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Physique théorique,

ABSTRACT - Fields describing one particle or an infinite number of
particles are defined on an eight-dimensional homogeneous space of the
Poincare group. The relativistic invariance and causality properties are
discussed in particular in connection with a local coupling of the fields.

1. INTRODUCTION

The failure of the meson theories to’ cope with the problems of strong
interactions has caused a wide spread resignation as to the role of field
theory in hadron physics [1]. Instead one has tried to save only certain
properties inherent in a field theory approach. The most intensively
studied such property is the analyticity in the variables of the scattering
amplitudes. We have seen an enormous activity on this subject starting
with dispersion relations [2], hope and dispair in the Regge pole theory [3]
and now lately the group theoretical approach to partial wave expansion
in a crossed channel [4]. The failure of field theory has been blamed on
the large coupling constant which would make a perturbation expansion
completely unreliable. We know well our unability to do more than
calculating the first few terms in this expansion and the success of quantum
electrodynamics is altogether based on a perturbation scheme.
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What is it that goes wrong when one tries to fit the experimental data
with the first few terms in say the pseudo-scalar meson theory. In short

both energy dependences and momentum transfer distributions. The

higher the energy the more drastic become the discrepancies. While the

experiments show rapidly decreasing differential cross sections of the

form ~ ~ in two-body reactions, where t is the momentum transfer

squared and A a constant, the first Born approximation gives a more or
less flat distribution [5]. Several attempts have been made to remedy
the diseases, but they are all of a phenomenological nature.
Turning to more mathematical questions it is known that all the ordi-

nary meson field theories contain divergencies. Some are renorma-

lizable others not. Also here one has tried to circumvent the difficulties

by studying only general principles starting from axiomatic field theory
or vacuum expectation values without any prescribed dynamics [d, 7].
Although partial results for the analyticity properties have been obtained
it is clear that one is far from a theory which makes real contact with

experiments.
Despite all the troubles a field theory has in its wake the following

properties making it attractive

1 ° It will automatically imply the analyticity properties of the scattering
amplitudes such as poles and thresholds for different channels and crossing
symmetry.

2° It will automatically imply unitarity of the S-matrix.
3° It will effectively limit the possible choices of dynamics.
4° Provided the perturbation expansion converges rapidly it will lead

to a practical theory.

In several papers [8, 9, 10] we have studied the possibility of extending
the Minkowski space with an internal spin space. The extended space
is of dimension 8. In a subsequent paper [11] a field theory on this space
was proposed. Through its lowest order graphs it seemed to be able to

explain the peripheral nature of hadron collisions. Already in 1964

Lurçat [12] proposed a similar extension, namely to consider fields on
the Poincare group manifold. Both our 8-dimensional and this 10-dimen-

sional space are examples of homogeneous spaces of the Poincare group.
One may therefore ask oneself if it would not be wise first to classify the

possible homogeneous spaces and then select the best one. This was

done in ref. [13]. Our 8-dimensional space is in fact most « economical »

in the sense that it is of lowest dimension satisfying certain requirements.
In section 2 we give a short description of the class of homogeneous spaces.
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Section 3 contains the definition of one-particle states and free fields.
The connection between spin and statistics is discussed. In section 4
we try to introduce interactions.

2. CLASSIFICATION OF HOMOGENEOUS SPACES

A homogeneous space, H, of a group G has the following properties.
a) It is a topological space on which the group G acts continuously

i. e. let y be a point in H, then gy (g E G) is defined and is again a point
in H.

b) This action is transitive i. e. given any ’two points yi, and y2 in the
space then it is always possible to find a group element g E G such that

Y2 == ~1 (1)
Denote by So the maximal subgroup of G which leaves the point yo inva-
riant. So is called the stabilizer of yo. The stabilizer S of another point y
is conjugate to So in G and one can establish a mapping between the points
of H and the points in the coset space G/So. Therefore the enumeration
of the different H of the Poincare group P amounts to an enumeration
of the subgroups of P up to conjugation.
We shall now make an important restriction on the class of homogeneous

spaces we are going to consider. We require the H always contains the
Minkowski space M which means that four parameters of H can be
denoted by x(x~). P must also act on x in the usual way. Now this
means that the stabilizer must be a subgroup of the Lorentz group L.
The restriction to homogeneous spaces containing the Minkowski

space is done for physical reasons. We think that it would be difficult
to make an interpretation if the Minkowski space is not present. In
this way we are however led to the starting point of Finkelstein [14]. We
can thus use his classification of homogeneous spaces. Notice, however, 

I

that he considers only stabilizers which are generated from the Lie algebra.
- Spaces having for instance discrete stabilizers are missing.

Consider now the action of P on the homogeneous space H = P/S.
If we parametrize P in the form

where gx is a translation x and gz is a homogeneous Lorentz transforma-
tion E, then the points of H are parametrized by x and E modulo an ele-
ment of S. The action of P is given by left multiplication
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Denoting a point in L/S by z we therefore have

(4)

and the action splits into an orbital part on x and an « internal » part on z.
For the infinitesimal generators of P this means that they can be written

(5)

where Suv are differential operators only in the variable z. The explicit
expression for SllV of course depends on the homogeneous space at hand.
A suitable parametrization of the Lorentz group or its covering group L

is given by
(6)

where

(7)

and 7i, ~2, (J 3 are the Pauli matrices. If A E L the ranges of angles are

(8)

while for A E L rp and 03C8 belong to the interval [0, 2x]. The ranges of the

other parameters are in both cases

(9)

The homogeneous space with a stabilizer generated by (Lo2 - L23) is

of course pa rametrized by 8, ~, s, t). Similarly for other stabilizers
one has to write A as a product with an element of S to the right. Then

those parameters which are outside S furnish a parametrization of G/S.
In table I the different spaces are characterized. Besides the parameters
ot equation 6 ’the following ones also appear

(10)
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Sometimes a four-vector is used. Table I also indicates when the homo-

geneous space can carry a half-integral spin wave function. This is so

when the stabilizer is a subgroup of L that does not contain any compact
subgroup. The invariant measure (unique up to constant) is indicated

in case it exists. For further details we refer the reader to reference 13.

If one wants to construct wave functions or fields depending on the
variables (x, z) it is natural to consider only scalar valued functions since
the spin degree of freedom can be carried by the z-variables. Then the

number of parameters of H is related to the number of wave equations
and the type of particle Call the dimension of the space d and the
number of wave equations e. Then d - e = 4 for a massive particle with
spin and d - e = 3 for a massive particle without spin and a massless
particle. Looking at the table we see that the case [4] requires a minimum
number of wave equations if we insist on the existence of an invariant
measure and half-integral spin representations. This space is the one

we are going to consider in the sequel.

3. DEFINITION OF ONE-PARTICLE STATES
AND FREE FIELDS ON THE SPACE [4]

The space on which wave functions and fields will be defined is called

the carrier space. Our space [4] in table I is the topological product of
the Minkowski space and a 4-dimensional internal space. The latter

is homeomorphic to the topological product of the group space of SU(2)
and a straight line. We shall denote a point in the carrier space by
(xll, 0, s). Here Xll is a point in space-time, 0, #) are Euler angles
in SU(2) and s is the coordinate on the line. Another way of characte-

rizing this 8-dimensional space is to define it operationally using the classical
electromagnetic field (radar pulses). For further elaborations on these

points we refer the reader to paper I and II.
We shall now define one-particle states with the helicity convention

for the spin projections, limiting ourselves throughout this paper to posi- 
’

tive mass’ (m) particles. As a consequence of the large dimension of the
carrier space not only the spin degree of freedom but also two gauge trans-
formations can be realized on it. These are rotations in the angle ~
and translations in the variable s. According to paper III equation (23)
the wave function for a particle at rest is 

’

(11)
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Din is the Wigner D-function, j is the spin and À is the helicity. The

constants n and (a + which are the conserved quantum numbers result-

ing from the gauge transformations mentioned above will be interpreted
later on. Here we just notice that a particle is characterized not merely
by mass and spin but also by these two additional quantum numbers.
The real a and {3 are connected to the v in paper III through

(12)

One arrives at an arbitrary helicity state by making in succession an acce-
leration E along the z-axis and a rotation v around the y-axis and a rota-
tion 03A6 around the z-axis. All Poincare transformations are coordinate

transformations on the carrier space, i. e., substitutions on the arguments

(see equation 3). In this case one obtains with the help of equa-
tions (11, 15) of III the following formulae

(13)

= es [cosh E - sinh E (sin 0 cos q sin v cos C + sin 8 sin ~p sin v sin C + cos 0 cos v)]
x° --~ cosh x° - sinh e sin v cos sinh E sin v sin ~x~ 2014 sinh E cos vx3

where

and tgh E is the velocity of the acceleration. Define now the momentum

through

p~ = m (cosh E, sinh e sin v cos ~, sinh e sin v sin D, sinh E cos v) (15)

a lightlike vector

(16)
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and a function

(17)

where q)’, ()’ and ~’ are obtained from equations 13. Then the wave function

for a particle with momentum P and helicity A is given by

(18)

In the appendix some properties of the Sin function are resumed. One

sees from equation (A5) that the wave function (18) contains a denomi-
nator

where

(19)

The « conventional » one-particle realizations can be obtained from

equation (18) by putting a + ip = - j. Then one can forget about the
internal space as we have shown in paper III. Of course we shall keep
a and f3 free and we believe that these numbers characterize in some way
the internal structure of the particle. Thus while the electron is well

described by a + i03B2 = - 1 2, a hadron may require other values of these
parameters.
The wave function for the anti-particle is defined to be

(20)

This choice is dictated first of all by the requirement that the complex
conjugate of equation 18 should give the anti-particle state with the momen-
tum equal to ( - p). Then we can expect to get the correct crossing pro-
perties of the scattering matrix elements. Comparing with equations 43
and 45 of III we see that the total inversion Er introduced there should
be identified with the ordinary CPT transformation. Thus n and 03B2
turn into - n and - ~8 for the anti-particle. We shall assume in this

paper that n is half the baryon number, and that E is the ordinary space
inversion multiplied by the baryon-antibaryon conjugation.

ANN. INST. POINCARÉ, A-XIII-1 I 5
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Introducing momentum space wave functions through

(21)

one sees that the helicity states (18) and (20) in the momentum realization
are

(22)

In paper III we also introduced a scalar product thus defining a Hilbert
space in which P is represented unitarily. It is

(23)

Then the one-particle states are normalized according to

(24)

. For the sake of clarity we want to stress the difference between the variables
( p, A, m, j, n, a + which are labels or quantum numbers of the states,
and (x~‘, 0, t/J, s). The states are functions of the latter variables in an

explicit realization on the carrier space. Thus the spin quantum numbers
are not made continuous as in the Regge theory. On the other hand the

continuous angles 0, ~) are not eigenvalues of any operators. How-

ever, this is no new situation since it is well known that the Minkowski

coordinates x~ cannot be considered as operators or eigenvalues thereof.
.Once the wave functions for particles and anti-particles are defined

one can introduce free fields in the conventional way [76]. In our case

the wave functions depend on 8 variables and therefore the fields will also

depend on these 8 variables. In the conventional field theory the fields

depend only on the 4 Minkowski coordinates. In order to represent
the spin degree of freedom one has there to consider many-component
fields. This will not be necessary here since the carrier space is large
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enough to carry the spin degree of freedom (and two gauge transformations
in addition).
Introduce now the annihilation operators and c(p~.) for particles

and anti-particles. Their Hermitean conjugates and c*(p~) are
the creation operators for the particles and anti-particles. The non zero
commutation relations are

(25)

where the (-) sign is chosen for bosons and the (+) sign for fermions.
Define the field

(26)

where z - Then its Hermitean conjugate is

(27)

By means of equation (25) we can now calculate the commutator

(28)
One finds

(29)

In order that the theory satisfies micro-causality 4+ must be zero when x
is space-like. For ordinary fields one then concludes that one must choose
the ( - ) sign for integer spins and the ( + ) sign for half-integer spins 
The proof uses the fact that the integrand contains an even polynomial
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in p in the first case and an odd one in the second case. Here we do not

have polynomials in p but more general functions. Therefore ~+ will
not be causal except for special values of a and f3. Consequently we cannot
derive the spin-statistics theorem. However, if we choose a = - j and

{3 = 0 the theorem will follow. In a more general case when a and {3
do not fulfil these equalities G. Fuchs has shown [17] that commutativity
for space-like xi - x2 can be saved for certain relative values of zi and
z2 provided one chooses the usual connection between spin and statistics.
In this sense the spin-statistics theorem can again be proved from a weakened
causality axiom. In fact this is the only point which has to be relaxed
in the Wightman axiom system.
The next important quantity is the vacuum expectation value of time

ordered products of fields. Using equations (25, 26, 27) we easily derive

(30)
where

(3t)

One can show that the following expression for Ap holds

(32)
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where p = (p°, - p) and the integration in qo is along the curve in figure 1.

qo-plane

FIG. l. - Integration contour for the function AF.

We remark that åF is in general not a relativistically invariant function.
One source of non-invariance is the appearance of the vectors p and p.
When a Lorentz transformation A acts on the arguments x, zl and z2
then (xo, x), ki 1 and k2 are transformed like four-vectors. This transfor-

mation can be thrown over on the integration variables (qo, p) which are
transformed into p’). However, this p’ will not be the same as that
which appears in the scalar product or (pk2) and therefore we cannot
rewrite the integral in the form (32) exept when a + ~ = 2014~. Such

difficulties are expected since we do not have causality in general and there-
fore the time-ordering is not relativistically invariant either. The ques-
tion is whether non-causality (which may be physically relevant) can be
combined with relativistic invariance for interacting fields.

4. INTERACTING FIELDS

In conventional field theory the S-operator can be expressed through
the Dyson formula [1]

(33)

where T is the time ordering operator used in equation (30). The Hamil-

tonian density ~f(x) has in general been assumed to have the form of an
invariant local product of fields. The locality has no firm physical basis
but it has worked well in quantum electrodynamics. Furthermore non-

local theories have turned out to be very difficult to define and handle.
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Now that we have at our disposal fields defined on a manifold larger
than the Minkowski space we could try a formula similar to equation (33).
The first important fact is that there exists a measure on the carrier space
which is invariant under the Poincare group. According to table I it is

where
(34)

(35)

In reference [11] we therefore proposed the following generalization of
equation (33)

(36)

where

(37)

and ’ i are fields corresponding to the interacting elementary particles.
We showed that such a formula leads to scattering amplitudes which have
built-in form factors. More precisely expanding equation (36) up to

second order we got for the process

FIG. 2. - OPE graph for (AA)-scattering.

(38)

where

(39)
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The quantum numbers of the particle A are mass m, spin zero, a = 1, fl,
and for the particle B mass , spin zero, a = 0, 03B2 = 0, pi ... p4 are the

particle momenta and Jt = e-sk. The coupling constant G diifers

from g of equation (36) by an infinite renormalization constant. The

function F(t) is a strongly decreasing function of t = (~ 2014 for small

values of t. The slope depends on fl. Now this result is encouraging
since it is a hint that the peripheral nature of high energy hadron scattering
might have its explanation in terms of a field theory on our homogeneous
space. However, although equation (38) is relativistically invariant the
whole S-matrix will not be so. This follows from the conditions

(40)

which are consequences of the assumption of local interaction (see ref. 11).
The a; are thus not all free and the propagator for the A-particle will not
be invariant (see section 4).

Since the non-invariance of the S-matrix is due to the non-locality of
the field and the T-ordering the invariance may be restored either by making
the fields causal or by omitting the T-ordering. The latter remedy [18]
would normally require quadri-linear couplings since the propagators
then have the momenta on the mass shells. Vertices involving only
three line,s can have all momenta on the mass shells only for special values
of the masses and never when the same particle is absorbed and emitted.
The free fields can be made causal, however, only at the expense of giving

up the irreducibility of the fields under the Poincare group. Define annihi-
lation operators and creation operators b* for each spin j and
quantum numbers n and ~3 with the commutation relations

(41)
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A similar relation holds for the operator c and c* of the anti-particles.
Define furthermore the big field

(42)

This field thus is highly reducible under the Poincare group containing
an infinite number of particles with different spins but the same masses [19].
We shall, however, distinguish between half-integer spin field and integer

spin field by letting j take the values -,-,... or 0, 1, 2, ... respectively.
The causal commutator for such a field

(43)
becomes

(44)

Now just as in reference 16 å+ will be zero for x space-like if the exponent
2(1 - a) is an even positive integer for bosons and an odd positive integer
for fermions. This means that a must be half integer not greater than
1

2 
for fermions and integer not greater than 1 for bosons in order to have

microcausality. Let us now see what happens to the propagator function

(45)

From equation 32 we get summing over fl, n and j (the same expression
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results both in the integral spin and in the half integral spin case if we

restrict the angles rp and ~ to the interval [0, 

(46)

In order that A~ be an invariant function the bracket

(47)

must be an invariant function since e-iq0x0eipx and the distribution on z
are invariant. Now this is possible only if Ct = 1 and one. chooses the

~ ~ 
1

upper sign or if Ct = - and one chooses the lower sign. We therefore
2

find the interesting relations

The requirement that the propagator function be relativistically invariant
is much more restrictive than the requirement that the fields be causal.
To sum up: infinite component fermion fields on the homogeneous space
can be constructed according to equation (42) which satisfy microcausality

if a is half integer  1 2. If furthermore a = - 1 the propagator function
will be relativistically invariant. Infinite component boson fields can be

similarly constructed satisfying microcausality if a is integer  1. If
furthermore a = 1 the propagator-function will be relativistically inva-
riant. The spin-statistics theorem does not follow since a is not related
to the integer or half-integer character of j.
This enables us to construct a relativistically invariant interaction field

theory between the big fields. The first of equations 40 must hold again
if we assume local point-wise coupling. Therefore only two types of
coupling is possible : tri-linear with two fermion fields and one boson field
or quadri-linear with four fermion fields. What we have constructed is
an infinite component field theory with a quite particular realization and
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with an interaction which is neatly confined once one has accepted a local
coupling. Since the big field contains many spins it must contain many
particles. However, in the free field they all have the same mass [20].
Of course the masses might be renormalized due to the interaction so
that a mass spectrum could occur. If we take the half-integer spin field

we would of course like to identify the spin - component with the nucleon.
But what f3 and n should we take? n can only take two values in that
case but 03B2 is continuous. The calculations in references [10, 11] suggest
that {3 is a structure parameter of the hadron. Therefore a certain value
which has to be tried out by comparison with experiments may have to
be chosen. But it might also be that the proton field is a linear combi-
nation with differnet ~-values and a weight function F(j8).
To see what sort of expressions ’one will get we calculate the term in the

scattering amplitude corresponding to the diagram

FIG. 3. - One-field exchange diagram for elastic scattering.

The exchanged field is the boson field with a = 1 and mass It. The

scattered particles have momenta and quantum numbers (m, j, ~,, n, ~).
We therefore get using similar Feynman rules as those of reference [11]
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Introducing the expression (46) for ~: we get

where t = (pi - p3)2 and means conservation of f3.
The second term is the scattering amplitude to this order of approxi-

mation of the perturbation expansion. It is a special case of the expres-
sion proposed in paper IV. We can expect a sharp drop of this ampli-
tude as t becomes negative. We will also have the somewhat strange
crossing properties discussed in paper IV. This is to say the amplitude
will at the same time describe the three crossed channels but the path
of analytical continuation cannot be kept in the finite complex s - t.

plane. In order to reach the physical sheet for a crossed channel the path
of continuation has to pass a branch point at infinity. These analytic
properties are a consequence of the denominators in the wave
functions. Thus the situation is the same whether we have an infinite

component or a one-component field theory on the homogeneous space.
Notice that the normal analyticity requires both finite number of compo-
nents and microcausality.

APPENDIX

The Wigner D-functions are defined through

(Al)
where

(A2)

and have the following properties

(A3)

(A4)
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Making the substitutions (13) we get the following expression for the function defined
in equation (17)

(A5)

where p is the fnur momentum of the particle, m the mass and

p == j p (sin v cos O, sin v sin ~, cos r) (A6)
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TABLE I

Homogeneous spaces of P and P belonging to continuous stabilizers
of L and L. The ranges of the parameters are - oo  t, U, 7, u  oo,

0 ~ 0 ~ 7r, 0 ~ ~ + ~ ~ 47r, - 2n 5 p - ~ ~ 27r for P and 0 ~ ~
yJ 5 2x for P.
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