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ABSTRACT. - An explicit angular momentum basis is used in the cons-
truction of the induced unitary irreducible representations of the (1 + 4)
de Sitter group, belonging to the principal continuous series. In the

description of the covering group of the (1 + 4) de Sitter group we make
use of groups of 2 x 2 quaternion matrices in a formalism similar to the
SL(2, C) description of the Lorentz group. The above-mentioned repre- .

sentations of the de Sitter group are decomposed with respect to unitary
representations of a non-compact subgroup. The latter is isomorphic
to the covering group of the Lorentz group. The general features of
the decomposition are established by means of global methods. Possible

applications are indicated. As an example the derivation of a decompo-
sition formula for matrix elements of finite transformations is treated
in some detail.

I. INTRODUCTION

In the present article we are concerned with some aspects ofBthe uni-
tary irreducible representations (abbreviated UIR :s in the following) of
the (1 + 4) de Sitter group. In general we denote by SOo(l, n) the identity
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component of the group of real linear homogeneous transformations of
the variables (xo, xl, ..., xn) which leave the quadratic form

invariant. We shall consider both single- and double-valued represen-
tations of the (1 + 4) de Sitter group, i. e. S0o(l, 4), i. e. we shall consider

true representations of the universal covering group of S0o(l,4). In

general SOo(l, n) will denote the universal covering group of SOo(l, n).
The group SOo(1, 4) appears in a number of physical problems, both

as an invariance group and as a dynamical group. In its role as an inva-

riance group, replacing the Poincare group, it has been discussed for a

long time (see e. g. [1]-[3] for some recent contributions). Within this

field the decomposition of the UIR:s of S0o(l,4) with respect to UIR :s
of the Lorentz group is analogous to the corresponding de composition
of the UIR :s of the Poincare group within the Poincare-invariant kine-

matical formalism [4], [5]. S0o(l,4) is also encountered as a dynamical
group of the non-relativistic hydrogen atom. The literature concerning
this problem is now very extensive; in [6] the reader will find a review
and a list of references. As an attempt to understand the various mass
formulae for the elementary particles and resonances which have been
proposed, a S0o(l, 4)-model of a relativistic rotator has been considered [7].
In this model one considers the contraction of S0o(l,4) with respect to
S0o(l,3) and one encounters the problem of decomposing the UIR:s
of SOo(l, 4) with respect to those of SOo(l, 3) [7].
The present article is arranged in the following way. In section II

we present the quaternion-matrix description of S0o(l,4) and we study
the various subgroup decompositions of S0o(l,4) that will be of interest
for the construction of the induced representations. In section III we

construct the UIR:s of S0o(l,4) belonging to the principal continuous
series as induced representations. An angular momentum basis is intro-
duced and in section IV we give some properties of the matrix elements
of finite transformations. The decomposition of the UIR:s of S0o(l,4)
studied in the previous sections, with respect to UIR :s of the Lorentz group
is given in section V.

I I . QUATERNION-MATRIX DESCRIPTION OF SOo(1,4)

In [8] R. Takahashi has constructed UIR:s of as induced
~ 

representations. The special case of SOo(1, 4) is treated in detail and the
results are compared with the results obtained earlier with infinitesimal
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methods by Dixmier [9]. As is amply illustrated in [8] it is very convenient
in this context to exploit the isomorphism between S0o(l,4) and a group
of 2 x 2 quaternion matrices. The formalism resembles closely the
SL(2, C)-description of SOo(l, 3). However, we have chosen our conven-
tions in a way which is slightly different from that in [8] and therefore
we give in this section a short review of some formulae, in our conventions,
which will be of importance for the construction of the UIR :s of SOo(l, 4)
in the next section (cf. [8], [10] for more details).

Let Rand Q denote the real numbers and the real quaternions respecti-
vely. For an element x E Q we write x = xi + ix2 + jx3 + kx4 where
x,eR, ~ =~ = ~ = - 1, ij = - ji = k, jk = - kj = i, ki= -ik = j.
Furthermore we introduce the notations z - x1 - ix2 - jx3 - kx4,
X == - jxj _-- x 1 + ix2 - jx3 + kX4, I X = (x . x)1/2. It follows that

The set of 2 x 2 quaternion matrices

where

(2.1)
form a group under the usual matrix multiplication. This group is
denoted G. In matrix form (2 .1 ) reads

Since in a group a left inverse element is also a right inverse element the
order of the matrices on the left hand side can be reversed and one gets
an equivalent form of the condition (2.1) namely

(2 . 2)
The group G is isomorphic to SOo(l, 4). With

(2 . 3)

one finds that under the transformation

ANN. INST. POINCARE, A-XIII-1 6
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where g E G, (g+)rs = gsr, X’ is again of the form (2. 3) and one has

(2 . 4)

We will find it instructive to consider, besides X another quaternion
matrix associated with the five-vector (xo, xi, x2, x3, x4j. We introduce

a similarity transformation by the non-singular quaternion matrix

and consider

which for x4 = 0 reduces. to x0I2 + x-(7, where stands for the Pauli vector
matrix and x - (xi, x2, x3). When applying a similarity transformation

by C(j) to G we obtain another group ~, isomorphic to G and S0o(l,4).
We write

(2. 5)

It follows that

or equivalently

Thus under the transformation

the invariance condition (2.4) holds.

Some properties of S0o(l,4) and its UIR are most easily discussed in
terms of properties of G while others are most conveniently studied as

properties of ~. In the construction of the induced representations one
makes use of the decomposition of the group into products of various

subgroups and the corresponding coset spaces are used as carrier spaces
for the representation spaces. Therefore we next give a survey of facts,
which are of interest in this context.
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We define U as the set of all x E Q for which I x = 1 and consider the
following subgroups of G :

K : the elements of G of the form (u, 0) ) u, v E U

N : the elements of G of the form 1 + x, - jx ) x = - x

A: the elements of G of the form  
Ch / 

t E R

M : the elements of G of the form B0, M/ ) u E U

M is the maximal compact subgroup of G. M is at the same time centra-
lizer of A in K and normalizer of N in K and N is an invariant subgroup
of A.N. The Iwasawa decomposition of G now reads

G=N-A-K (2.7)

Since an arbitrary element of K can be uniquely decomposed as follows

(2.7) can be carried a little bit further and one has

G = NAMU (2.8)

where U is the subgroup of G formed by the elements of the form

The images under the isomorphism (2.5) of the subgroups K, N, A,
and M are denoted Jf, N, A and M respectively. Their explicit form is

K : the elements of g of the form 
n’ _ ), |n|2 + | r F = l, nr = rn

/T: the elements of g of the form (1, It)  p e Z

d: the elements of g of the form (et/2, 0 ’ 0 et/2B t E R

M : the elements of g of the form B0, M/ ) u E U
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Here Z denotes the set of all p E Q for which p = ,~. Furthermore we
shall make use of the following decomposition of elements g E ~ for which
~~0:

g = ~ ~ A(t)m ~ z (2 .10)

Here p E .,~t~’, A(t) z E ~’ where ~ denotes the group of matrices
of the form

(we let J1 and z denote both elements of Z and the corresponding elements
of /T and .2’).
The representation spaces to be considered have as carrier spaces the

coset spaces TBG and I)% respectively, where T = NAM and J = 

TBG and J’^~~ may be described by the sets U and Z since these are in a
one-to-one correspondence with the groups U and ~ respectively which
appear in the decompositions (2 . 7) and (2.10) (in this context it is necessary
to compactify Z by the addition of a point Z~ corresponding to elements
of ~ with 6 = 0). In the theory of induced unitary representations there
appears multipliers which reflect the transformation properties of the
measures on the carrier spaces. Therefore we need the explicit form of
the transformations of the elements of TBG and under right transla-
tions with arbitrary elements in G and ~ respectively. With the notation

(borrowed form [8]) 
.

ug = T(u.g)

where t E T, u . g E U one gets explicitly

Similarly with

where it follows that (£5 #- 0)

TBG and are isomorphic. One easily finds that the relation is given
by (note that z = 0 corresponds to u = 1)

(2.11)
and conversely
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We denote by the normalized invariant measure on the group U (which
is isomorphic to SU(2)). From (2 .11 ) it then follows that

(2 .12)

where dz == dz2 ~ dz4. Furthermore one finds that MG(u, g) = ( - jub + d)
is a multiplier with respect to the transformation u - u. g i. e.

Similarly z~3 + 5 is a multiplier with respect to the transformation z -~ z, g.
The transformations of the measures are found to be

(2.13)

According to (2.5) and (2.8) one has

where ?l is the image of U under (2. 5). Thus for every g E ~ one has

a decomposition which is, however, not unique since

As a consequence functions on can also be considered as functions

on Jf. This fact will be used in the next section.

III. THE PRINCIPAL CONTINUOUS SERIES

OF UNITARY REPRESENTATIONS OF ~

In this section the UIR: s of ~ belonging to, in the terminology of [8],
the principal continuous series will be considered. They are characterized
by two real numbers denoted I and p. Here 1 is the weight of a UIR of ~l
(isomorphic to SU(2)) and p is an arbitrary real number when I is an integer
and p is a real number # 0 when I is a half-integer (cf. [8], our (1, p) corres-
pond essentially to (n, v) of [8]). As a result of the choice of the quaternion
group ~ in section I our presentation again differs from that in [8]. Further-
more we will be more explicit concerning a realization of the representa-
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tion space as a space of functions defined on the maximal compact sub-

group Jf and satisfying a « covariance condition ». We prefer to give
our construction explicitly in terms of aT rather than in terms of ~ or !!Z.
since it is usually the subgroup K that is of greatest interest in the physical
applications. The construction of the UIR :s (1, p) in a Hilbert space
of functions defined on ~ will primarily be used as a starting point because
many formulae are simpler in that case, but eventually all relations will
be given in terms of functions defined on Jf. In order to establish the

required relation between the two formalisms one can of course use the
isomorphism (2 . 5) and the connection (2 .12) between the measures. How-

ever it is instructive to see how it can also be derived in an alternative way,

namely from the connection between two elements and 

which belong to the same coset with respect to fl. For two such elements

one has
k = T’Z

or in matrix form

(3 .1 )

With 6 = A &#x3E; 0, u E U it follows that

We now introduce parameters on Jf as follows

(3 . 2)

where is a rotation of an angle ~p in the i - j-plane. The norma-

lized invariant measure on Jf is then

(32n4)-1 sin 01 sin 82 sin2 

From a direct calculation, using the connection between the parameters
implied by (3 .1 ) one now obtains

where dp(m) stands for the normalized invariant measure on ~. Since

(3.1) is just the condition that k and z belong to the same coset with respect
to ~~ we may write
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where C(g) is an arbitrary (integrable) class function with respect to ff
i. e. C(T’~) = 

In the following we use the notation 6(g) to indicate that the (22)-element
of g is 03B4 and we use the notation k(g) for an arbitrary element in Jf
which belongs to the same right coset of ~ with respect to ff as g. Thus

6(g) ~ 6(1) for g = T-z, and

In terms of these notations (2.13) reads

(3.3)

We start the construction of the induced representations by the intro-
duction of a « covariance condition ». We shall thus consider (2l + 1 )-
component functions 11 = { flm }lm = -l, defined on g, which satisfy the
condition

(3 . 4)

where L = A(t) E d, mE.A. Dmn(m) are the matrices of
a unitary irreducible (2/ + 1)-dimensional representation of Thus
/ is a non-negative integer or half-integer. The scalar product in the
(2~ + 1 )-dimensional vector space is as usual

The covariance condition (3.4) involves unitary representations of the
group d and ~ and consequently the scalar product (fl(g), is a
class function with respect to ff. Let Yfl denote the Hilbert space of
vector functions which satisfy (3 . 4) and for which .

From (3.3) and (3.4) it follows that a unitary representation, denoted
(I, p), is defined by

(3 . 5)
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In (3. 5) we can introduce zg = T’(z.g) and use (3.4) to get an explicit
realization of the representation (I, p) on functions f’(Z) defined on Z.

However, with later applications in mind, we note that an arbitrary
factor 03C41 ~ J may be introduced every-where to the left of z in (3 . 5).
Thus with we may write

(3 . 6)

Equation (3.6) will be used as a starting point for other choices of realiza-
tions, in particular in terms of functions defined on X but also, in section V,
in terms of functions defined on a subgroup ~ c ~, isomorphic to the

covering group of the Lorentz group.
With g1 = k1 ~ K (3.6) reads

In analogy with the notation used in section II we write k(klg) --_ kl . g
(note that ki . g is not uniquely determin). If r = E A(t) Ed,

we write t = t(i), m = m(~c) and also in general t = t(g) if g =,uA(t)k,
k E 3i. The covariance condition now gives

(3.7)

which also can be written as

(3.8)

The indefiniteness in the choice of the element k 1. g is a left factor m E JII.

Using the covariance condition, the representation property of DI(m)
and the fact that 5(~)) == 1 it is easily seen that the r. h. s. of (3 . 7) and

(3 . 8) are independent of the choice of k 1. g. Equation (3 . 8) gives the desired
realization of (1, p) in terms of functions defined on Jf. It is clear from

the above that the Hilbert space Yfl can equivalently be characterized
as the space of vector functions fl(g) which satisfy (3 . 4) and for which

(3 . 9)
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IV. MATRIX ELEMENTS OF FINITE TRANSFORMATIONS

IN A REPRESENTATION (I, q)

The matrix elements of a general finite transformation in a UIR of a
group play a fundamental role in the harmonic analysis on the group,
a subject which is presently a field of common interest to mathematicians
and physicists and which is developing rapidly. The induced represen-
tations (I, p) described in section III provide a framework within which
we can in a straightforward way obtain an integral formula for the matrix
elements of finite transformations. Infinitesimal methods can also be

used in calculating the matrix elements. In this case one obtains from the

representation of the elements of the Lie algebra as differential operators
on the group parameters a set of differential relations for the matrix ele-
ments. In this section we give a short survey of the basic formulae in
both approaches.
We start by introducing an orthonormal basis in which the matrix

elements are to be calculated. ~ is an infinite sum of representation
spaces for the UIR :s of f [9], [11]. These can be characterized by two
real numbers p and q which are both integral or both half-integral and
where p ~ q I (see e. g. [12], [13]). ~ is isomorphic to SU(2) 0 SU(2)
but p and q are not the weights of these two SU(2)-groups. They are
rather associated with the subgroup chain jf ~ ~ 13 U(1). We choose
to consider this characterization of the UIR:s of 3i mainly for physical
reasons. It involves explicitly a physical three-dimensional rotation

group. However it is also more in the spirit of the general procedure
of Gelfand and Zeitlin [14]. The matrix elements corresponding to a
transformation k e 3i in a UIR (p, q) of 3i in an angular momentum basis
for ~ are denoted R~(~; ~ q). Consider an element parame-
trized according to (3.2). The angular momentum basis is chosen so
that we have

where as usual 8, ~p’) = The possible values
of j and j’ j’ 5 p. Thus the matrix elements in a fixed row I

satisfy the covariance condition (3 . 4) :
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and we can construct an orthonormal basis in Yfl as a certain set of
q’)-functions. According to [9] the following values occur:

(4.1)

The dimension of the representation (p, q) is (p + 1)2 - q2 i. e. one has

Thus the functions

(4.2)

where N(p’, q’; 1, p) is a phase-factor and where p’, q’, j’, m’ take the values
given in (4 .1 ), form an orthonormal basis in ~t.

In order to obtain the simplest possible form of the matrix elements
we note that every g can be written as [8]

(since A(t) and m ~ M commute, the factors ki and k2 are not uniquely
determined but the only indefiniteness is a factor m E JII to the right in
ki and to the left in k2). The matrix elements of ki and k2 in the basis (4.2)
are the functions R~(~i,2. ~ q). The properties of these functions and
explicit formulae for them are known [14], [10]. Thus in order to obtain
the matrix elements of a general transformation g E ~ it is sufficient to
consider only one kind of new matrix elements namely those of the parti-
cular acceleration A(t).

In order to obtain the explicit integral formula for the matrix elements
of we use (3. 8) and get

(4 . 3)
where

(4.4)

The matrix elements of are obviously diagonal in j’ and m’
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and independent of m’ and they may thus be denoted 1, p). Accor-

ding to section III, (4.2) and (4.3) we thus get

where the elements k and k’ differ only with respect to the (34)-rotation
in the canonical factorization (3 . 2). The relation between the parameters
and of the (34)-rotation is given by (4.4). Integration over the para-
meters belonging to ~ yields

Using the known expressions for the R~-functions the integral can be
evaluated in terms of known functions in various ways. However because

of the length of the explicit expressions we do not go into further details
here.

For a general transformation we now have, in an obvious notation,
the matrix elements (g = kl A(t)k2)

(4.5)

In the infinitesimal approach one exploits the fact that the elements
in a fixed row of the general matrix element (i. e. fixed p, q, j and m)
transform, by multiplication from the right in the argument, as a basis.
One then considers infinitesimal transformations. In the basis (4.2) the
generator Po of accelerations in the 3-direction acts as follows

(4. 6)
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where

Equation (4 . 6) can be derived from the results of Dixmier for a SU(2)(x)SU(2)
basis, by a change of basis [15] or by a passage to new ranges for the para-
meters in the Gelfand-Zeitlin patterns In terms of the following
parameters on ~ :

the differential operator expression for Po is

~4 . 7)
Since (4.6) shall be fulfilled with a row of (4.5) as a basis and with Po
represented by (4.7) a set of differential relations for are obtained

(the calculations essentially consist of an elimination of the known com-
pact parts from for more details see [10]). Four relations of simi-
lar structure are obtained. As an example we quote the following :

(4.8)
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The remaining relations correspond to the combinations (p’ - 1, q’),
(p’, q’ + 1) and (p’, q’ - 1) of the primed indices on the function on the
r. h. s. These relations can be combined to give higher order equations
which then contain a smaller number of different Apqp’q’j-functions. In

particular it can be shown [17] that the special matrix elements I, p)
satisfy a second order differential equation which has solutions in terms
of Lame-functions [18].

It may be remarked that relations of the type (4.8) are fulfilled by the
matrix elements of any of the UIR :s of rs, only the r. h. s. is changed accor-

ding to which UIR that is considered (cf. [9]). This may be contrasted

with the situation in the global approach where the scalar product in the

representation space is of two-point character for some supplementary
series of representations. In these cases one gets a more complicated
integral formula for the matrix elements. However one may expect that

by exploiting the invariant measure it should be possible to simplify this
into a single-integration formula as has been shown to be the case in a
lower-dimensional example [19].

V. DECOMPOSITION OF THE REPRESENTATIONS (I, q) 
’

WITH RESPECT TO REPRESENTATIONS

OF A NON-COMPACT SUBGROUP

The decomposition of a UIR of a group with respect to UIR :s of a sub-
group has become of interest in the latest developments of the Regge pole
theory. In this context it is the decomposition of a UIR of SL(2, C)
with respect to SU(1,1) that is of interest. It may be treated in the frame-

work of induced representations (multiplier representations) [20], [21].
Infinitesimal methods can also be used [22], [24]. An essential tool in

performing the decomposition is the completeness relation for the UIR :s,
the Plancherel formula, of the non-compact subgroup in question. General

methods for deriving the Plancherel formula has become available only
recently [25]. Therefore rather few explicit results concerning the decompo-
sition problem in the case of non-compact subgroups are known so far
(see however [26]-[28] for some examples).

In this section we shall consider the decomposition of a UIR(l, p) with
respect to UIR :s of a non-compact subgroup, denoted which is isomor-

phic to S0o(l, 3). ~ is that subgroup of ~ which operates in the (0,124)
space. Its maximal compact subgroup is -_It. In performing the decom-
position we will associate functions defined on Jf with functions defined
on B and then use equation (3.6). To this end we need a description of
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the right cosets of ~ with respect to I in terms of Consider therefore
the double cosets of ~ with respect to I and ~. It turns out that ~ can
be divided into three distinct double cosets. According to the previous
sections every g E rg can be written

and this factorization is unique. On the other hand an arbitrary element
can be written as

where A4(t) is an acceleration in the 4-direction. A rotation k34(~) can
be associated with an acceleration A4(t) as follows:

(5.1)

Since A4(t)k14(03B82)k12(03C63) ~ B it follows that all elements of g can be
written in one of the following ways:

where 03C4 ~ J, b ~ B and e+, e- and e0 denote k34(0), k34(n) and 

respectively. The set iii) corresponds to a set of elements g caracterized
by only five parameters. This set has zero invariant measure and need
not be considered in the following.
With the notation * f§/*(b) the scalar product in £’1 previously

given as an integral over f (cf. (3.9)) can be expressed as follows-

(5.2)
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Using the covariance condition (3.4) and the notation

(5.2) reads

(5.3)

where

is the invariant measure on Through (5 . 3) we associate functions f ~
which are square-integrable over 3i with functions square integrable
over ~. The corresponding Hilbert spaces are denoted and the
content of equation (5.3) is that the representation space Yfl is the direct
sum of and Yfl- (note that the elements in and ~~ - satisfy
different covariance conditions).
The next problem is to determine the properties of Yf’:t as representa-

tion spaces of UIR :s of From the general~ formula (3. 5) it follows
that

(5.4)

Since [Ch t(b)] 1 ~2 equation (5 . 4) can be written

(5.5)

i. e. in acts as the right regular representation. However,
because of the fact that the functions { h§j* (b) ) satisfy covariance conditions,
the spaces yel+ and are not representation spaces of the whole regular
representation. Because of the explicit form of the covariance condition
the relevant restriction on the regular representation is easily identified.
An important property of the regular representation of B is the fact

that it can be decomposed into a direct integral and sum of UIR :s belong-
ing to the principal series. These representations are characterized by
two real numbers, 10 and v where v ~ 0 and 10 is a non-negative integer
or half-integer. The decomposition is expressed by means of the gene-
ralized fourier coefficients of with respect to the UIR:s In
this context we need the matrix elements in a UIR (10, v) of an arbitrary
element b E From a physical point of view it is most natural to perform
all calculations in a standard angular momentum basis. The matrix
elements in a UIR (lo, v) in this basis are denoted D~°~y, ,(b). The proper-
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ties of these functions are well-known [21], [29]-[31]. The generalized
fourier coefficients of are defined by

(5.6)

Note that since the possible values of j’ are | l0 I, o ! + 1, ... it follows
that the fourier coefficients can be non-zero only if I. This is
of course a consequence of the covariance condition used in the defini-
tion of the representations (I, p). From (5.6) and the Plancherel formula
for the UIR :s of B we get

(5.7)

where the sum goes over the values + l, ± (l - 1), ..., + 1/2 or 0 for 10
and where

and

We refer to [32] and [33] for more details concerning the Plancherel for-
mula for ?J. (Actually, more restrictive conditions on the functions f ~
and hit have to be introduced. However we do not here enter into a

discussion of the minimal possible mathematical restriction under which
the following formulae are valid, but content ourselves with the obser-
vation that there exist non-empty spaces for which they are well-defined).
We donote by the Hilbert s ace of with
the norm II !!. Thus the content of (5 . 7) is that the Hilbert spa-
ces:if II can be decomposed into a direct sum and integral of spaces 
In analogy with (5.7) we write formally

( 5 . 8)

Furthermore

(5 . 9)

The equations (5.8) and (5.9) express the result of the decomposition of
a UIR (l, p) of ~, isomorphic to S0o(l,4), with respect of UIR:s of ~,
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isomorphic to SOo(I,3). In the decomposition only the discrete para-
meter lo is restricted: | l0 |  l, whereas all values of the continuous para-
meter v occur. This seems to be the general situation when a decompo-
sition of a representation belonging to a principal series is treated. In

the case of decomposition of a representation belonging to a supplemen-
tary series the situation is more complicated [34], [35].
The general formulae derived above provide the frame-work within

which more detailed explicit results may be derived. In the following
we give as an example the derivation of a decomposition formula for the
matrix element I, p). It involves the fourier coefficients of those
functions which are associated with the orthonormal basis in ,tel
which was introduced in section IV. We have

where g/ = g/+ for 0 x g/  n/2, g/ = 03C8- for 2  § x n. t/1:t and tare

related according to (5 .1 ) i. e. b(z -1 ) = (Ch Using the covariance
condition one can write more generally

where m* = The ~-functions which correspond to
the orthonormal basis (5.2) are thus

(b = ml A4(t)m2)~
For the fourier coefficients we write

Integration of the compact variables yields

where

(5 .10)
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For a general scalar product in ~ one has, in an obvious notation :

(5.11)

The decomposition formula for the matrix element p) is obtained
by substituting for an element m ; p, q; Inp ) of the orthonormal basis (4.2)
and for the element [ j’, m’; p’, q’; In order to obtain
the fourier coefficients of the latter we note that the transformation b -~ bbl,
in the argument of the function induces a transformation

of the fourier coefficients i. e. they transform as a standard basis of the
representation (lo, v). The required fourier coefficients are therefore

Thus, in this particular case (5.11) reads

which is the decomposition formula for the matrix elements of b e k in
a « .f -basis» with respect to matrix elements in a « £3-basis ». The parti-
cular fourier coefficients q; p) here appear as the transfor-
mation coefficients between the two bases. They can formally be looked
upon as matrix elements in a unitary matrix. This property of the coeffi-
cients ~~’°±(lo, v; p, q; p) is clearly brought out in another approach to
the decomposition problem. The approach we have in mind is one in
which one starts with a derivation of the functional form of the eigen-
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functions of the generators M2, M3, M2 - N~ and M’N (M and N gene-
rate rotations and accelerations respectively in and then considers the

transformation between this ~-basis and the ~-basis (4.2). Using the
Plancherel formula for the UIR :s of P.l one arrives at the same expression
(5.10) for the transformation coefficients. In [23] more details on this

approach are given for the corresponding problem for the group SOo(l, 3).
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