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Canonical theory of the two-body problem
in the classical relativistic electrodynamics
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Section A :

Physique théorique.

SUMMARY. - We consider two charged particles of finite mass and
assume that the first particle moves in the retarded field of the second one,
while the second particle moves in the advanced field of the first one.

Equations of motion for this system are not differential-difference equa-
tions, as is the case in other conceivable two-body problems, but can be
reduced to ordinary differential equations. The main result of this

paper is derivation of the Euler homogeneity relation expressed by means
of momenta.

INTRODUCTION

The two-body problem in the classical relativistic electrodynamics
has a long history [1]. Darwin [2] considered it in the first post-newtonian
approximation. Fokker [3] realized that the problem, when considered
within the framework of the Maxwell field theory, is not of mechanical

nature ; he introduced an action principle which eliminates radiation

and allows to consider the two-body problem as a mechanical one. But

Fokker’s theory leads to differential-difference equations which, in general,
have solutions depending on arbitrary functions [4] [5], not arbitrary
parameters, as in the case of a really mechanical theory. Similar differen-

tial-difference equations arise in Synge’s theory [6]. Consequently, the
theories of Fokker and Synge cannot be considered complete, unless an addi-
tional and independent principle of selection of admissible solutions is added.
The author [7] [8] formulated this principle for the case of two particles
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moving along a nearly circular orbit; in the general case such a principle
is not known.

It might seem that differential-difference equations will unavoidably
appear in any kind of the electromagnetic two-body problem, because
the finite velocity of interaction is the most important physical fact to be
taken into account. The author realized, however, some time ago [9] [10]
that it is not so; there is a case when equations of motion are reducible
to ordinary differential equations. This case arises when the first particle
moves in the retarded (advanced) Lienard-Wiechert potential of the second
particle, while the second particle moves in the advanced (retarded) potential
of the first particle. Since solutions of the two cases do not differ consi-

derably [9], the best idea is to consider both of them as a time-symmetric
description of motion.

In this paper we develope the canonical theory of the two-body problem
for the two reducible cases.

THE LAGRANGIAN FORM OF THE THEORY

The assumption that one particle acts as an emitter and the other as
an absorber of radiation may be formulated in the best way by means
of an action principle. We assume that equations of motion of the system
of two particles are the Euler-Lagrange equations for the variational

principle ðS = 0, where

a = 1,2, denotes mass; eQ charge and = 0, 1, 2, 3, a coordinate.
8 is the Heaviside step function and 03B4 is the Dirac delta-function;

is, for E = + 1, the retarded Green function of the d’Alembert
equation and, for s = - 1, the advanced Green function. The integral (1)
is Lorentz invariant and, moreover, is invariant with respect to an arbi-

trary change of parametrization: parameter il 1 on the first world-line

may be replaced by a new parameter z i = where F is an arbitrary
monotonically increasing function. Similarly, parameter z2 on the second
world-line may be replaced by a new parameter i2 = G(T2); both para-
meters ri 1 and 03C42 are entirely independent. However, in order to obtain

equations of motion in the form of differential equations, not of differen-
tial-difference equations, it is necessary to restrict this invariance group.
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We choose the first parameter arbitrarily and the second one in such a
way that interacting events on the two world-lines have the same para-
meter. One can say that we introduce on the two world-lines a common

parameter which is the same for events which can be connected by a light
signal. Such a parameter is the closest relativistic counterpart of the
newtonian universal time.

Denoting a common parameter by r and performing in the inte;action
term of ( 1 ) integration over the second world-line, we obtain

The integral (2) is numerically equal to (1 ) but in (1) the condition

is « written in » while in (2) it has to be remembered. One may take this

constraint into account by means of a Lagrange multiplier; we prefer here
an alternative method. We shall introduce the Lagrange generalized
coordinates which take constraints automatically into account.

Let us put

The Lagrangian takes on the form

where we understand that

and consequently

Equations of motion take on the form

where
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THE CANONICAL FORM OF THE THEORY

Let us introduce the canonically conjugated momenta

The momentum p = (pl, p2, p3) has no simple transformation properties
with respect to the Lorentz group. It will be therefore convenient to

introduce the four-vector

7~ has no mechanical meaning; such a meaning has only

Since xink - xkni = we may say that altough 03C403C0 contains an
unphysical component, the bivector

contains only physical components of 03C4  (i. e. Pi)’ In the subsequent
calculation we shall use the four-vector the result of our calculations

will be correct if it is possible to express it by means of the bivector QI1V.
We may formulate now the main goal of this paper. The Lagrangian (4)

is a homogeneous function of the velocities ’11 and Xi. It is therefore

impossible to calculate the Hamiltonian; in fact, because of the Euler

homogeneity relation

the Hamiltonian is identically equal to zero. But it is well known in the

variational calculus [11] that, if it is possible to express the Euler homo-
geneity relation by means of momenta, one obtains a parameter-invariant
relation which for all practical purposes plays the role of the Hamiltonian.
In particular, transition to geometrical optics may be based on the homo-
geneity relation expressed by means of momenta.
Our aim is to write down the homogeneity relation (13) by means of
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momenta. Using the definitions (9) and dividing by - L we may write
the homogeneity relation in a parameter-invariant form:

It follows from ( 11 ) and (6) that

Consequently, the homogeneity relation takes on the Lorentz invariant
form 

We see that only parameter-invariant quotients ~/2014 L and L enter

the homogeneity relation.

Let us solve the definitions (9) and (10) of P JI and TCJI with respect to 03B6
and considering in the process all scalar coefficients as given. We

obtain
... /’ , J "

where

We shall assume that our parameter r is a monotonically increasing
function of time in some inertia!’system of reference; hence

On taking into account that
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we may write the homogeneity relation (16) in the form

We see that to express the homogeneity relation entirely by means of
momenta, we need three invariants x/D, y/D and It turns out,

however, that the last invariant disappears from the homogeneity relation;
consequently, we have to find only Y/D and y/D.

Let us multiply equation (17) and (18) by In the first case we obtain,
because of (20), sD; in the second case we obtain zero because of the cons-
traint equation. In this way we obtain two equations for the two unknown
parameter-invariant quantities Y/D and y/D :

Equations (23) are quadratic and have two solutions but one of them is

singular for ele2 - 0 and therefore has to be rejected. The other solu-

tion, regular for 0, has the form

Introducing (24), (17) and (18) into the homogeneity relation (22) we get
after some rearrangement

which is just what we sought for, namely the-homogeneity relation expressed



75TWO-BODY PROBLEM IN THE CLASSICAL RELATIVISTIC ELECTRODYNAMICS

by means of momenta. The left-hand side of (25) does not depend on nJl
but only on p;, because

Consequently, equation (25) has the form

a and f3 have been assumed constant during the whole calculation which
led to equation (25) ; they are supposed to satisfy the condition a + ~3 = 1

but are otherwise arbitrary. It turns out [10], however, that just as in
the newtonian two-body problem, there exists a preferred choice of a and 03B2
which is the most natural and which substantially simplifies theory of the
internal motion of two bodies. To show this we shall introduce the notion
of a reduced homogeneity relation.
We have the following theorem [11] : there exists parameter r such

that the equations of motion take on the canonical form

(One has to remember, however, that altough F(P~, p, x) = const is

always a first integral of the system (28), this constant is not to be deter-
mined from the initial conditions, but has to be always equal to the cons-
tant determined by the parameter-invariant equation (25)).

Since P~ = const is obviously an integral of the system (28) and since F
does not depend on ~, we can insert in (28 h) instead of momenta P JL
their (constant) numerical values. In this way we obtain a closed system
of equations for p and x :

where x) arises from F(P tl’ p, x) when all the momenta P~ are replaced
by their numerical values.
We shall call the reduced homogeneity relation, the homogeneity

relation (25) in which the momenta P~ are replaced by their numerical
values. The homogeneity relation and the reduced homogeneity relation
are given formally by the same function but are entirely different notions.
In particular, the reduced homogeneity relation can be substantially
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simplified by an appropriate choice of a and /?; such a choice is not admis-
sible in the homogeneity relation.

If m1 = nl2’ the only natural choice is a = f3 and we see that the term
proportional to disappears from the reduced homogeneity relation.
In the general case this term will also disappear if

This equation and the condition a = 1 determine a and 03B2 uniquely:

For small velocities M = mi + m2 and (31) goes over into the usual
classical expression for a and j9.

It will be convenient to write down the term 03B103B2P P  which, in the reduced
homogeneity relation, is simply a constant, on the right-hand side. In

this way we obtain the reduced homogeneity relation in the form

In the centre of mass system, Po = M, P2 = P 3 = 0 and therefore

Hence, the reduced homogeneity relation takes on the form

where a and p are given by (31 ).
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Comparing the exact formula (34) with approximate Darwin’s Hamil-
tonian [2], to say nothing about Primakoff and Holstein’s [12] or Ker-
ner’s [13] Hamiltonians, we see how substantial a simplification has been
achieved in the result of our procedure.
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