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ABSTRACT. - By IO(n) we denote the semidirect product 
where O(n) is the n-dimensional orthogonal group, and T" is the group
of translations of the n-dimensional vector space of real n-tupels (x 1, ..., xj.
We classify the irreducible representations of the group ISO(n), the identity
component of the group IO(n), and determine the conditions under which
an irreducible representation is unitary. These representations are

extended in all possible ways to representations of the whole group IO(n).
The general results are specialized to the cases n = 2, 3 and 4.

1. INTRODUCTION

Let Rn be the n-dimensional real vector space with elements (xi,..., xn),
in which a positive definite quadratic form x 1 + ... + x; is given. By
IO(n) we denote the group of linear transformations of this vector space
which leave the distance (xi - + ... + (xn - Yn)2 between the
vectors ..., xj and (yi, ..., yn) invariant. It is the semidirect product
of the n-dimensional orthogonal group O(n) and the group Tn of pure
translations, i. e., IO(n) = The group IO(n) consists of two
disconnected pieces. The identity component is the semidirect product
ISO(n) = T", where SO(n) is the identity component of the

group O(n), whose elements are the proper rotations. The other piece
of IO(n), the coset with respect to the identity component, is the semi-
direct product of the improper rotations and the translations. The

identity component ISO(n) is a normal subgroup of index two in the whole
ANN. INST. POINCARE, A-XV-1 2
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group IO(n). It is a noncompact, connected, non simply connected Lie
group and has a basic set of n(n + 1)/2 one parameter subgroups, n(n - 1)/2
of which are for example the rotations in the coordinate planes. The

remaining n ones are the pure translations along the coordinate axes.
To each one parameter subgroup of the first type we assign a

(n + 1) x (n + 1) matrix of the form

and to the translations along the coordinate axes matrices of the type

The basis elements A~~ and Tt of the Lie algebra iso(n) are defined by

and
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respectively. A simple calculation shows that they obey the following
commutation relations

where all indices run from 1 to n. From relations (3), (4) and (5) it is easy
to see that a representation of the Lie algebra iso(n) of the group ISO(n)
is completely determined, if one knows the operators which correspond
to the generators A12, A2 3 ... and one of the translations, we
take Tn, because the operators corresponding to the other generators Aij
and T~ can be expressed through them using (3), (4) and (5). In a unitary
representation of the group the infinitesimal generators are represented
by antihermitian operators, i. e., we have = - D+(Aij) and
D(T;) = - D +(T;).
The generators A;  with basis of the Lie algebra

so(n) of the n-dimensional rotation group, the irreducible representa-
tions (IR’s) of which have been determined by Gelfand and Zetlin [7].
Therefore the problem of determining the IR’s of the Lie algebra iso(n)
reduces to determining the operator which corresponds to the generator Tn.
It turns out that this can be done by methods similar to those which were
used in [7] to determine the IR’s of the Lie algebras so(n). This is essentially
a consequence of two facts : we reduce with respect to the maximal compact
subalgebra, so that within an IR of iso(n) a state vector is completely labelled
by discrete indices only. Further, in an IR of iso(n) an IR of so(n) occurs
either with multiplicity one or not at all. From this it follows in addition
that each IR of the Lie algebra iso(n) can be extended to an IR of the
group ISO(n), because the representation space is a discrete sum of finite
dimensional subspaces, i. e., the classification of the IR’s of the groups ISO(n)
is essentially reduced to determining the IR’s of the Lie algebra iso(n).
In section 2 we describe the IR’s of the Lie algebras so(n). In section 3 we
determine all IR’s of the Lie algebras iso(n) and give the additional condi-
tions, which must be fulfilled, so that the corresponding representation of
the group is unitary. In section 4, the representations determined in
section 3 are extended to the group IO(n). This is essentially based on a
paper by A. H. Clifford [2] in which the connection between the represen-
tations of a group and those of a normal subgroup is derived. We need
the general theorems of [2J only for the special case where the normal
subgroup is of index 2, and therefore we describe this case in the appendix.
In the last section we specialize the results of the preceding ones to the cases
n=2,3and4.
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2. THE IRREDUCIBLE REPRESENTATIONS
OF THE LIE ALGEBRAS so(n)

We give in this section the results of [1] with some slight modifications
of the notation which turn out to be convenient for the further calculations.
The generators A~~ with 1 ~ i  ~ ~ ~ are defined by (1) and obey the
commutation relations (3). There are some characteristic differences
for n = 2p, even, or n = 2p + 1, odd. In either case an IR is determined

by a set of p numbers which are all integer or halfinteger at the same
time. We denote a vector in a representation space by ), where m~~
is an abbreviation for a complete set of labels, which determine an IR and
specify each vector within a representation space uniquely. For n = 2p
the complete scheme is

and for n = 2p + 1

The first lines in (6) and (7) determine an IR of so(n), the other labels
specify a vector within a representation space. All m~~ are integer or
halfinteger at the same time and obey the conditions

The index k goes from 1 to p - 1 or p for n even or odd respectively. We
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denote by D(A) an operator in a representation space, where A is an element
of the Lie algebra. If it is clear from the context we omit the complete
specification of the representation. Only in cases where it might lead to
some confusion do we use a more rigorous notation, for example

instead of D(A) in the case of an IR of so(2p). The

operators 1) for 1 _ i _ n - 1 are given by

The matrix elements are
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The indices lij are connected with the mij in the following way

Let us describe now how these results are derived for so(n + 1) if they
are already known for so(n). According to what we said in the introduc-
tion, this problem reduces to determining the operator D(An,n+ 1). It
is not difficult to show that the following commutation relations for

An,n+ 1 can be derived from (3) and vice versa:

These equations mean that An,n+ 1 is a vector operator under transfor-
mations of SO(n), and therefore the action of 1) can be written
in the form (9) or (10) for n even or odd respectively. If this expression
for is put into equation (17) one gets a set of recurrence relations
for the matrix elements, a solution of which can be written in the form

The reduced matrix elements and depend on
the indices of the uppermost line in the patterns (6) or (7) respectively
only. The commutation relation (18) determines these reduced matrix
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elements with the result (11), (12) and (13). However, resulting from the
commutation relations, the labels 1, are not given by equa-
tions (14) and (15), but by the following ones:

The zij = xij + iyij are complex numbers. The requirement of irreduci-
bility restricts them to the discrete values mij with the range (8).

3. THE IRREDUCIBLE REPRESENTATIONS
OF THE LIE ALGEBRAS iso(n)

In this section we determine an explicit expression for the operator 
and give a complete classification of the IR’s of the Lie algebras iso(n).
The generator Tn is uniquely determined by the following commutation
relations, which follow from (3), (4) and (5) :

Comparison of (24) and (25) with (16) and (17) shows that they differ only
by the exchange of An,n + 1 with Tn. That means, from (24) and (25) one
obtains for the matrix elements the expressions (19), (20) and (21). The
last commutation relation (26) differs from (18) by the right hand side, and
one verifies by direct calculation that the matrix elements ij)
and C2p are replaced by the following expressions, see also [3]:
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The labels l,i (I ~ i ~ p - 1) in (27) and the labels 2,i (1 ~ i ~ p)
in (28) and (29) are complex numbers, which are defined by (22) and (23).
The zij = xij + iyij have to be chosen in such a way that the so(n) labels
have the correct range and that the representation of iso(n) is irreducible.
We determine now the conditions for the constants z~~ which follow from
these requirements. We treat the cases n even or odd separately and we
begin with n = 2p, even.
The conditions for the so(n) labels are

This means that we must have = m2p;;+ for 1 - j = p - 1, and this
requires

These equations give p - 1 conditions for the p constants 1,j. We

choose 1 __ j __ p - 1 and get

The solution of (32) is with the

conditions
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The are integer or halfinteger together with so(n) labels and have

the range = 0., 1, ... From (27) it is easy to see that that

the representation is irreducible for arbitrary complex 1,P, because

the zeros in the matrix elements, which are determined by (31), are the

only ones. However, to avoid having the same representation occur more
than once, we make the restriction 0 ~ l,p. In a unitary represen-
tation of the group the operator D(Tn) must be antihermitian. This

requires that the matrix elements (27) are real. It is easy to see that the

denominator in (27) is always positive, and the same is true for the expres-
sion

because 1,~ _ m2p,~+ ~ _ 1,;+ 1~ From this it follows that the

requirement of antihermiticity for the operator D(TJ means that 0,
i. e., has to be real.

In the case n = 2p + 1 the condition for the so(n) labels is

Thus we must have and = 
1 for

1 - j  p - 1. This requires

for 2 ~ ~ p. These equations give p conditions for the p + 1 labels

Z2p+2,j. We choose 1  j __ p and get

The solution of these equations is

with the conditions

The are integer or halfinteger together with the so(n) labels;
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m 2p+2,1 has the range 0, ±1 2, - + 1 &#x3E; ... the other labels m2p+2,j . with 2 -  ’ - p

have the range 0, 1 2, 1 &#x3E; ... The representation of iso(n) is irreducible

for arbitrary complex z2 p + 2,p + 1 . We restrict the real part again by
~ ~ x2p + 2,p + 1 ~ because we want a range for the parameters such that

every irreducible representation occurs only once. By considerations
similar to those in the case n even one finds that the operator D(T") is
antihermitian if y2p + 2,p + 1 - 0.

Let us summarize the results of this section in the following way: for
n = 2p the IR’s of the Lie algebra are determined by p numbers

1,1~ 1,2~ . . . ~ l,p-1 ~ The l,t for 1 _ t -- p - 1
are all integer or halfinteger together with the labels. They have the

range 0 1 1 ... and obey the conditiong ~ 2~ ~ Y

The label = + is a complex number, its real

part is restricted by 0 ~ If in addition 1,p 
= 0 the opera-

tor D(T n) is antihermitian. The so(n) content is given by equation (33).
For n = 2p + 1 the IR’s of iso(n) are determined by p + 1 numbers

m2p+2,1~ m2p+2,2~ . . w m2p+2,p; The for 1  t ~ p
are integer or halfinteger together with the so(n) labels. The range of

is 0, :t 2’ 1 :t 1", " the with 2;;£ i ~ p have the range 0,

- , 1, ... They obey the condition

The real part of Z2 p + 2, p + 1 = ~2p+2,p+i + 1 is again restricted

by 0 = If Y2 p + 2, p + 1 = 0 the operator D(T n) is antihermitian.
The so(n) content is given by equation (38).
The IR’s determined in this section are all pairwise inequivalent and

exhaust all IR’s of the Lie algebras iso(n).

4. EXTENSION TO THE GROUP IO(n)

As already mentioned in the introduction, the group IO(n) contains
two disconnected pieces, the identity component ISO(n) and the coset
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with respect to it. Every element of the coset can be written uniquely
as the product of an element of ISO(n) and a given representative of the
coset. We take for this representative the element I which is defined

through

and we assign to it a matrix of the form

It is easy to see that I obeys the following commutation relations

Here we used the notation [A, B]+ = AB + BA. It turns out that the

possible extensions to the group IO(n) are different for integer or half-
integer values of the discrete labels which specify an IR of the identity
component ISO(n). This is related to the fact that the n-dimensional

rotation group is not simply connected so that in the halfinteger case
the IR’s of the Lie algebra iso(n) actually correspond to representations
of a suitable covering group. Therefore we treat at first the integer case,
where the results given in the appendix can be applied directly, and then we
examine the changes which have to be made in the halfinteger case.
We begin with n = 2p. If the IR of ISO(2p), which is specified by

~2~+1,1....~2p+i,p-i. is selfconjugate in I O(n), there exists

an operator C which obeys the following commutation relations
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The index i in (45a) has the range 1 ~ i - 2p - 2. From these equations
it follows that C has the form

Putting this expression into (45b) and (45c) one gets a set of conditions
for the matrix elements at the right hand side of (46). The solution gives
the following expression for C:

There are no conditions for the labels ~2p+i.i~ ..., and 
i. e., an arbitrary IR of ISO(2p) is selfconjugate in IO(2p). In the state
vectors in equations (46) and (47) only the two uppermost lines of the
Gelfand-Zetlin pattern are written down, the omitted labels are not changed
in these equations. According to (A. 3) the operator corresponding to I
is given by

These are all possible extensions of an IR of ISO(2p) if the labels

are integer.
If n = 2p + 1 and an IR of ISO(2p + 1) is selfconjugate in IO(2p + 1),

there must again exist an operator C which obeys the commutation rela-
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tions (45). The range of the index i in (45a) is now 1 ~ i ~ 2p - 1. From

the commutation relations (45) it follows that C has the form

Again, putting this expression into (45b) and (45c) one gets a set of condi-
tions for the matrix elements in (49). These conditions can only be ful-
filled if m2p+2,1 = 0. That means, an IR of ISO(2p + 1) is selfconjugate
in IO(2 p + 1) only if ~2~+2,1 = 0. In this case one gets for C

The operator representing I is given by

If ~2~+2,1 ~ ~ the representations of IO(2p + 1) can be induced from
those of ISO(2p + 1) as described in the appendix. We take as repre-
sentative of ISO(2p + 1) the unit matrix E2p+ 1 and as representative of
the coset the element I. Denoting the representation of IO(2p + 1 ),
which is induced by an irreducible representation

by D(A), we get
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We go from D(A) to an equivalent representation

with the transformation

where C is defined through

The result has the following form

for 1 _ i _ 2p,

and

Finally we have to discuss the case where the discrete labels, which
specify an IR of ISO(n), are halfinteger, for this discussion see [5] [6] and [7].
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The rotation group SO(n) has a twofold covering group CSO(n). The

homomorphism from CSO(n) to SO(n) has the kernel ± ~ where e is

the unit element of CSO(n). This covering group is uniquely determined.
The group O(n) has two covering groups which we call C10(n) and C20(n).
In one of them the elements corresponding to I, which is defined by (41),
have the square + e, in the other - e. Only the representations with
integer values of the discrete labels are representations of the groups SO(n)
and O(n) respectively. If the discrete labels have halfinteger values the
representation specified by them actually determines a representation of
one of the covering groups. According to the ambiguity in the choice
of the covering group for O(n) there exist more possible extensions for
halfinteger labels than for integer ones. The case of the groups ISO(n)
and IO(n) is similar. ISO(n) has a single covering group CISO(n). IO(n)
however has two covering groups which we call C1IO(n) and C2IO(n).
In C1IO(n) the elements, which correspond to the element I of IO(n),
have the square + e, in C2IO(n) they have the square - e. It is easy
to see that the whole discussion for C1IO(n) is completely analog the integer
case. Therefore we are left with the halfinteger case for C2IO(n). For
n = 2p all IR’s are again selfconjugate, and the discussion is similar to
the integer case. Only the relation between D(I2) and C2 is changed by
the factor - 1. Therefore to the operator D(I) correspond now the
matrices .

where C is given by (47).
For n = 2p + 1 and halfinteger values for the discrete labels there are

no selfconjugate representations. The representations of C20(n) have
to be induced from those of the identity component. The formulas for
the infinitesimal generators of the Lie algebra are the same as in the integer
case, they are given by (52), (53) and (54). However, instead of (55) we get

We transform (52), (53) and (62) now with the matrix [E °. . For

with 1 ~ i ~ 2p and T2p+1 this gives again (58) and (59) respecti-
vely. However, instead of (60) we get now

where C is defined through (57).
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At the end of this section let us again summarize the results, which we
have found. If n = 2p all IR’s of ISO(n) are selfconjugate in IO(n). If

the discrete labels m2p+ 1,1’ ..., are integer, the two possible
extensions are given by (47) and (48). If the discrete labels are halfinteger
there is also the extension (61) possible which gives actually, a represen-
tation of the covering group C2IO(n).

If n = 2p + 1 and m2p+2,1 = 0, the IR’s of ISO(n) are selfconjugate
in IO(n) and the two possibilities for the operator D(I) are given by (50)
and (51). If ~+2,1 =t= 0 the IR’s of ISO(n) are not selfconjugate. The

operators corresponding to the generators 1 for 1 ~ i ~ 2p and

T 2p+ 1 are always given by (58) and (59) respectively. In the integer case
the only possible extension is given by (60). In the halfinteger case there
exists in addition the extension by (63).

5. SOME SPECIAL CASES

In this section we specialize the results of the preceding ones to the
cases n = 2, 3 and 4. We give explicit expressions for the operators

1) for 1 - i _ n - 1 and D(Tn). In the state vectors the labels

which do not change are always omitted.

a) n = 2. In an IR a state is completely labelled by

From section 2 and 3 we get

There is only one matrix element

The real part of z31 is restricted by 0 ~ x31, If y31 - 0 the operator
is antihermitian. The element I is defined by
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All IR’s of ISO(2) are selfconjugate in IO(2). If m21 is integer the two
extensions are

If m21 is halfinteger there exist in addition the two extensions

b) n = 3. We describe at first the representations of the identity
component ISO(3). In an IR of the Lie algebra iso(3) a state is completely
labelled through

The operator D(m41,z42)(A12) is given by (62). The operators 
and act in the following way on a state

The matrix elements are

The real part of z42 is restricted by 0 ~ x42. The operator 
is antihermitian if Y 42 = 0. The group element I is defined through

If ~i == 0 the representations of ISO(3) are selfconjugate in IO(3)
and can be extended by the operator D(O,Z4Û(I), which is given by

If m41 ~ 0 the IR’s of IO(3) are induced from those of
ANN. INST. POINCARE, A-XV-1 3
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ISO(3). From (58) and (59) we get for the generators Ai,i+ 1 with i = 1, 2
and T 3

If m41 is integer there is only one possible extension

with

If m41 is halfinteger there exists in addition the possibility

v J

with the same C.

c) n = 4. A complete labelling in an IR is

The operators and D(m51,zs2)(A23) are given by (62) and (69)
respectively. and act in the following way
on a vector in a representation space:

The matrix element are
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The real part x52 is again restricted by 0 ~ x52, and is
antihermitian if y52 = 0. The element I is defined through

All IR’s are selfconjugate in IO(4). If m51 is integer the only possible
extensions are

If msi is halfinteger there exist in addition the possibilities
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APPENDIX

In this appendix we describe the connection between the representations of a group
and those of a normal subgroup of index 2. It is essentially based on a paper by A. H. Clif-
ford [2] ; see also [4] [5] and [6]. We give only the results we need. The interested reader
can find the proofs and a more general treatment of the whole subject in these references.

Let G be a group, H c G a normal subgroup of index 2. By h, h; we always denote
elements of H, by g, gi elements of G which are not necessarily in H. However, let always

H, then goH is the coset with respect to H and we have G = H + goH. If D(h) is
a representation of H, then also = D*(h) with fixed g E G is a representation
of H, because always g-1hg E H. The representation D*(h) is called the representation
conjugate to D(h). It may happen that the representation D*(h) is equivalent to D(h)
for a subset of G, in this case it is called selfconjugate in this subset. Trivially this is the
case for g E H, because then = However, in general the subset
of G for which a given representation of H is selfconjugate, may be larger. It can be shown

that this subset is always a subgroup of G, called the little group of the representation
D(h). If H is of index 2 in G, the little group of an arbitrary representation of H is either
H itself or the whole group G.

Let D(g) be an irreducible representation of G. If G is restricted to H there are two

possibilities which can occur. If D(g) remains irreducible, the representation D(h), sub-
duced by D(g), is selfconjugate in G. The other possibility is that D(h) is reducible. In

this case the little group of D(h) is H itself. D(g) splits into the direct sum of two IR’s D 1 (h)
and D2(h) of H which are conjugate to each other.
We want to describe now how the IR’s D(h) of H, which are supposed to be known, can

be extended to those of G. Such an extension is determined if we know the operator which

corresponds to one representative go of the coset. At first we consider the case where the

representation D(h) is selfconjugate in G. There exists an operator C with

for all h E H, and consequently

because go E H. It follows that D(gÕ) = C2, i. e., D(go) is determined up to a sign and we
have

The two possibilities of D(h) corresponding to the different signs at the right hand side
of (A. 3) give two inequivalent representations of G.
The other possibility is that the little group of D(h) is the group H itself. In this case

the extension of D(h) to an IR of G can be induced from D(h). We take the unit element e

and the element go as representatives of H and the coset respectively. The representa-
tion D(g), induced by D(h), is irreducible and given by

where g is an arbitrary element of G. For g E H it follows from (A .4)
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and for g~ H

From (A. 5) and (A. 6) one sees that the representation space of D(g) is a system of imprimi-
tivity for G. For g = go one gets from (A. 6)

The extensions of the IR’s of H to the whole group G, described in this appendix, exhaust
all possibilities which lead to inequivalent representations of G.
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