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ABSTRACT. - In a systematic way we show by construction that for
the Lie algebra Cl(n) of any real or complex n-dimensional classical Lie
group there exists a (not always irreducible) representation y of

such that the inhomogenization y) of Cl(n) relative to y can
be expanded to Cl(n + N) for a certain value of N. In each case we also

identify a linear Lie group ~((~ + N)m), isomorphic to the corresponding
inhomogenization y) of which under this expansion globally
is being expanded to a linear Lie group + N)’") ~ + N) for a
certain value of m.

TABLE OF CONTENTS

INTRODUCTION ................. , , .

THE GROUPS 
, .... ~ 4

1 h EXPANSION OF I G L(n, k, [10"~ ~] + [0"’~ -1]) To ..... 5

27 THE GROUPS rI2) ................ 8
2h EXPANSION OF IU(ni, n2) To U(n1 + I, n2) OR TO + 1) .... 10

3a THE GROUPS N(10~~ ~)) AND N(10"~ ~)) .... 13
3IJ EXPANSION OF TO SO0(n1 + 1, n2; k) OR TO n2 + 1; k)

AND EXPANSION OF ISp( 11, k, 2(1 OV - 1)) TO Sp(n + 2, k) ....... I
41J THE GROUPS 2B’2) .............. 18
4h EXPANSION OF IUSp(2vi, 2v2) To USp(2v1 + 2, 2B’2) OR TO 2v2 + 2). 20



2 JOHN G. NAGEL

CONCLUSION..................... ~ 25

ACKNOWLEDGEMENTS .................. 25

REFERENCES ..................... 25

INTRODUCTION

Let us first recall the concept of an inhomogenization [7] of an n-dimen-
sional Lie group ~(~ ~ where the field k is either the real field R or the

complex field C. The group J~(~ ~ y) of transformations

of an ny-dimensional vector space U ny over the field ky = R or C is an inho-
mogenization of ~(n, k) relative to the representation y (irreducible or not)
of ~(n, k). ky is the field and ny the dimension of y. The convention of

summation over repeated indices is used here and throughout, unless
otherwise stated.

It is seen that

the semi-direct product of ~(n, k) by 5 (ny, ky), with Y (ny, ky)
the invariant subgroup. k) is the kernel of y and ~ denotes iso-

morphic to. ~(~ k), the usual « inhomogeneous ~(n, k) » for f(g(n, k)
a linear group, is a special case of an inhomogenization k) as we have

where yo is the defining representation of ~, k).
Let us now define the concept of expansion of a Lie algebra G. By

this one understands a process which roughly can be described as the one

of replacing some of the elements of G by new operators, which are certain
functions of the elements of G, and also adding further operators of this

form, such that the new set of operators close under commutation. The

new Lie algebra E(G) which is spanned by these operators is called an

expansion of G.
The expansion problem was first treated by Melvin [2] who expanded

the Poincare Lie algebra to the de Sitter Lie algebra. Later several
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other authors expanded various special cases of the inhomogeneous pseudo-
orthogonal Lie algebras ISO(ni, n2; R) (Refs. 3-13) and some authors
expanded the inhomogeneous pseudo-unitary Lie algebras IU(ni, n2)
(Refs. 8, 9, 12, 13). Sankaranarayanan [4] obtained the expansion of
ISO(n ; R) to SO(n, 1 ; R), Rosen and Roman [8] and Rosen [9]
of ISO(ni, n2; R) to SO(ni + 1, n2; R) or to SO(nl, n2 + 1; R) and
furthermore of IU(n1’ n2) to U(nl + 1, n2) or to U(nl, n2 + 1).
The expansion problem for the symplectic Lie algebras was solved

by Nagel and Shah [14]. They found that it is I Sp(n, k, 2(10’’~)) which
can be expanded to Sp(n + 2, k) in a similar way as the expansion of
ISO(ni, n2; k). The expansion of IUSp(2vi, 2v2) to USp(2vi + 2, 2v2) or
to USp(2vi, 2v2 + 2) was solved by Nagel [15].
The expansion problem for the general linear Lie algebras has so far

not been treated explicitly in the literature. It was conjectured by Rosen
and Roman [8] that IGL(n, k) could be expanded in a similar way as the
expansion of IU(ni, n2) . We show here that it is

which can be expanded in this way. The form of this expansion can be
found in a paper by Chakrabarti [13] who, however, there treats a different
problem, namely that of expansion of representations ofIU(n).
The method of expansion has been applied to various areas of physics.

In relativistic quantum mechanics it has been used to obtain a relativistic
position operator (Ref. 3). In connection with particle physics it has
been utilized to construct dynamical groups from symmetry groups
(Refs. 2, 5, 6, 7, 12). In representation theory this method has been applied
to obtain representations of the expanded Lie algebra from represen-
tations of the original Lie algebra. In particular it has been used to

expand representations of the homogeneous Galilei Lie algebra to repre-
sentations of the Lorentz Lie algebra and to expand representations of
the Poincare Lie algebra to representations of the de Sitter Lie algebra
(Ref. 11). It has also been utilized to obtain representations of non-
compact Lie algebras from representations of inhomogenizations of

compact Lie algebras (Refs. 10, 13).
We shall here in a systematic way by construction show that for the

Lie algebra Cl(n, k) of any real or complex n-dimensional classical Lie
group k) there exists a (not always irreducible) representation y of
Cl(n, k), such that the inhomogenization ICL(n, k, y) of Cl(n, k) relative
to y can be expanded to Cl(n + N, k) for a certain value of N. In each
case we also identify a linear Lie group ~((n + N)m, k), isomorphic to the
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corresponding inhomogenization y) of k), which under this
expansion globally is being expanded to a linear Lie group

for a certain value of m.

In sections 1-4 we treat the expansion problems for GL(n, k), for U(nl, n2),
for SOO(ni, n2; k) together with Sp(n, k), and for USp(2v1, 2v2). Corres-

ponding equations in the four sections have been given the same number.
In the conclusion we give a precise definition of expansion of a Lie algebra,
and furthermore give the interrelations between processes of expansion,
contraction and deformation.

THE GROUPS k, + 

Let us start with considering the inhomogenization [1]

of the n-dimensional general linear group [16] k), where [10" ~]
is the defining representation of k) and [0"’~ - 1] the represen-
tation contragradient to [10""~]. -i- denotes direct sum and 

,

N[10"’~] + 1]) is the group of all those transfor.

mations .

of a 2Nn-dimensional vector space

(1.1)
over k, where

the 2Nn-dimensional translation group. Here and @ denote transpo-
sition and tensor product, respectively. We have that
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The generators
(1. 3a)

of ~J~f(~ k) and the generators

(1. 3b)

of ff(2Nn, k) form a basis for the Lie algebra

over k of N[10"~] ] + N[0"’~ -1]). Here + denotes semi-

direct sum. The generators + N[0"~ - 1]) satisfy
the commutation relations

( 1. 4a)

( 1. 4b)

( 1. 4c)

( 1. 4d)

The second order Casimir operator of GL(n, k) is given by

In the defining representation [ 10" -1 ] of ~J~(~ k) we have

(1.5)

where + denotes hermitian conjugation.

lh. EXPANSION OF IGL(n, k, [10~’- i] + [0~~ ~ - 1])

Our aim is to see under which circumstances we can expand

to the Lie algebra of the linear group + N, k). Instead of consi-

dering the 2Nn-dimensional vector space (1.1) and the non-linear group
J~J~(~N[10~]+N[0~ -1]), let us therefore extend this vector

space to the (n + N)2-dimensional vector space
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over k and consider the group ~((~ + N)2, k) of all those linear transfor-
mations

of where

It is seen that

and therefore also has the Lie algebra given in equation ( 1. 4).
We shall now show that out of the generators of ~((~ + 1 )2, k) we can

construct certain new operators which obey the commutation relations
of GL(n + l, k).

Let us to this end define the operators

where { } denotes that the expression inside the bracket has been symme-
trized with respect to the position of the P ï" and relative to XJL v and
to Pi V (but not relative to one another as they commute) and then divided
by the number of terms. One easily verifies the following relation

( 1. 7)

noticing that the left hand side has one independent component only
in these cases.
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In terms of the above operators we define

where £ and 11 are free parameters. For these operators we obtain the

following commutation relations, having made use in particular of rela-
tion (1.7)

( 1. 8a)

( 1 . 8b)

(1.8c)
(1. 8d)

(1. 8e)

(1 . 8f)

(1.8g)

(1. 8h)

(1. 8i)
In order to remove the parameters  and Jl from the above commuta-

tion relations we finally define the operators

We then obtain the following commutation relations

which evidently are those of GL(n + l, k).
We have thus shown that, due to relation (1.7),

by this procedure can be expanded to GL(n + N, k) iff N = 1. This
expansion corresponds globally to the expansion of

to a linear Lie group + 1)2, k) ^-_’ ~~(n + 1, k).
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By analyzing the commutation relations (1.8) we find that when taking
the limit 0 GL(n + 1,~) contracts [17-19] to

where + denotes direct sum, i. e. GL(n + 1, k) is an expansion of

but a deformation [20-23] of

FIG. 1. - Expansion, contraction, and deformation diagram
for the general linear Lie algebras.

Here -vv)., -~, and - denote expansion, contraction and deformation, respectively.

20. THE GROUPS n2)

Let us start with giving a few well-known facts about the inhomogeneous
pseudo-unitary groups n2) is the real Lie group of

those complex transformations of an n-dimensional complex vector space Vn,
n = n1 + ~

where

the n-dimensional pseudo-unitary group [16], and where

We have that

and leaves invariant the pseudo-hermitian form
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where * denotes complex conjugation and where the metric of Vn
has the property

(2 . 2)

g~~ is defined by

and hence fulfils

The generators

(2.3a)

of n2) and the generators
(2. 3b)

of ~"(2~ R) form a basis for the real Lie algebra

of n2). The generators of n2) satisfy the well-known
commutation relations [8, 9]

(2 . 4a)
(2. 4b)
(2. 4c)
(2 . 4d)
(2. 4e)
(2.4f)
(2.4g)
(2. 4h)

The second order Casimir operator of U(n1’ n2) is given by

In the defining representation [10" ~] of ~) we have

(2 . 5a)
(2 . 5b)
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2h. EXPANSION OF IU(n1, n2) TO U(n1 + 1, n2)
OR TO U(n1’ n2 + 1 )

Our aim is to show that we can expand IU(n1, n2) to the Lie algebra of
the linear group + 1, n2) or of n2 + 1). Instead of consi-

dering the n-dimensional complex vector space V~ and the non-linear

group n2), let us therefore extend Vn to the (n + I)-dimensional
complex vector space

and consider the real Lie group ~(n + 1, R) of all those complex linear
transformations

It is seen that

and therefore also has the Lie algebra given in equation (2.4).
We shall now show that out of the generators of ~(n + 1, R) we can

construct certain new operators which obey the commutation relations
of U(nl + 1, n2) or of U(n1’ n2 + 1).
To this end we shall extend the metric of V~ to all of Un + 1 by the

following definitions

(2. 6)

We now note that U(ni, n2) and GL(n, R) are different real forms of
GL(n, C). Instead of solving our expansion problem from the beginning
again, we shall therefore derive the solution of it from the solution found
in section Ib for the expansion of IGL(n, R, + [0"~ ~ - l]) to

GL(n + 1, R). This can be done by utilizing that the basis (2.3) of

can be obtained from the basis (1. 3) of IGL(n, R, [10"-1] + [0"’’ -1])
by a formal complex transformation for which equation (2.5) follow
from equation (1.5). The transformation is given by
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where the indices i, j have been suppressed on Piv and P J/ as i, j = 1,
and where the metric guv of Vn and the metric y of Wi 1 have been used to
lower the greek and the suppressed latin index. The inverse transforma-
tion is

Let us now define the operators

where { } denotes that the expression inside the bracket has been symme-
trized with respect to the position of the Rv and SV relative to and

and to R~ and S" (but not relative to one another as they commute)
and then divided by the number of terms. In terms of above operators
we define

where £ is a free parameter. For these operators we obtain the following
commutation relations .

(2 . 8a)

(2 . 8b)

(2 . 8c)

(2. 8d)

(2 . 8e)

(2.8f)

(2 . 8g)
(2 . 8h)

(2 . 8i)

(2 . 8j)
(2. 8k)
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( 2 . 8 1)

(2.8~)

(2. 8n)

In order to remove the parameter À from the above commutation rela-
tions we finally define the operators

which then satisfy

where

These commutation relations are evidently those of U(nl + N1, n2 + N2)
where

We have thus shown that IU(n1, n2) can be expanded to U(nl + 1, n2)
or to U(nl’ n2 + 1). These expansions correspond globally to the expan-
sions of ~(n + 1, R) "-_’ n2) to a linear Lie group

Ol’ to

By analyzing the commutation relations (2. 8) we find that when taking
the limit h - 0 U(n1 + + N~) contracts [17-19] to

i. e. U(n1 + N1, n2 + N2) is an expansion of IU(nl, n2) but a deforma-
tion [20-23] of T(n) E) (U(n 1, n2) + U(I)) (see fig. 2).
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FIG. 2. - Expansion, contraction, and deformation diagram
for the pseudo-unitary Lie algebras.

3a. THE GROUPS n2; k; N(10‘’-1))

Let us start with introducing the following notation for the n-dimensional
isometric groups

with

Here k) is the connected subgroup of the full pseudo-ortho-
gonal group [16] O(ni, n2; k) (with of course n2; C) ~ C))
and !/p(n, k) is the symplectic group [16].

Let us now consider the inhomogenization [1] N(10V-1))
of n2 ; k) where ( 1 Ov-1 ) is the defining representation of

~~,(nl, t~2; n2; k; N(10V-1)) is the group of all those trans-
formations

of an Nn-dimensional vector space

(3.1)
over k, where

We have that

and leaves invariant the non-degenerate bilinear form
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where the metric gJJV of Vn has the property

(3.2)
is defined by

and hence fulfils

Using the metric to raise or lower the indices of the metric itself, the follow-
ing non-trivial relations hold true

The generators
(3 . 3a)

of n2 ; k) and the generators

(3 . 3b)

of k) form a basis for the Lie algebra

over k of n2; k; N(10"-1). The generators of n2; k; 

satisfy the commutation relations

(3 . 4a)

(3 . 4b)

(3 . 4c)

The second order Casimir operator of MI1(n1’ n2; k) is given by

In the defining representation (10~ ~) of n2 ; k) we have

(3 . 5a)

and hence from equation (3.3a)

(3 . 5b)
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3h. EXPANSION OF ISOO(n1’ n2; k) TO SO0(n1 + 1, n2; k)
OR TO n2 + I: k)

AND EXPANSION OF I Sp(n, k, 2(IOV-1)) TO Sp(n + 2, k)

Our aim is to see under which circumstances we can expand

to the Lie algebra of the linear group + Nt, n2 + N2 ; k), N1 + N2 = N. 
-

Instead of considering the Nn-dimensional vector space (3.1) and the
non-linear group let us therefore consider the

(n + N)-dimensional vector space

over k and the group %~(n + N, k) of all those linear transformations

It is seen that

and therefore also has the Lie algebra given in equation (3.4).
We shall now show that out of the generators of k) we

can construct certain new operators which obey the commutation rela-
tions of SOo(nl + 1, n2; k) or of SOO(ni, n2 + 1; k). We shall also show

that out of the generators of ff(2n, k) k) we can construct ope-
rators which span the Lie algebra Sp(n + 2, k).
To this end we shall extend the metric g IlV of Vn to all of Un+N by the

following definitions

(3 . 6)

Let us now define the operators

where

ANN. INST. POINCARE, A-XIII-1 2



16 JOHN G. NAGEL

and

where { } denotes that expression inside the bracket has been symme-
trized with respect to the position of the Pi" relative to and to Pi"
(but not relative to one another as they commute) and then divided by the

number of terms. One easily verifies the relation

(3.7)

noticing that the left hand side has one independent component only
in these cases.

In terms of the above operators we define

where À is a free parameter. For these operators we obtain the following

commutation relations having made use in particular of relation (3.7),

(3.8a)

(3.8b)
(3 . 8c)
(3 . 8d)
(3 . 8e)

In order to remove the parameter from the above commutation rela-

tions we finally define the operators
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which then satisfy

where

These commutation relations are evidently for 1] = 1 those of

where

and for 11 = - 1 those of Sp(n + 2, k).
W e have thus shown that by this procedure, due to relation (3. 7),

can be expanded to SO0(n1 + N1, n2 + N2; k) iff N = 1. These expan-
sions correspond globally to the expansions of  1 (n + 1, k) ^-_’ n2)
to a linear Lie group 

’

or to

We have also shown that by this procedure, again due to relation (3.7),
ISp(n, k, N(10v-1)) can be expanded to Sp(n + N, k) iff N = 2. This

expansion corresponds globally to the expansion of

to a linear Lie group + 2, k) ’--‘~ + 2, k).
We shall now analyze the commutation relations (3.8) when taking

the limit h - 0. For q = 1 we find that SOo(nl + N1, n2 + N2 ; k)
contracts [17-19] to ISOo(n1’ n2; k), i. e. SOo(nl + n2 + N2) is both
an expansion and a deformation [20-23] of ISOo(n1’ n2; k) (see fig. 3).

1 we find that Sp(n + 2, k) contracts to

i. e. Sp(n + 2, k) is an expansion of ISp(n, k, 2(l0v-1)) but a deformation
of IS p(n, k, 2(10~~)) B S p(2, k) (see fig. 4).
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FIG. 3. - Expansion, contraction, and deformation diagram
for the pseudo-orthogonal Lie algebras.

FIG. 4. - Expansion, contraction, and deformation diagram
for the symplectic Lie algebras.

4a. THE GROUPS 

Let us start with giving a few facts about the inhomogeneous pseudo-
unitary symplectic groups 2,,2) is the real
Lie group of those complex transformations

of a 2v-dimensional complex vector space

where
(4.1)

the 2v-dimensional pseudo-unitary symplectic group and where

Here n denotes intersection. We have that

and leaves invariant the non-degenerate anti-symmetric bilinear form

and the pseudo-hermitian form

when the metric G°‘~ of X2 has the property ~-

(4.2a)
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hence

and hence

The metric gP~ of V~ has the property

(4 . 2b)

The generators

(4.3a)

of 2v2) and the generators

(4 . 3b)
(4 . 3c)
(4 . 3 d)
(4 . 3 e)

of T(4v, R) 
’ ’

form a basis for the real Lie algebra

of 2v2). The generators of 2v2) satisfy the perhaps
not so well-known commutation relations

(4 . 4a)

(4 . 4b)

(4.4c)
(4 . 4d)

(4 . 4e)

(4 . 4f )

(4 . 4g)

(4 . 4h)
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Here and in the following the summation convention is also applied for
the latin indices even though these only appear in the upper position.
The second order Casimir operator of USp(2vi, 2v2) is given by

In the defining representation (10~ ~) of 2v~) we have

(4 . 5a)
(4. 5 b)

and hence from equation (4 . 3a)

(4. 5c)
(4 . 5d)

4b. EXPANSION OF IUSp(2v1, 2v2) TO USp(2v1 + 2, 2v2)
OR TO USp(2v~ 2v2 + 2)

O u r aim is to show that we can expand IUSp(2v i, 2v2) to the Lie algebra
of the linear group U P p(2v1 + 2, 2v2) or to 2v2 + 2). Instead

of considering the 2v-dimensional complex vector space (4 .1 ) and the
non-linear group 2v2), let us therefore extend V~ to

and consider the (2v + 2)-dimensional complex vector space

and the real Lie group ~(2v + 2, R) of all those complex linear transfor-
mations

of U 2 v + 2 where

It is seen that

and therefore also has the Lie algebra given in equation (4.4).
We shall now show that out of the generators of ~(2v + 2, R) we can

construct certain new operators which obey the commutation relations
of USp(2v1 + 2, 2v2) or of USp(2V1’ 2v2 + 2).
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To this end we shall extend the metric gpa of V~ to all of Us + 1 by the
following definitions

(4 . 6)

We now note that USp(2vi, 2v2) and Sp(2v, R) are different real forms
of Sp(2v, C). Instead of solving our expansion problem from the beginn-
ing again, we shall therefore derive the solution of it from the solution
found in section 3b for the expansion of ISp(n, R, 2(10~)) to Sp(2v +.2, R).
This can be done by utilizing that the basis (4. 3) of

~ 

can be obtained from the basis (3 . 3) of I Sp(n, R, 2(10~)) by a formal
complex transformation for which equation (4 . 5) follow from equation (3 . 5).

In order to establish this transformation we first have to make the

following change of notation for the Lie algebra ISp(2v, R) from that
of section 3a

i. e.

where G«~, gp6 and y are given by equations (4.2) and (4.6).
The transformation is then given by
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and the inverse transformation is

or

no sum over a,

no sum over {3,

Let us now define the operators

where

and
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where { } denotes that the expression inside the bracket has been symme-
trized with respect to the position of the Q" and QrlT relative to and

NPQ and to Q~ and Q~ (but not relative to one another as they commute)
and then divided by the number of terms.

In terms of the above operators we define

where }" is a free parameter. For these operators we obtain the following
commutation relations

(4.8a)

(4. 8b)

(4.8c)
(4 . 8d)

(4 . 8e)

(4.8f) &#x3E;

(4.8g)
(4 . 8 h)

(4. 8i)

(4. 8 j)

(4. 8 k)

(4 . 8 1)
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(4 . 8m)
(4.8n)
(4 . 80)

In order to remove the parameter À from the above commutation rela-
tions we finally define the operators

which then satisfy

where

These commutation relations are evidently those of USp(2v1 + 2v1, 2v2 + 2v’2)
where

We have thus shown that 2v2) can be expanded to USp(2v1 +2, 2v2)
or to USp(2v l’ 2v2 + 2). These expansions correspond globally to the

expansions of ~(2v + 2, R) &#x26;t 2v2) to a linear Lie group

or to

By analyzing the commutation relations (4. 8) we find that when taking
the limit 03BB ~ 0 USp(2v1 + 2v2 + 2v’2) contracts [17-19] to

i. e. USp(2v1 + 2v;, 2v2 + 2v’2) is an expansion of IUSp(2v1, 2v2) but a
deformation [20-23] of IUSp(2vi, 2v2) Q USp(2) (see fig. 5).
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FIG. 5. - Expansion, contraction, and deformation diagramfor the pseudo-unitary symplectic Lie algebras.

CONCLUSION

As a conclusion of our development of expansion of inhomogenizations
of the classical Lie algebras we shall give the following general remarks.

1 ) An expansion E(G) of a Lie algebra G is a Lie algebra, the elements
of which are elements of an algebraic extension of the quotient division
algebra [24-27] of the enveloping algebra of G.

2) Expansion is not in general the inverse process of contraction [17-19]
in contrary to what implicity has been assumed in some of the literature.
If one first expands a Lie algebra G to a Lie algebra E(G) and afterwards
contracts E(G), then the contracted Lie algebra G’ = C(E(G)) is in general
of higher dimension than G, but such that G’.

3) The true inverse process of contraction is deformation [20-23]. The
relation of expansion to deformation is the following one. For an expan-
sion E(G) of a Lie algebra G there exists a Lie algebra G’ ~ G and a defor-
mation D(G’) of G’ such that D(G’).
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