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Continuous bases

for unitary irreducible representations of SU(1, 1)
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Ann. Inst. Henri Poincaré,

Vol. XIII, 1970,

Section A :

Physique théorique.

ABSTRACT. - The UIR’s of SU(1, 1) are studied in two different conti-
nuous bases obtained by diagonalizing a noncompact generator belonging
to the hyperbolic and parabolic class, respectively. The space of diffe-

rentiable vectors of a UIR and its dual containing the « generalized eigen-
vectors » of the noncompact generators are described in the discrete and
continuous bases. The matrix elements of finite transformations and

generators are given.

§ 1 INTRODUCTION 

The noncompact group 1) of all matrices of the form

is of great interest in physics as it is homomorphic to the subgroup SO(2, 1)
of the Lorentz group that leaves a spacelike vector invariant, and in mathe-
matics as the simplest noncompact semi-simple group. Bargmann [1]
found all unitary irreducible representations (UIR’s) of SU(1, 1) and the
corresponding matrix elements in the discrete basis where the compact
generator is diagonal.
Mukunda [2] and Barut and Phillips [3] investigated the case where

a noncompact generator is diagonal. The basis vectors are then labelled
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by a continuous index, in other words, a noncompact generator has a
continuous spectrum. The results, however, were incomplete. We wish

to give a reasonably complete and rigorous discussion of this problem.
The layout of the paper is as follows. After a brief review of the properties
of SU(1, 1) and its UIR’s we give a rigorous definition of the « generalized
eigenvectors » of a noncompact generator using the concept of « Gelfand
triplet ». Then the components of these generalized eigenvectors in the
discrete basis are calculated departing from a difference equation. The

matrix elements of the finite transformations and the generators in the

continuous bases are given. Finally the relation of this work with ref. [2]
is discussed.

§ 2. THE GROUP SU(1, 1 )

A. Subgroups

SU(I, 1) has three classes of conjugate one-parameter subgroups. These

can be represented by the following specimens

elliptic class

hyperbolic class

(2 .1 ) &#x3E;

hyperbolic class

parabolic class.

The elliptic subgroups are compact, the hyperbolic and parabolic sub-

groups are noncompact.
An arbitrary element g can be parametrized in various ways e. g.

(2. 2)
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B. Lie algebra

As a set of linearly independent elements of the Lie algebra of SU(l, 1)
we can choose i times the generators of the subgroups k(0), a1(s) and a2(t),
denoted by Jo, J1 1 and J2, respectively, hence k(0) = exp (- i8Jo), etc.

(The same notation will be used for the generators of the representations.)
Their commutation relations are

(2 . 3)

is generated by
(2 . 4)

which satisfies

(2 . 5)
The ladder operators

(2.6)
satisfy the relations

(2 . 7)

The Casimir invariant is given by

’(2. 8)

C. UIR’s

The UIR’s can be grouped into three classes according to the spectrum
of C2 and Jo. In all cases we can choose a standard basis { j, m ~ ~ where

(2.9)
The three series of UIR’s are

1 ° The continuous principal series.

notation Ca, where 5 = 0 and 1, respectively.
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2° The supplementary series.

notation E~.
3 ° The discrete principal series.

notation Dt and respectively.
There exists an outer automorphism of the Lie algebra J~ - J~ where

(2. 10)

In the case of the series C1 and E~ this automorphism can be realized
by JI = where

(2.11)

Hence P2 - 1 and the eigenvalues of P are + 1. As [P, J2] = 0, P and J2
can be diagonalized simultaneously.

§ 3. GENERALIZED EIGENVECTORS

OF NONCOMPACT GENERATORS

A. We start from a UIR 1)}, defined in a

standard basis.

The Hilbert space of the representation is then

(3 .1 ) &#x3E;

All summations go over the spectrum of Jo.
Introduce the space of « rapidly decreasing sequences »

(3.2)

and the space of « slowly increasing sequences »

(3.3)

Evidently we have ~ c .Yf c ~B with ~ dense in 1YV, and for x E ~,
x’ E we can define a generalized « scalar product »
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We shall sometimes also use the Dirac bra and ket notation :  x’) x )
and  x) x’ ).
A topology is defined on ~ by the set of where

~ and ~’ have the following properties :
1. ~ is the set of differentiable vectors of U(G). ~ is thus invariant

under all Ji and U(g), and these operators are continuous in ~. All J~
are essentially self-adjoint on ~.
2. ~ is a nuclear Frechet space, i. e. a complete, metrizable, nuclear

space. This implies that ~ is a Montel space and reflexive.
3. ~’ is the dual of ~, and hence also ~ 2014 is dense in EQ’ (in

the weak or strong topology on !Ø’ : as çø’ is the dual of a Montel space,
it is a Montel space, and the weak and strong topologies coincide on bounded
sets, especially on convergent sequences; see [4], IV. 3.4, p. 90). Any
operator A in Jf, which has an adjoint A + leaving ~ invariant and conti-
nuous in D2014as e. g. Ji and be extended to an operator A’ in fØ’

by (A’y’, x) = (y’, A + x), y’ E ~’. A’ is continuous in ~’.

4. Nuclear spectral theorem (see e. g. [5] or [6]).
If A is a self-adjoint operator, leaving ~ invariant and continuous in ~,

then A has a complete set of generalized eigen-vectors in ~’, i. e. there

is a set { H, f~: /) E SpA, i = 1, 2, ..., 
c £Q’, where SpA is the spec-

trum of A, and n).  oo is the multiplicity of SpA at the point A, and a
measure ~ on SpA, so that

(3.5)

and for any x, y E ~ the completeness relation

(3 . 6)

is fulfilled.

B. We now proceed to the proofs of 1. -3.

Proof of 1. We recall the definition of a differentiable vector of a
unitary representation g - U(g) of a Lie group G in a Hilbert space 9V :

is differentiable (analytic) if the mapping U(g)x E ~
is infinitely differentiable (analytic) in g.

ANN. INST. POINCARE, A-XIII-1 3
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It is not difficult to show (see [7] for details) that if Ji, ..., J~ form a
basis of self-adjoint generators’ of the representation U(G), an alternative
definition of the set of differentiable vectors is the following:

is the largest subset of 1%° such that

(3 . 7)

Here

(3 . 8)

is the domain of definition of Ji.
~ is by definition nothing but the set ~K of differentiable vectors of

the maximal compact subgroup K of SU(1,1): evidently

Clearly gøK :::) 
It is shown in Bargmann’s paper ([1], p. 602) that the basis vectors {!~ ~ )}

belong to the domain of definition of J 1 and J2. It follows from this

fact and (2 . 9) that Jo, J 1 and J2 are defined in ~ and leave ~ invariant.
Thus conditions a . and b. above are satisfied, and it follows that

An alternative way of showing this is to use the characterization in
00

Nelsons paper ([8], p. 592, proof of theorem 3) of fØG as n where

2 
1

K is the self-adjoint closure 1; (our notation differs from that
o 00

of Nelson). Correspondingly we have fØK = n fØ(nn). But as
1

I = identity operator in Yf, we have A = - 2JÕ + 1)1, so that

~K = ~G.
The invariance of D under all U(g) follows from the fact that D is the

set of differentiable vectors.
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Using (2.9) one can easily derive

some suitable C(n).

This shows that {J~} are continuous in ~.
To show that U(g) is continuous in ~, we observe that 

As J20 = - 1 2 0394 - 1 2 j(j + 1)1, an equivalent set of norms is obtained from

Now II (- + .

is evidently a quadratic expression Lemma 6 . 3,
p. 588, in [8] then gives

That all J; are essentially self-adjoint on D follows from Segal’s result [9]
that Ji is essentially self-adjoint on the Garding subspace, which is con-
tained in ~ (cf. also [10], p. 371, IV).

Proof of 2. has a countable set of norms, it is metrizable. Com-

pleteness and nuclearity follows e. g. from the criteria given in [11], 6.1,
p. 87-88. Now every nuclear Frechet space is a Montel space: from [11],
0. 5. 7, p. 7 and 4.4. 7, p. 73 follows that a closed bounded set in ~ is com-

pact, and as D is a Frechet space, it is barreled, and hence a Montel space.
Finally a Montel space is reflexive (See [4], III .1.1, p. 2 and IV. 3 . 4, p. 89-90,
for the last three statements.)

Proof of 3. It is immediately realized that £D’, as defined by (3 . 3),
is just the space of continuous linear functionals on ~. It is also easy
to see that :Yt is dense in ~’ in the weak topology on ~’, and hence also
in the strong topology.
The definition of A’ shows that A’ is weakly continuous in From

[4], IV. 4 . 2, p. 103 follows that A’ is continuous also in the strong topo-
logy on ~’.

C. We thus have a Gelfand triplet ~ c ~’, where ~ is a complete
nuclear space, dense in :Yt, and ~f is dense in ~’, the dual of ~. The infi-
nitesimal generators {J,} and finite group transformations {U(g)} can
be extended to continuous operators in ~’; actually this extension is

nothing but closure by continuity of continuous operators defined origi-
nally on the dense subspace D of In Gd’ we have, apart from the
same freedom of operating with { Ji } and { U(g) } as in D, the further
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advantage that the eigenvalue equations of the operators { Ji } have, in
the sense of (3.6), a complete set of solutions.
We also make some short remarks on some other subspaces of 9Y,

namely the space of « finite sequences »

(3.9)

and the space of analytic vectors

(3 .10)

Obviously 9V, and ~~ is dense in Yf. With a suitable

topology on fØc its dual the space of all sequences without any limi-

tation in growth as I m - oo.
~ is by definition the set of analytic vectors of the subgroup K 

However, one can easily show that for x we have

where C = max ( 1, |j(j + 1 ) ( ), and also

It then follows from [8], Cor. 3.2, p. 577, that d is actually the set of ana-
lytic vectors of U(G).
d is invariant under { and {U(g) }, whereas Ç)c is invariant under

{ but not { U(g)}. One can show that all Ji are essentially self-adjoint
on ~c-

In [7] it is shown that all the properties of ~ and ~’ given in 1.3.

remain true for a UIR U(G) of an arbitrary semi-simple Lie group G with
a finite centre, provided we define ~ as the set of differentiable vectors
of the representation U(K) of a maximal compact subgroup K of G. The

topology on ~ is defined by the set of norms { p~}, pn(x)=))(2014A~+ 1 )"~2x ),
where - ðK is the Casimir operator of U(K) (= JÕ for G = SU(I, 1)).
One can also prove that d = dK, the set of analytic vectors of U(G)
is the same as the set of analytic vectors of U(K).

§ 4. DIAGONALIZATION OF A GENERATOR

OF HYPERBOLIC CLASS

In this paragraph we will calculate the sequence { x~} corresponding
to a generalized eigenvector of the noncompact generator J2. Denote

the eigenvectors by !~~:

(4.1)
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For the series C1 and E~ the spectrum of J2 is the real line with multi-
plicity two. In this case the basis can be chosen such that P is diagonal
(P was defined by (2 .11 )) :

(4 . 2)
We will also use the notation j, ~( - )1 &#x3E; where 6 = 0,1.
For D~ the spectrum is the real line.

A. Construction of the eigenvectors

From § 3 we know that

(4 . 3)

where ~.) = (~ ~ ~,~ ) ~ xm is « slowly increasing » as a function
of m. Equations (2 . 9) and (4 .1 ) give:

(4 . 4)

Introduce Bm by

(4 . 5)

where N is a normalization constant and the square root is defined to be
equal to [r(m - j)r(m + j + + j + 1 ) except when m - j = nega-
tive integer (i. e. for D/). With this definition we have

(4. 6)
The right hand side is taken as a definition of the root for the series D j .
B~ satisfies the following difference equation :

(4 . 7)
Note that ~) satisfies the equation, so does À) and 
This equation is solved by the method of Laplace [12]. With the

« Ansatz » 
-

(4.8) &#x3E;

(4.7) is replaced by the differential equation
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with the solution

Hence

(4 . 9)

The contour C must be such that

This condition is satisfied if either

a) C is a contour between t = - 1 and t = 1 or

b) C is a closed contour along which the integrand is single-valued.
The difference equation (4.7) obviously has two linearly independent

solutions except when the sequence terminates. This happens when

j - m or j + m equals zero for some m, which is the case for the discrete
series. For the series CJ and E~ it is possible to choose two different
paths Ci 1 and C2 connecting t = - 1 and t = 1, which give two linearly
independent solutions for Bm :

Ci 1 = semicircle in Im t &#x3E; 0, center t = 0

C2 = semicircle in Im t  0, center t = 0.

In the discrete case Bm must satisfy:

Bm = 0 when m _ j for D~
Bm = 0 when m 2 - j for D~ .

(Note that the square root in (4.5) equals zero when j  m  - j, hence

Am = 0 when m  - j and m &#x3E; j, respectively).
Only one solution exists in each case.

D~ : C3 = the circle t ) = R &#x3E; 1 with the t-plane cut from - 1 to 1.

Dj-: C4 = the circle I t = R  1 with the cuts ( - oo, - 1 ) and ( 1, oo ).
We will not give the details of the calculations, but restrict ourselves

to some remarks.

The normalization constant N(/, ~,) is determined up to a phase by the
condition:

(4 .10)

The left hand side is calculated by inserting the integral representations
for Bm given below and interchanging the order of summation and inte-

gration. The phase of N(/, ,1) will be chosen such that the matrix elements
calculated in § 6 have similar forms for the three series of representations.
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Note that the difference equation has solutions for every complex h.

These solutions actually give admissible vectors in ~’ (see section 4. C).
The usual argument that a self-adjoint operator has only real eigenvalues
does not apply to this case. The reason is that we study the extension
of J2, self-adjoint in to a larger space qø’ which is not a Hilbert space
(cf. § II and the conclusion of [2]). The set j, ~. + ) with real £, however,
forms a complete set in the sense of the nuclear spectral theorem (see (4.18)).
Now we give the coefficients m ~ j, ~, ± ~ for the different series of

UIR’~ 
.

1. Ca
Including an m-independent factor in No, À) we obtain from (4.9) and

equation 2.1. (10) of [13] the two solutions corresponding to the paths Ci 1
and C2:

(4.11)

The corresponding eigenvectors do not satisfy (4.2). This equation
implies that

(4 . 5) gives = :t B£. But B 1 m - Bfl.
Hence (4 . 2) is satisfied if we choose

(4.12)

The procedure outlined above gives N = (27r) ~. The result can be

reformulated using equations 2 . 9 ( 11 ), (21) and (29) of [13]. Finally:

(4.13)
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2. Ej
The results are identical up to (4.12) but the normalization is different

for A~ and Am in this case. With a certain choice of phase we have

(4.14)

(4.15)

where Bm can be read off from (4.13).

3. Dt
In the same way we have

(4.16)

and

Hence

(4 .17)

For the series D~ the normalization can be chosen such that

Thus we need not treat this case separately.

4. Completeness relations.

The relations

are proved by inserting the integral representations for Bm and interchanging
the order of integration.
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B. Analyticity of the coefficients ~ ~i~)
1. C1
From (4 .11 ) and (4.12) it is easily shown that

But from the difference equation (4 . 7) it is evident that and
in the integral case and in the half-integrat case are poly-

nomials in 03BB of degree m, m - 1 respectively.

Hence

(4.19)
where

and R; are polynomials in ~.

2. Ej
The only difference from the preceding case comes from the normaliza-

tion factor. (4.19) is valid with

(4 . 20)

3. D~
From (4.16) follows

But is a polynomial of degree m + j in ~,. Including the nor-
malization factor we find :
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where

(4.21)

4. Note that ~, ~± m ) --_ (j, m !7. ~± )* are antiholomorphic
functions of À (apart from poles) and that ~ ~ ± ~ j, m ~ _ ~* (~ ~ ± !~ ~ ~.

Therefore it is more convenient to use the functions ( j, À *:t j, m )
instead. Then the coefficients (~(~)= (~~*± for ~ ~ ~ E ~ and
the matrix elements (~~*± j, À’:t &#x3E; will turn out to be mero-

morphic functions of A (À and )B’) (see § 6 and § 7). The completeness
relation is not affected as it contains an integration over real À only.

C. Asymptotic formulas

The behaviour of ( j, m I j, 03BB ± ~ when Re h - ± ~ follows from the
results of the preceding section. 

+ - -(I-b) - 1 e 2 

(4.22)

Hence m I j, ~d: )&#x3E; are square-integrable over any line Im ~= cons-
tant that does not pass through a pole.
The asymptotic expansion when can be derived from

equations (18) and (19) of r 141. The leading term is of the form

(4 . 23)

i. e. the coefficients are at most slowly increasing for any complex h.
It is necessary to have an upper bound ~± ) for all m and À

(excluding the poles in the /t-plane). The following rough upper limit
for the polynomials R; is easily derived from a suitable integral formula
(e. g. (A. 7) of [15]).

(4 . 24)

for some constants C and a.

§ 5. DIAGONALIZATION OF A GENERATOR

OF PARABOLIC CLASS

The generalized eigenvectors of the generator K + = Jo + J 1 are denoted

(5 .1 )

We will find that the spectrum of K+ is the real line for the continuous
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series Cj and E~, but only the positive real line for D~ and the negative
real line for D j- .

A. Construction of the eigenvectors

The « Ansatz »

(5.2)

and equations (2.9) and (5.1) give the difference equation:

(5.3)

Using the same method as in § 4 we arrive at the solution (including a
change of variable)

(5.4)

with the subsidiary condition on the contour C:

Exactly as in the hyperbolic case the difference equation has two linearly
independent solutions for the continuous series, but only one for the dis-
crete series. The eigenvectors of K + in are determined by the further
restriction that the sequence { Am } must be slowly increasing. This
condition can only be satisfied for real ~. The normalization is deter-
mined by

For the continuous series the contours C1 and C2 give linearly inde-
pendent solutions.

where we have used the notation of [13], § 1.6 and the t-plane is cut from
- oo to 0 and from 1 to + oJ.
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From equation 6.11 (1) of [13] follows that

(5.6)

(where 1&#x3E; is a confluent hypergeometric function). From the asymptotic
expansion of 03A6 when (see next section) it is obvious that the

solution given by B(2) does not belong to ~’.

When ?? &#x3E; 0

and when 11  0

From these relations and equation 6.11 (9) of [13] we find for ~ &#x3E; 0:

and for 11  0:

(5.7)

This solution is well-behaved when m - +00.

In the case of the discrete series the correct choice is:

(Then Bm = 0 for m ~ j and m &#x3E;- - j, respectively).
Note that if q) is a solution of the difference equation, so is

Hence a solution for D! immediately gives a solution for D~ , and the
latter case does not need a separate treatment.

Obviously (0 +)-~ dt ... = C3 dt ... when 11 &#x3E; 0 and m - j = integer.

Hence

~5 . 8~

Analytic continuation gives the same formula for 11  0. From the

asymptotic expansion of 03A8 follows that the corresponding eigenvector
belongs to ~’ only if 11 &#x3E; 0.
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The normalization constants are calculated from (5.5) in the same way
as in the hyperbolic case.

It is possible to choose 

(5.9)

for all series. Then the final result is :

(5 .10)

where E = sign 11 and W is the Whittaker function defined in [13], 6.9. (2).
The completeness relations for ~ j, m ~ j, r~ ~ are easily checked:

(5.11)

B. Asymptotic behaviour

l.m-~+00

From (5 . 6) and equation 6.13 (12) in [13] we find for ~ &#x3E; 0:

(When 11  0 the two formulas are interchanged).
This means that B~) increases exponentially in one direction. Conse-

quently B~) does not give a vector in ~’.
From (5.8) and [13], 6.13 (9) follows

When ~  0 the last factor is exponentially increasing, that 
for ~  0.

In the same way we obtain from (5.10) :

(5.12)
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(5.13)

When 1m 1] # 0 these expressions will not give vectors in ~’.

[13], 6.13. ( 1 ) gives

(5.14)

Use equation 6.8 (2) of [13]. The result depends on the type of repre-
sentation :

(5.15)

(5.16)

(5 .17)

C. Transformation between the bases !~~ and I j, ’1 &#x3E;

As the generalized eigenvectors ~, ~ and of J2 and K+, respec-
tively, both belong to their « scalar product » may be undefined. That

is, we cannot expect the sum  j, 03BB* |j, m ~ ( j, m |j, ~ ~ to be conver-
m

gent from general considerations. Hence we must consider j, 03BB* ( j, ’1 &#x3E;
as a generalized function which satisfies

(5 .18)

for all 
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Straightforward calculations, however, yield an expression for ~ j, ~* j, r~ ~
which is a well-behaved function.

The correctness of (5.18) can be checked by noting that with the for-
mulas given below

and the inverse relation are satisfied.

For a general the uniform convergence and
fast decrease in À and 11 proved in § 7 implies that (5.18) is valid.

1. C1 and E j , _0- ._ - - "

(5.19)

(5 . 20)

§ 6. MATRIX ELEMENTS

OF FINITE TRANSFORMATIONS

In this paragraph we give the matrix elements of the finite transforma-
tions exp ( - exp ( - itJ2) and exp ( - in the continuous bases.
The interpretation of a matrix element like

is parallel to that given for ~ j, A* ~, ~ ) in § 5, C and the value is calcu-
lated by the methods used in § 4 (For the noncompact transformations
the summation is replaced by integration). The calculations are valid
for real À and À’ but obviously the result can be continued to a meromor-
phic function of ~, and ~’.
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When performing integrations of the type

(where ~P ~ E ~ ~) = ~ ~ ! »
let À be real as well as À’ and interprete the factors F( ± i(a~ - À’)) (see
below) as r( ± - À’) + e) with 8 &#x3E; 0. Then the integral is well-defined
and the result can actually be continued to a meromorphic function of À

(see § 7).

A. Matrix elements of exp ( - içK+) in the !~ ~ ) basis

1. C03B4j and Ej

(6 .1 )

(6.2)

B. Matrix elements of exp (- i03B8J0) in the j, 03BB ~ basis
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1. C1 and E~)

(6 . 3)

(6 . 4)

C. Matrix elements of exp ( - i03B8J0) in the j, ’1 &#x3E; basis

Define dj~~’(03B8) =  j, 11 exp ( - i03B8J0)| j, ri’ &#x3E;.
8 = sign ri, Kv = modified Bessel function.
1. C1 and E, (£5 = 0 for E~)

(6.5)

ANN. INST. POINCARE, A-XIII-1 1 4
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(6. 6)

(This formula can be derived from (6. 5) putting ~ = sB and using the fact
that j is integer of half-integer).

D. Matrix elements of exp ( - itJ2) in the j, basis

For all series we have

(6.7)

§ 7. GENERATORS AND DIFFERENTIABLE VECTORS

IN A CONTINUOUS BASIS

From § 3 we know that ~ is the maximal invariant common domain
of the generators in 9V. Hence ~ j, ~.* ± ) J~ ~ 
exist for all cp E ~. The explicit expressions for these matrix elements
are calculated below, and at the same time we obtain alternative charac-
terizations of the space ~ in terms of the functions

qø’ (which contains the generalized eigenvectors) is also an invariant

common domain of the generators. The action of Ji A± ~ 
is given in section C.

A. The !~± &#x3E; basis

1. = m ~ (i. e. ~pm is a rapidly decreasing sequence).
From § 4. B we have

(7 .1 )

The rapid decrease of ~ and the upper limit on given by (4. 24)
imply that the sums * 

converge uniformly on every compact subset
of the À-plane to holomorphic Hence cp ± (~,) are of the
form

(7 . 2)
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Convergence in ~ means: !~(v)~-~~)&#x3E; iff

for all n. It is evident that this condition and (4. 24) give uniform conver-
gence ~)(/).) - ÎJI(2) in every compact subset of the A-plane ({p~} is

equivalent (3 . 4)).

2 . Equation (4. 24) does not give any limit to the growth of (~.) when
) Im À I - 00. It is evident, however, that are square integrable.
In fact

But ~ is invariant under J2. Hence ~,"~p±(~,) must belong to ~ for all
n = 0, 1, ... This is possible only if decrease faster than any
inverse power of À when ~-~±00. More generally, this is true for Im ~,
fixed, arbitrary, and Re /), -~ ±00.

3. Consider a representation in the class CJ and a vector E ~.
The action of K + is given by:

(7 . 3) &#x3E;

where

(7 . 4)

Calculate the component ~* + ~ K ~ ).
From (2.10) follows PK+P-1 ~ - K+. But this implies that

depends only on ({J - (~), i. e. only the second term in (7.4) contributes to
(7.3) in this case. (6 .1 ) and (4.19) give 

.
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Note that the singularities of ~p-(~,’) in the lower half-plane are cancelled
by the zeros of d~ + , ~,. _ (~). Hence the integrand is holomorphic in the
lower half-plane apart from the poles of Now the integral can
be written

Derivation with respect to ç gives a constant from the pole term and from
the second term an integral that contains the factor

Thus the integral vanishes when ç --+ 0. A simple calculation yields

(7 . 5)

In the same way we obtain :

(7 . 6)

The action of K- = Jo - Ji is easily derived from the relation

(7.7)

and (7.5), (7.6). The result is

(7 . 8)

(7.5)-(7.8) are valid for representations in the class C J also.
The same method gives for the series E~ :

(7.9)

and for D~ :

(7 .10)
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Corresponding expressions for the other generators are obtained through :

4. From the formulas of the preceding section it is evident that the

generators are defined for all pairs ~p±(~,) that satisfy : (drop the ± for the
discrete series)

a) qJ*(£) = ~*)*~(/).), where ~p ± are holomorphic in the whole
~-plane.

b) 03C6±(03BB) ~ 0 faster than any inverse power when Re 03BB ~ ± ~
for Im À fixed.

Furthermore, this set of functions is invariant under the generators.
It was proved in 1. and 2. that if E ~, then ~(~) have the pro-

perties a) and b). But D is maximal. Hence the set defined by a) and b)
is identical with ~.

B. The !7, r~ ~ basis

1. Let ~p ~ = j, m ) E ~. From the integral formula (5.4) it is

easily shown that

(7.11)

for when k) are suitably chosen constants. Hence the sum

converges uniformly on every closed interval that does not contain ~=0,
and the sum

(7 .12)

is an infinitely differentiable function which can be differentiated term by
term when 11 # 0. In the same way convergence in the topology of D
implies uniform convergence of ~(r~) and all its derivatives when 11 # 0.

2. The argument of section A. 2 can be repeated to show that 
decreases faster than any inverse power of 17 when ] - oo. When

11 -... 0 the square integrability of ~p(r~) means that ~p(r~) -~ oo no faster
for some e &#x3E; 0.
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3. The transformation e- iJ2t has a very simple form in the 1 j, 11 &#x3E; basis.
From (6.7): -

(7.13)

(7 .14)

(7 .15)

It is easy to see from (5.15)-(5.17) (n = 0, 1, ... )
are well-behaved when 1’/ ~ 0 for ~ ) E (= the set of finite linear

combinations of j, ~)). In order that this shall be true for arbitrary
I it is necessary that ~p(r~) is of the following form in 1’/ &#x3E; 0:

(7 .16)

and in ~  0:

and (for D/)
(7 .17)

respectively, where h(11) and g~(r~) are oo differentiable, including YJ = 0.

5. Exactly as in section A. 4. we arrive at a description of the set ~ :

a) qJ(11) is oo differentiable for ~ ~ 0,
b) 03C6(~) is rapidly decreasing when |~| - oo,

c) The behaviour when q - 0 is given by (7.16) and (7.17).

C. Generators acting on the generalized eigenvectors

1. The j, ~± ) basis. -

The fact that {J,} are continuous operators in qø’ justifies using the
commutation relations without restrictions. Hence (2.5) implies
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With this gives

The constants cannot be determined from the commutation relations

alone, as they depend on the choice of phase for the basis vectors. Use

(7.5), (7.6) to find (for C1)
(7.18)

In the same way

(7 .19)

(and analogous formulas for the other series).
The constants can also be determined through the equality

and the asymptotic formula for  j, À:t j, m ~ when m - CIJ by identifying
the coefficients of the highest power of m on both sides (This is an alter-
native way to derive (7 . 5)-(7.10)).

It is easily checked that the vectors in (7 .18) and (7.19) cannot be written
as a (formal) integral over real x

Hence the « matrix elements»  j, À’:t K + ~ j, À:t &#x3E; cannot be given
a sense even as distributions in À and ~’.

It is possible to give a description of the vectors in [Ø’ in the j, ~, ~ basis
by a method which is a generalization of [16], § 27. 3 (we drop the index +
for the moment).

Introduce a topology in ~ by the set of norms

where G~ = { ~ ~, - ~,i ~ &#x3E; /1-1, { ~,~ ~ = the poles of SQ, a~’~)* }.
It is easy to check that this topology is equivalent to that given by (3.4).

Put G = Q - (~ ~~ }, oo) where Q = the Riemann sphere. Then ~ = the
set of functions which are holomorphic in G with simple poles in ~,t and
rapidly decreasing when Re ~, ~ I - oo. Introduce the Banach space 
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of functions holomorphic in G~ with continuous boundary values on Cu
(= the boundary of G 1l) and the norm !! = 

If u ) ~ D’ there exists , v and M such that

Hahn-Banach’s theorem implies that M) can be extended to 

with the same upper bound M.

Now let be any of the poles Ài and z E Q - G~ = H~. Then

as a function of A, hence =  M I (~,o - Å)-v-1(Z - ~,) -1 ~ exists. It is

easily proved that My(z) is a holomorphic function in H~, bounded in H.u+1,
and for .

[cf. [16], § 27 . 3, (8)] where the direction of CJl+ 1 is such that G~, is to the left.
On the other hand every 5(h) which is holomorphic in H~ for some J1 and
which does not grow faster than some power I À In when ~, ~ I - oo away
from G~ defines a continuous linear functional on ~ through

Hence we can write formally

(7 . 20)

The function is not unique. A closer investigation shows that if

V1 1 and 152 satisfy the above conditions, they represent the same v E ~
if and only if VI - V2 is a polynomial P(~,) (of degree _ n) in 
and (V1 - ~2)(~.) = P(~,~) for all ~,.
As a special case of (7.20) we have

(7.21)

where C: satisfies ~ &#x3E; Im + 1. C* can be deformed into a closed
contour enclosing 2 + i.
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2. The r~ ~ basis.

(7.14) can be written in the form

Hence

In the same way from (7.15)

In this case it is possible to define the matrix elements as generalized
functions (or ~):

(7 . 22)

More generally, if E P}’ u ~ is a tempered distribution
everywhere except in ~ = 0 where further conditions must be imposed
to match the behaviour (7.16) and (7.17).

§ 8. DISCUSSION

In order to see the relation between ,this paper and [2], consider a UIR
of class CJ in the j, ~± ) basis.

Define

(8.t)

Then (7.5), (7.6) and (7.8) give

(8. 2)

This is equation (3.33) of [2]. In the Fourier-transformed basis

(8.3)
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the generators are given by

(8.4)

Using (8.1) we arrive at equation (3.10) of [2].
The difficulty of using the functions is, as Mukunda points out,

that the conditions on the vectors in qø involve relations between and

ëp2 at q = ± ~ which make it impossible to choose them independently.
By using the combinations these constraints are « diagonalized »
i. e. the two components are independent (This amounts to choosing
functions which are even and odd, respectively, in the variable ({J used in

equation (3.2) in [2]).
In terms of the functions ~p 1’ 2(~,) these conditions at q = ± oo

are directly related to the analyticity properties discussed in § 4. C and
§ 7 . A. This is easily seen by inserting (7 . 2) in (8. 3). Evidently the resi-
dues of the poles of ~pl(~,) and ~p2(~,) are related in a very inconvenient
way. In view of these difficulties, it is probable that the discussion of
§ 7. A gives the simplest description of the differentiable vectors in the
basis ~).
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