =
Mgy My,
msy,
| M2y _

and for n=2p + 1

[ Mapi1,1 Mapirz --- Mapeip—1 Mapiip |
Myp 1 Maps  -er Mypp g Mapp
Myp—1,1 Mzp-12 .-« Map_q1p-1
(7 Imi; > =] - :
Mgy my,
msz,
| M3y _

The first lines in (6) and (7) determine an IR of so(n), the other labels
specify a vector within a representation space. All m;; are integer or
halfinteger at the same time and obey the conditions

Ba) —myypq S Mgy S Myyq s Mapsip—1 = Mo S Mogy 1k
(8b) | Moy | S Map— 1,1 S My

A 1IA
IIA - 1IA

Mogk—q = Mog_ k-1 = Moy

The index k goes from 1 to p — 1 or p for n even or odd respectively. We
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denote by D(A) an operator in a representation space, where A is an element
of the Lie algebra. If it is clear from the context we omit the complete
specification of the representation. Only in cases where it might lead to
some confusion do we use a more rigorous notation, for example
D(m2p.1.--=m2p.5)((A) instead of D(A) in the case of an IR of so(2p). The
operators D(A;;,,) for 1 £i<n — 1 are given by

k k
©)  D(Azkas+ > = ZA(lzk,,-)Ilzk,,-+1>— ZA(IZk,j— Dl j=15
=1 =1

k—1
(10) D(Agk-1,201l>= ZB(IZk—l,j)|IZk—l,j+1>
=1
k—1

—ZB(IZk—l,j_l)HZk—l,j_l>+ic2k”ij>

j=1

The matrix elements are

k-1
1 1\2 2
TRV [ (AN SN |
r=1
k , ;
1 1
[[[{ere=3) (3]

r=1
k—1
n[lgk,r = Bl [Ber — (o + 1]
r;_ﬁ{

k—1

(12) B(IZk—l,j) = ﬂ(l%k—l,r - l%k—l,j)

r=1
k
[km—&ﬂﬁ

=1

k-1
@iﬂmﬂfwfkaﬂ—@hwwbu—m—@hd

r¥j

r=1
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k—1 k
1’2k—2,r| |12k,r
r=1 r=1

k-1

l‘ le—l,r(IZk—l,r - 1)

r=

(13) Cau =

The indices I; are connected with the m;; in the following way

(14) Lv1,i = mMyeqq; +i
(15) ' i = My +i — 1

Let us describe now how these results are derived for so(n + 1) if they
are already known for so(n). According to what we said in the introduc-
tion, this problem reduces to determining the operator D(A,,+,). It

is not difficult to show that the following commutation relations for
A,.+1 can be derived from (3) and vice versa:

(16) [Ai,i+ 1 Anne] =0 for lsi=n-2
(17) [An—l,m [An,n+ 1 An—l,n]] = An,n+1
(18) [An,n+l’ [An,n+ 1 An—l,n]] = - An—l,n

These equations mean that A, ,,, is a vector operator under transfor-
mations of SO(n), and therefore the action of D(A,,.,) can be written
in the form (9) or (10) for n even or odd respectively. If this expression

for D(A, ,+,) is put into equation (17) one gets a set of recurrence relations
for the matrix elements, a solution of which can be written in the form

Lok 2 1 2
(19) Ay, = ;\/li":(IZp—l,r - %) - (lzm + 5) :| (L3p,5)

p—1
(20) B(llp+l,j) = ﬂ(lgp,r - l§;+ 1,j)'b(lzp+ l,j)
r=1
p—1

(21) C2p+2 = nlzp,r'czp+2
r=1
The reduced matrix elements a(l,, ), b(l,,4+1,;) and c,,., depend on
the indices of the uppermost line in the patterns (6) or (7) respectively
only. The commutation relation (18) determines these reduced matrix
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elements with the result (11), (12) and (13). However, resulting from the
commutation relations, the labels I,,.,;, l,,4+,,; are not given by equa-
tions (14) and (15), but by the following ones:

(22) Lipt1,i = Zapr1,i + i
(23) l2p+2,i = Zypra,i T i — 1

The z;; = x;; + iy;; are complex numbers. The requirement of irreduci-
bility restricts them to the discrete values m;; with the range (8).

3. THE IRREDUCIBLE REPRESENTATIONS
OF THE LIE ALGEBRAS iso(n)

In this section we determine an explicit expression for the operator D(T,)
and give a complete classification of the IR’s of the Lie algebras iso(n).
The generator T, is uniquely determined by the following commutation
relations, which follow from (3), (4) and (5):

(24) [Aiiv1, T =0 for 15i<n-2
(25) [An—l,m [Tm An—l,n]] = Tn
(26) [Tn’ [Tn’ An— l,n” = 0

Comparison of (24) and (25) with (16) and (17) shows that they differ only
by the exchange of A, ., with T,. That means, from (24) and (25) one
obtains for the matrix elements the expressions (19), (20) and (21). The
last commutation relation (26) differs from (18) by the right hand side, and
one verifies by direct calculation that the matrix elements A(, pi Blap-1,)
and C,, are replaced by the following expressions, see also [3]:

p—1

o 1 1\? 1\?
271 A,y = 522p+1,p 1L Lp—1,— 5] ~ L + 5

1 2 1 2
<12p+ 1,r — E) - (IZp,j + 5) ]

P
J (lgp,r - l%p,j)[l%p,r - (lzp,j + I)ZJ

r¥j
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p
(28) B0(12p+ 1,1) = Z2p+2,p+1 H(l%p,r - l§p+1,j)
r=1

p

—[(l§p+ 2,r T l§p+ l,j)

r=1
X
p -
l§p+ 1,]’(4l%p+ 1,j — l)r (l%p+1,r - l§p+ l,j)[(IZp+ 1,r = 1)2 - l§p+ l,j]

ey

14

Hllp,r'12p+2,r
(29) Cgp+2 = 22p+2,p+1 ank

p

nlzpﬂ,r'(lzpn,r -1

r=1

The labels [,,,,; (1 =i < p— 1) in (27) and the labels 1,,,,; (1S i< p)
in (28) and (29) are complex numbers, which are defined by (22) and (23).
The z;; = x;; + iy;; have to be chosen in such a way that the so(n) labels
have the correct range and that the representation of iso(n) is irreducible.
We determine now the conditions for the constants z;; which follow from
these requirements. We treat the cases n even or odd separately and we
begin with n = 2p, even.
The conditions for the so(n) labels are

(30) 0 é |m2p,1 | é m2p,2 .S_ see é m2p,p

This means that we must have m)3} = m3y;,, for 1 £ j = p — 1, and this
requires

(31) A%(mp) = A%(min;,, — 1) =0

2p.J

These equations give p — 1 conditions for the p constants z,,,,; We
choose 1 £j<p—1 and get

1)\? 1\? ) 1\?
(32) <22p+l,j+j_5) =< 2";133(4”]_5) =< o+ 1 +J_§)

The solution of (32) is z,,4q,; = Maps1,; = Map; = Mypysy With the
conditions

(33) |m2p,1 | = Mypti11 S my,, £...= Myptr1,p-1 =my,,
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The m, ,+, ; are integer or halfinteger together with so(n) labels and have
1
>
the representation is irreducible for arbitrary complex z,,,, , because
the zeros in the matrix elements, which are determined by (31), are the
only ones. However, to avoid having the same representation occur more
than once, we make the restriction 0 < x,,,,,, In a unitary represen-
tation of the group the operator D(T,) must be antihermitian. This
requires that the matrix elements (27) are real. It is easy to see that the
denominator in (27) is always positive, and the same is true for the expres-
sion

[ [ PR (O R RS

the range m,,.,;=0,=,1,... From (27) it is easy to see that that

because My,yq; < Myp vy = Mypiqj+q. From this it follows that the
requirement of antihermiticity for the operator D(T,) means that y,,,, ,=0,
i. e, z;,+1,, has to be real.

In the case n = 2p + 1 the condition for the so(n) labels is
(34) 0= Mmypi11 SMypr12= o0 SMypiqy,

min max _ min
Thus we must have m§yh, ; S my,.,; and m3%, ; = myh ;41 for

1 £j<p-— 1. This requires
(35) Bo(mrzn;:’:- l,j) = Bo(mgl,i;n+ 1,j+1 — 1) = Bo(mg';iai 1,1 — 1)=0

for 2 <£j < p. These equations give p conditions for the p + 1 labels
Zyp+2, We choose 1 <j < p and get

(36) Z§p+2,l = (m';:zn+ 1,1)2
B7) (apsaj+i—1D)P =55, o0 +j =1 =, +j—1)
The solution of these equations is

Zap+2,0 = Mapi21 = Mapiq,1s

—_— — max, — min
Zap+2,j = Maptaj = Mapiq j—1 = Mapyyj

with the conditions
(38) |m2p+2,l | = my,41,1 =< Mypi22S oo SMypipp, SMypyy,

The m,,,, ; are integer or halfinteger together with the so(n) labels;
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1
m;,+ 2,1 has the range 0, + 3 +1, ..., the other labels My, jWith2Sj<p

1
have the range 0,5, 1,... The representation of iso(n) is irreducible

for arbitrary complex z,,,,,.;. We restrict the real part again by
0 < x;,42,,+1, because we want a range for the parameters such that
every irreducible representation occurs only once. By considerations
similar to those in the case n even one finds that the operator D(T,) is
antihermitian if y,,,; ,+; = 0.

Let us summarize the results of this section in the following way: for
n = 2p the IR’s of the Lie algebra iso(n) are determined by p numbers
Mypi1,1s Mapi1,2s s Mapstp—15 Zaps1,p TNE My, for 1Sisp—1
are all integer or halfinteger together with the so(n) labels. They have the

1
range 0, 3 1,... and obey the condition

(39) 0SS Mypig 1 SMypr12S o0 S Mypigp-t

The label z,,,1,, = Xsp41,p + iV2p+1,p IS @ complex number, its real
part is restricted by 0 < x,,,,, If in addition y,,,, = 0 the opera-
tor D(T,) is antihermitian. The so(n) content is given by equation (33).

For n=2p + 1 the IR’s of iso(n) are determined by p + 1 numbers
Mop+2,15 M2pe2,2o -+ > Mapr2,ps Z2p+2,p+1- The my,4,,; for 1=isp
are integer or halfinteger together with the so(n) labels. The range of

1 . ;
Mypt1,1 18 0, £ X + 1,..., the my,,,; with 2 < i < p have the range 0,

1 .
% 1,... They obey the condition

(40) |m2p+2,l | = Mapi2,2 S .. S My,

The real part of z,,42 541 = X2p42,p+1 T V2p+2,p+1 1S 2g2AIN restricted
by 0 = X3p42,p41- If Y2pi2,,+1 = O the operator D(T,) is antihermitian.
The so(n) content is given by equation (38).

The IR’s determined in this section are all pairwise inequivalent and
exhaust all IR’s of the Lie algebras iso(n).

4. EXTENSION TO THE GROUP IO(n)

As already mentioned in the introduction, the group 10(n) contains
two disconnected pieces, the identity component ISO(n) and the coset
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with respect to it. Every element of the coset can be written uniquely
as the product of an element of ISO(n) and a given representative of the
coset. We take for this representative the element I which is defined

through

+ Xx; for 1f5isn-1
41) Ix; =

- X; for i=n

and we assign to it a matrix of the form

[+ 1 1
+1
42)
+1 n—1
-1 n
L +1] n+1
1 n—1 nn+1

It is easy to see that I obeys the following commutation relations

(43a) LA,]=0 for 1<i<n-2
(43b) [L Ay ys =0
(44a) [ILT,]=0 for 1£ign-1
(44b) [L, T+ =0

Here we used the notation [A, B], = AB + BA. It turns out that the
possible extensions to the group IO(n) are different for integer or half-
integer values of the discrete labels which specify an IR of the identity
component ISO(n). This is related to the fact that the n-dimensional
rotation group is not simply connected so that in the halfinteger case
the IR’s of the Lie algebra iso(n) actually correspond to representations
of a suitable covering group. Therefore we treat at first the integer case,
where the results given in the appendix can be applied directly, and then we
examine the changes which have to be made in the halfinteger case.

We begin with n = 2p. If the IR of ISO(2p), which is specified by
Mypii1r -+ s Mapi1p—15 Zap+1,p, 18 selfconjugate in 1O(n), there exists
an operator C which obeys the following commutation relations

(45a) D(I_lAi,H»lI) = D(Ai,i+1) = C_ID(A.',H )C
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(45b) DI™'A, ;) = — DA,-,,) = C"'DA,_,)C
(45¢) DI"'T,) =-D(T,) =C 'DT,C

The index i in (45a) has the range 1 < i < 2p — 2. From these equations
it follows that C has the form

46) C

Map+1,00 M2pt1,25 -« s Mapi1 p_15 Zapti1,p >

Map.15 M2p,25 ces Mapp1s Map,p

. . / ’
AMap 1,15 s Map_y py; Mop s -« osMyp ps My gy ooy My )

(m2p,1,...,m2p,p)

Map+1,15 Map+1,25 -+ s Mapr1p—15 Zap+1,p >

’ 7 !’
M2p.15 M3p,25 s Mapp—15 Map,p

Putting this expression into (45b) and (45¢c) one gets a set of conditions
for the matrix elements at the right hand side of (46). The solution gives
the following expression for C:

Map+1,15 Maps1,25 -« s Mapi1p—13 Zap+1
(47) C 14 » 14 ’ pTip 14 P
m2p,1: m2p,2, cees m2p,p—1, m2p,p
p—1 )4
= | |(_ 1)"‘2p—l.j| |(_ 1)’"21»,1'
i=1 j=2

Map+1,1 M2aps1,25 -+ s Mapat1,p—15 Z2p+1,p >

— Myp.1, M3p,25 cesMapp—15 M3p,p

There are no conditions for the labels m,, . 1, ..., My,4, ,—; and Zop+1,p
i. e, an arbitrary IR of ISO(2p) is selfconjugate in I0(2p). In the state
vectors in equations (46) and (47) only the two uppermost lines of the
Gelfand-Zetlin pattern are written down, the omitted labels are not changed
in these equations. According to (A.3) the operator corresponding to I
is given by

(48) D(m2p+1,1 ..... m2p+1,p—1;22p+|,p)(l) — i C
These are all possible extensions of an IR of ISO(2p) if the labels

Map+1,15 - s Mapt1,p—1
are integer.
If n =2p + 1 and an IR of ISO(2p + 1) is selfconjugate in IO(2p + 1),
there must again exist an operator C which obeys the commutation rela-
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tions (45). The range of the index iin (45a)isnow 1 < i < 2p — 1. From
the commutation relations (45) it follows that C has the form

Moypt2,1s Map+2,25 -+ s Mapi2ps Z2p+2,p+1
(49) C‘ p p p 14 p

Map+1,15 M2pt1,25 - s Mapi1p

= c(mzp,l’ ceey mzp‘p;m2p+l’l, ey m2p+1‘p;

("l'2p+l.l ----- m’2p+l,p) ’ ’
Mypi1,15 -5 Maprph

‘m2p+2,l’ Maps2,25 s Mapi2ps Z2p+2,p+1 >

’ ’ ’
Mopr1,1o Map+1,2o -+ s Maprap

Again, putting this expression into (45b) and (45¢) one gets a set of condi-
tions for the matrix elements in (49). These conditions can only be ful-
filled if m,,,, = 0. That means, an IR of ISO(2p + 1) is selfconjugate
in I0(2p + 1) only if m,,,,; = 0. In this case one gets for C

(50) C

0o , Myp+2,25 - s Mapi2ps Z2p+2,p+1 >

Mapi1,1o Mapr1,25 -+ Mapiyp

p
= | I(— 1)m2ed(— 1ymer+rd 0 s Mapiaz o Mapiayps 22p+2,p+1>
m .
j=1 2

p+1,1 Mapr1,25 o s Mapiqp

The operator representing I is given by
(51) D(O,mzp+z,z,...,m2p+z,p;zzp+z,p+1)(1) =+ C

If my,,,,; * 0, the representations of IO(2p + 1) can be induced from
those of ISO(2p + 1) as described in the appendii(. We take as repre-
sentative of ISO(2p + 1) the unit matrix E,,,, and as representative of
the coset the element I. Denoting the representation of 10(2p + 1),
which is induced by an irreducible representation

D(A) — D(m2p+z.1 ..... m2p+2,p;22p+2,p+l)(A),
by D(A), we get

_ | DA+ 1) 0 .
(52) D(Ai,i+1) = [ 0 D(Ai,i+1J 1sis 2P -2
_ D(A;, 2.+ 0
(53) DAsyp01) = [ Bamard) )]
2p,2p+1
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_ D(T,,,;) O
54 D(T,,.,) = »
9 (Tape1) [ 0 —D(Tz,,ﬂ)]
_ 0  D(Ey.,)
(55) B =[ 2 ]
( ) D(E2p+1) 0

We go from D(A) to an equivalent representation

D(im2p+2,1,m2p+2,z ..... m2p+z,p;22p+z,p+1)(A)

with the transformation

E 0] '_ E O
56 D(im2p+2,|,mzp+z,z.-u,m2p+z,p;22p+z.p+1) A) = [ :l D A[ :|
(56) (A) 0 C (A) 0 C

where C is defined through

57 C

Map+2,0s Map+2,25 +« > Mapi2ps Zopta p+i >

Map+1,1 Mapt1,25 -+ s Mapi2p

= H(_ 1)"‘21:,](_ 1)'"2p+l.i
i=1

The result has the following form

Map+2,1 Map+2,25 - s Mapi2ps Z2p+2,p+1 >

Mopr1,1s Mapri,25 -5 Mapiyp

(58) D(Em2p+2,0m2p 42,2500 m2p+2,p;lzp+z,p+1)(A

D(+m2p+2,lvm2p+2y2'"m2p+2,p;zlp+2,p+ 1)(A, it 1)
i,i
0

ii+ l)

0
D(— M2p+2,1,M2p+2,2.--M2p+2,p;Z2p+2,p+ l)(A. i+ 1)
N

for 1 i< 2p,

(59) D(Emp+2.0mps2,2ms sz+z,p:22p+2.p+l)(T2p+l)
_I:D(+m2p+2.1.mzp+z.z ,,,,, m2p+2,p.mzp+z,p+1)('1"2p+l)

0
0
D(_"'2p+2‘l’m2p+2,2 ----- m2p+2,p;zzp+2.p+1)(T2p+1)
and
(60) D(im2p+z,1,m2p+2.z ----- m2p+2,p;zzp+2,p+1)(l)=|:0 C
CcC 0

Finally we have to discuss the case where the discrete labels, which ‘
specify an IR of ISO(n), are halfinteger, for this discussion see [5] [6] and [7].
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The rotation group SO(n) has a twofold covering group CSO(n). The
homomorphism from CSO(n) to SO(n) has the kernel + e, where e is
the unit element of CSO(n). This covering group is uniquely determined.
The group O(n) has two covering groups which we call C,0(n) and C,0(n).
In one of them the elements corresponding to I, which is defined by (41),
have the square + e, in the other — e. Only the representations with
integer values of the discrete labels are representations of the groups SO(n)
and O(n) respectively. If the discrete labels have halfinteger values the
representation specified by them actually determines a representation of
one of the covering groups. According to the ambiguity in the choice
of the covering group for O(n) there exist more possible extensions for
halfinteger labels than for integer ones. The case of the groups ISO(n)
and IO(n) is similar. ISO(n) has a single covering group CISO(n). 10(n)
however has two covering groups which we call C,IO(n) and C,IO(n).
In C,IO(n) the elements, which correspond to the element I of 10(n),
have the square + e, in C,IO(n) they have the square — e. It is easy
to see that the whole discussion for C,10(n) is completely analog the integer
case. Therefore we are left with the halfinteger case for C,IO(n). For
n = 2p all IR’s are again selfconjugate, and the discussion is similar to
the integer case. Only the relation between D(I?) and C? is changed by
the factor — 1. Therefore to the operator D(I) correspond now the
matrices

(61) D(m2p+1,1 ----- m2p+1,p—1;22p+1,p)(1) =+ iC

where C is given by (47).

For n = 2p + 1 and halfinteger values for the discrete labels there are
no selfconjugate representations. The representations of C,0O(n) have
to be induced from those of the identity component. The formulas for
the infinitesimal generators of the Lie algebra are the same as in the integer
case, they are given by (52), (53) and (54). However, instead of (55) we get

_ 0 — D(e)
62 D(I) =
(62) M l:+ D(e) 0 J
‘ . . |E 0
We transform (52), (53) and (62) now with the matrix [0 'C:,' For
— i

Aiivy With 1 £i<2pand T,,,, this gives again (58) and (59) respecti-
vely. However, instead of (60) we get now

(63) D(tmlp+2,1'm2p+2,2--:¢,m2p+2,p;22p+2,p+l)(I) — I:O iC
. iC 0
where C is defined through (57).
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At the end of this section let us again summarize the results, which we
have found. If n = 2p all IR’s of ISO(n) are selfconjugate in 10(n). If
the discrete labels m;,, 1, ..., My,1q -, are integer, the two possible
extensions are given by (47) and (48). If the discrete labels are halfinteger
there is also the extension (61) possible which gives actually, a represen-
tation of the covering group C,IO(n).

If n=2p+1 and m,,,,,; =0, the IR’s of ISO(n) are selfconjugate
in IO(n) and the two possibilities for the operator D(I) are given by (50)
and (51). If my,,,; # O the IR’s of ISO(n) are not selfconjugate. The
operators corresponding to the generators A;;;; for 1 £i<2p and
T,,+1 are always given by (58) and (59) respectively. In the integer case
the only possible extension is given by (60). In the halfinteger case there
exists in addition the extension by (63).

5. SOME SPECIAL CASES

In this section we specialize the results of the preceding ones to the
cases n =2, 3 and 4 We give explicit expressions for the operators
D(A;;4+;) for 1 i< n—1 and D(T,). In the state vectors the labels
which do not change are always omitted.

a) n=2. In an IR a state is completely labelled by

(61) Imy > = [:]
21

From section 2 and 3 we get

(62) DA ;) [ myy ) = imyy [ myy )

(63) DI(T,) |my ) = A(myy) | myy + 1) — A%myy — 1) [myy — 1)
There is only one matrix element

o 1
(64) A®(m,,) = 5231

The real part of z3, is restricted by 0 < x3;, If y;; = 0 the operator
D@ 1)(T,) is antihermitian. The element I is defined by

(65) Ix, = { X

_x2
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All IR’s of ISO(2) are selfconjugate in I0(2). If m,, is integer the two
extensions are
(66) D@I(I)| 23y, myy > = £ 1231, — My )
If m,, is halfinteger there exist in addition the two extensions
(67) D@I(I)| 23y, myy > = £ i 23, — may )

b) n=3. We describe at first the representations of the identity
component ISO(3). In an IR of the Lie algebra iso(3) a state is completely
labelled through

Mmyy 242
(68) |mij> =| M3,

m;y

The operator D™t-242(A | ,) is given by (62). The operators D™41:242)(A , ;)
and D™:242)(T,) act in the following way on a state

(69) Dmav=4(A,3) | myy ) = Almyy) | myy + 1) — A(myy — 1)|[my; — 1)

(70) Dv24(T3) | my, )
= B%ms,) | ms; + 1) — B%msy — 1)|myy — 1) +iCY|my, )

The matrix elements are

1 1\? 1\2
(71) A(m21)=§ ms, +E —\{my +—2—

myy — (m3;y + 1)2.
+ 1)*[4(m3, + 1)* — 1]

(72) B%ms,) = 242\/”@1 - (m3; + 1)2\/
(m3,
My 1Myy24,
(73) 9= = =77
2 (m3; + my,

The real part of z,, is restricted by 0 < x,,. The operator D™1:242(T )
is antihermitian if y,, = 0. The group element I is defined through

{+xi. for i=1,2
le'=

_x3

(74)
If my, =0 the representations of ISO(3) are selfconjugate in 10O(3)

and can be extended by the operator D(®#42(I), which is given by

(75) DO=1)|0, 245 5 M3y, myy > = + (— 1™ (= 1™ 0, Z45 M3y, Myy )

If my, # O the IR’s D'¥mar242)(A) of 10(3) are induced from those of

ANN. INST. POINCARE, A-XV-] 3
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ISO(3). From (58) and (59) we get for the generators Ay withi=1,2
and T,

D+t mat,z42), A. . 0
(76) D(J_rmu,zaz)(AiH_l) — ( i,i+ 1) ) :|
’ 0 D¢ m41,24z)(AU+l)
D(+m41,242) T 0
a7 D(Emanza(T,) = (T5) )
0 D¢ M41,242)(I)
If m,, is integer there is only one possible extension
0 C
78 D ma1.za2) D=
(78) 1) [C 0]

with
(79) Clmyy, 2455 myy, myy > = (— 1)imartmsn) | Mgy, Zaas Mmyy, My

If m,, is halfinteger there exists in addition the possibility

0 iC
80 DtEmanza(]) = .
o n-[2 ]
with the same C.
¢) n =4 A complete labelling in an IR is

Msy 242

May Myy
(81) | m; > =

msyy

mjy,

The operators D™s*#52(A | ,) and D™s1-#52)(A, ;) are given by (62) and (69)
respectively. D™st2s2(A,,) and D™s»?52(T,) act in the following way
on a vector in a representation space:

(82) D(ms"zsz)(Aant) | myy
= B(my()|m3; + 1) — Bimy; — 1)|my; — 1) +iC, |my; )

(83) D(msl'z”)(Au) | myy, My, D
= A%myy) | myy + 1, myy ) + A%myy) | myy, myy + 1)
- Ao(m41 —D|my — 1, my, > — Ao(m42 —Dlmyy, myy, — 1)

The matrix element are
(84)  B(my,) = /myy — (myy + 1)

/{mil — (3, + 12)0may + 1> — (m3; + 12
('”31 + 1)2[4('”31 + 1)2 - 1]




CLASSIFICATION OF THE IRREDUCIBLE REPRESENTATIONS OF THE GROUPS 10(n) 33

myimyy(my, + 1)
85 C, =
(83) ? (m3, + )msy,

, 1 1\ %
(86) A ("’41):5252 msz, +§ — | myy +§
1 .2 1 2
]

(s + 1)* — mi )myy + 1)* — (myy + 1)7]

o 1 1\? 3)?
(87) A(my,) = 5252 my; + 5]~ my, + 3
1\? 3\?
-

[m}u — (my, + 1)2][mil — (my, + 2)2]

The real part x5, is again restricted by 0 < xs,, and D™s#52(T,) is
antihermitian if ys, = 0. The element I is defined through

{+x,— for 1<ig3
IX,-=

— X4

(88)
All IR’s are selfconjugate in 10(4). If ms, is integer the only possible
extensions are

(89) D™sv=s(I) | msy, 2535 Mgy, Myp, My, Myy >
=+ (= D)™™ I mgy, 25,5 — myy, Mgy, may, My )

If ms, is halfinteger there exist in addition the possibilities

(90) D(m“'zsz’(l) [ Msy, 2555 Myy, Mys, Myq, Myy )
= & i(— [)martmed) |msy, 2555 — myy, my,, myy, my; >
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APPENDIX

In this appendix we describe the connection between the representations of a group
and those of a normal subgroup of index 2. It is essentially based on a paper by A. H. Clif-
ford [2]; see also [4] [5] and [6]. We give only the results we need. The interested reader
can find the proofs and a more general treatment of the whole subject in these references.

Let G be a group, H € G a normal subgroup of index 2. By h, h; we always denote
elements of H, by g, g; elements of G which are not necessarily in H. However, let always
go ¢ H, then g H is the coset with respect to H and we have G = H + goH. If D(h) is
a representation of H, then also D(g~'hg) = D*(h) with fixed ge G is a representation
of H, because always g 'hge H. The representation D*(h) is called the representation
conjugate to D(h). It may happen that the representation D*(h) is equivalent to D(h)
for a subset of G, in this case it is called selfconjugate in this subset. Trivially this is the
case for g € H, because then D(g " 'hg) = D(g " !)D(h)D(g). However, in general the subset
of G for which a given representation of H is selfconjugate, may be larger. It can be shown
that this subset is always a subgroup of G, called the little group of the representation
D(h). If H is of index 2 in G, the little group of an arbitrary representation of H is either
H itself or the whole group G.

Let D(g) be an irreducible representation of G. If G is restricted to H there are two
possibilities which can occur. If D(g) remains irreducible, the representation D(h), sub-
duced by D(g), is selfconjugate in G. The other possibility is that D(h) is reducible. In
this case the little group of D(h) is H itself. D(g) splits into the direct sum of two IR’s D, (h)
and D,(h) of H which are conjugate to each other.

We want to describe now how the IR’s D(h) of H, which are supposed to be known, can
be extended to those of G.  Such an extension is determined if we know the operator which
corresponds to one representative g, of the coset. At first we consider the case where the
representation D(h) is selfconjugate in G. There exists an operator C with

(A.1) D(gs 'hgo) = C™'-D(h)-C
for all he H, and consequently
(A.2) D(g; *hgt) = D(go %) D(h)-D(gg) = C~*-D(h)-C*

because g3 € H. It follows that D(g3) = C?, i. e., D(g,) is determined up to a sign and we
have

(A.3) D(go) = = C

The two possibilities of D(h) corresponding to the different signs at the right hand side
of (A.3) give two inequivalent representations of G.

The other possibility is that the little group of D(h) is the group H itself. In this case
the extension of D(k) to an IR of G can be induced from D(h). We take the unit element e
and the element g, as representatives of H and the coset respectively. The representa-
tion D(g), induced by D(h), is irreducible and given by
D(g) D(ggo) ]

D(z5's) Digo 'g8o)
where g is an arbitrary element of G. For g e H it follows from (A.4)

D(g) 0 ]
0  Di(go 'g20)

(A.4 D(g) = [

(A.9) D(g) = [
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and for g¢ H
0 D(ggo)]
Dig;'e) O

From (A.5) and (A.6) one sees that the representation space of D(g) is a system of imprimi-
tivity for G.  For g = g, one gets from (A.6)

o D(gé)]
(A.7) D(go) = [D(e) 0

(A.6) D(g) = [

The extensions of the IR’s of H to the whole group G, described in this appendix, exhaust
all possibilities which lead to inequivalent representations of G.
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