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Combinatorial approach
to Baker-Campbell-Hausdorff exponents

Bogdan MIELNIK (*) and Jerzy PLEBANSKI (*)

Ann. Inst. Henri Poincare,

Vol. XII, n° 3, 1970,

Section A :

Physique théorique.

ABSTRACT. - A survey of problems related to the Baker-Campbell-
Hausdorff formula is given. The technique of effective « addition » of
non-commuting exponents is outlined. The first part of the paper reviews
the theory of the discrete BCH formula including its most recent develop-
ments. The second part presents a new effective approach to the conti-
nuous BCH-formula and yields a general algorithm for an arbitrary
analytic function of the quantum theoretical evolution operator. The
results are expressed in terms of new natural ordering operators contain-
ing the chronological and normal orderings as special cases.

1. INTRODUCTION

As is well known, the relation exe’’ = does not hold for non-com-

muting quantities. If x and y are elements of an associative but non-

commutative algebra, then e"e’’ = where the exponent x # y is

given by an infinite Baker-Campbell-Hausdorff series of multiple commu-
tators with the rational coefficients:

This series was first studied by Campbell [7], Baker [2] and Hausdorff [3]
who found an iterative method of computing y term by term, and it

(*) Institute of Theoretical Physics, Warsaw University. Warsaw, Hoza 69, Poland.
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was further investigated by many authors (see, e. g., [4], [6], [7], [8], [9] and
the literature cited there). The advent of quantum theories has stimulated
an interest in the continuous analog of (1.1). Given the « evolution

d .

equation » - E(t, to) = H(t)E(t, to) with initial condition E(to, to) = 1,

determining an operator valued function E(t, to), the solution is conven-
tionally written as the formal exponential series under the sign of the
chronological ordering operator:

The same solution, however, can be represented as the genuine expo-
nential function, E(t, to) = exp Q(t, to), where the exponent Q(t, to) can be
obtained from the following prescription of Schwinger: one divides the
interval [to, t] into n sub-intervals

where

and constructs an approximant to E(t, to) :

This with the help of (I . I) can be written as :

In agreement with Schwinger’s prescription, E(t, to) is the limit of (1.4)
for n - oo. This indicates that Q(t, to) is the limit of

The last expression has structure similar to that of an integral sum; thus,
Q(t, to) can be interpreted as the result of an « integration » in the sense
of the non-abelian operation # ; symbolically

(*) The composition x # y is associative, so that one does not need any parentheses
in the exponent.
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This representation elucidates why Q(t, to) is called the « continuous

BCH exponent ». An interesting study of ( 1. 5) has been published by
W. Magnus [6], who seeks Q(t, to) in the form of an infinite series of multiple
commutators :

and provides a recursive method for evaluation of the series ( 1. 6) term by
term.

Formulae (1.1) and (1. 6) are of great interest for mathematical « techno-
. logy » of quantum theories. However, up to now, they have found only

limited applications. One of reasons appears to be of technical nature.

Although the BCH formulae (1.1) and (1.6) have been known for some
. time and could be evaluated term by term, no explicit expression for the
n-th term of (1.1) and (1.6) has been available. The traditional iterative

methods when applied to computing higher terms of (1.1) and (1.6) led
to a mess of multiple commutators, so that even the possibility of using
computers has been mentioned. This, of course, restricted the area of
practical applications to the first few terms of the iterative solutions.

However, since the time of Hausdorff, the « art of exponentiation » has
considerably progressed. The aim of the present paper is to give a survey
of the algebraic methods which make the BCH formulae practically mana-
geable. In part I we present the three principal sources of information
about the classical « discrete » BCH formula: 1) the differential algorithm;
2) Dynkin’s explicit expression, and 3) functional equations. In part II

we outline recent results concerning the continuous BCH-exponent
(briefly reported in paper by I. Bialynicki-Birula and the present
authors [10]) including some number-theoretical aspects. We then

interpret the results derived in terms of new natural ordering operations;
some basic facts concerning the algebra spanned by these operations are
established. In our review we concentrate on combinatorial problems,
leaving the topological questions open. The validity of our limiting
transitions is assured only in a very weak topology of the free algebra;
the convergence of our formul ae in stronger topologies and their validity
in quotient algebras is to be separately investigated. For clarity, we
decided to emphasize intuitive ideas rather than strictly formal construc-
tions. Comments of more formal nature are printed small type or shifted
to footnotes.

Although our principal aim is to present the general theory, the form of
our review is dictated by applications. These can be found in many
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areas of mathematics and mathematical physics as, for example, statistical

physics (Liouville, Bloch, Boltzmann and master equations), Lie group
theory (the effective construction of group elements from generators),
and all problems which can be reduced to systems of linear, ordinary
differential equations whith variable coefficients. Some particularly
important applications can be expected in quantum field theory (in the
theory of S-matrix). The most immediate consequences of the conti-

nuous BCH formula for non-relativistic quantum mechanics which have

already been explored in lead to an explicit expression for phase
shifts in any order of the perturbation theory. An excellent review of

various applications of the BCH-formula in physical theories is contained
in Wilcox [9] ; we hope that many problems discussed there can be advan-
tageously approached by the use of the new techniques presented below.

I. - CLASSICAL BCH-FORMULA

2. Differential identities

According to the Friedrichs criterion [5] the BCH exponent x # y
in ( 1.1 ) is a Lie element, i. e., a linear combination of x, y and their multiple
commutators. More detailed information concerning the structure of

y is traditionally derived from differential identities. In order to

establish them some simple combinatorial concepts are needed.

Multiple commutators. Let X be a finite set of symbols x~ called « opera-
tor variables » and C be the complex field. We construct the free algebra d
as the set of all formal power series a of the form

equipped with the obvious definitions of addition and multiplication of
the series. Any number zeC is identified with + ... Ed.

In particular, the number 1 is the unity of d, and each operator variable
xeX is identified with 0 + lx+0+ ... E ~. The natural topology
in d is the weakest topology in which all mappings

are continuous. (In this topology our infinite summation and contour
integration formulae are convergent). For any pair a, bEd the commu-
tator symbol [a, b] denotes ab - ba. A series a is called a Lie element
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if it is constructed out of the symbols xi by addition, multiplication by
numbers and commutation. We shall now introduce a generalized
commutation operation { } assigning to each a E d a Lie element ~ a ~
defined by:

Of x ~ - 0, for xeX, and n &#x3E; 1. In
~ times

what follows it is also convenient to use a more general multiple commuta-
tion operation {, } : A  A ~ A defined (for any b ~ A) by

The obvious relations between the operation { } and { , } are:

Multiple commutators of the particular form

n times
are of special importance. If

is a formal power series in x E X, then according to our definitions:

New, one easily sees that if elx == ’ iy E C) thenY / j n ! 
( )

n=0

The proof of (2 . 6) follows by noticing that
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and by developing the left hand member of (2.6) into the formal Taylor
series around /. = 0. On the other hand, direct series multiplication
yields

This leads to the useful identity

Generalized commutation formul0153. Expressions of the form { f(x), a )
with dE a, f(x) = fo + flx + f2x2 + ..., (x~X, fk~C) can be conve-

niently represented with the use of the multi-commutation operation { , }.
Consider first the special case

We shall show that:

where l/(z - 1 is the abbreviation for the corresponding formal
power series in x. Indeed:

proving (2 . 8 a). The proof of (2. 8 b) is parallel to (2 . 9).
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The formulae (2. 8 a-b) are convenient as starting points in the proof
of more general identities. Indeed, let I(z) = fo + fiz + f2Z2 + ...

be an analytic function (at z = 0) and let f~~~(z) = 20142014/(z). Then the
dzn

corresponding formal power series j(x) of the operator variable x E X
can be represented as a contour integral over a contour around z = 0 (*)

and similarly f ~n~(x) can be represented in the form

Both integrals are convergent in the natural topology of the free alge-
1

bra d. We can now multiply both sides of (2 . 8 a-b) by 2014 /(z) and carry
2?n

out the contour integration around z = 0. Beacuse of (2.10-11) this

leads to

Of course, (2.12 a-b) can be equivalently rewritten as

The formulae (2.13 a-b) generalize the known relation [p, f (q)] = - ihf’(q)
which holds for the quantum mechanical operators of momentum and

(*) Such a representation is possible because each generator x of the free algebra d
belongs to the radical of d and henceforth has the « spectrum » concentrated at z = 0.
However, in the case of any concrete operator realization of x, the contours in (2.10-11)
must be selected so that they contain the whole spectrum of the operator x. The same

remark concerns our further integral formulae.
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position. Further on, we shall use (2.12 a-b) to develope a technique of
differentiation which plays an essential role in the theory ofBCH exponents.

Polarization derivatives. Let x E X be an arbitrary free variable and
let y E A. Following Hausdorff we introduce the polarization deriva-

a
tive y : ~ -+ ~, defined as follows:

ax

1 Y a is a derivation of the algebra A, i. e.

2) it acts on the generators xi, ..., x~ = x, ... of sf according to

3) is continuous in the natural topology of A.

Of course, conditions I) and 2) determine uniquely the action of 
a

Of course, conditions 1) and 2) determine uniquely the action of ax
on any polynomial in the variables xl, x2, .... Condition 3) means

only that each infinite series of the form (2.1) has to be differentiated term
a

by term. Conditions 1), 2) and 3) determine y - 
as an algebraic opera-

tion. An alternative definition, which uses a limiting transition, is also

possible. In fact, one easily sees that for an arbitrary series

one has

Thus the concept of the polarization derivative is similar to that of the
directional derivative. In what follows we shall determine the action

of on the formal power series f(x) = fo + flx + f2x2 + ... in a
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single variable x. For this purpose we shall first find ~ 2014 l/(z 2014 x),
zeC. Because 

hence:

and from (2. 8 a-b)

1
Because of (2 .10-11) these relations multiplied by 203C0i j(z) and inte-

grated around the contour containing z = 0 lead to the identities (*.) :

Now, (2 . 20) specialized to f (x) = ~ yields :

The formula admits a convenient integral representation (see [9]) :

The parametric derivatives and differential algorithm. The calculus of
polarization derivatives leads to simple rules of differentiation of functions,
which depend on operators containing a parameter. Let F(/L) be a diffe-

(*) On the level of the free algebra .91, (2. 19) and (2. 20) are equivalent. In some specia-
lizations of j3/ to specific algebras one of them may be more convenient than the other.
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rentiable operator function of À. E R and let f (F) = fo + fiF + f2F2 + ...,
he E C, be a formal power series in the variable F. We shall assume

that /(F(/.)) is a differentiable function of 03BB and that - /(F(x)) can be
computed by term by term differentiation of the series. In that case, the

d d
structure of 

- f(F(À) 
can be described by notocing that - 

acts on the

series in F as the polarization derivative F - F = 2014): :
3F B ~A/

This formula is the generalization of the theorem about the differentia-
tion of composite functions to the domain of the operator valued functions.
A particular case is :

The last identity is the traditional source of the differential algorithms
for the BCH exponent x # y. In order to investigate the dependence of
this exponent on x set F(/L) = (~,x) # y, i. e., eF~~~ = Then from (2.24)

Therefore by the second of the general rules (2 . 4) :

But this means that 2014 when acting on any power series of our parti-
cular F = (03BBx) =H= y can be replaced x } ~ ~F. It follows by
induction that : 

-
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Specialising (2.27) for ).. = 0 we must refer all operations on the right
hand side to F = y, so that :

No effective knowledge of the structure of F(~.) = (À-x) # y is needed
to calculate this expression. Inversely, once given the derivatives (2.28)
we can easily reconstruct y) by applying the Taylor development :

In particular

By a parallel argument (working with F(~,) = x # Ày) one obtains:

The formulae (2 . 30-31 ) known as the Campbell-Hausdorff series provide
the decompositions of x # y in powers of x and yrespectively (*).

(*) ~t is to be mentioned, however, that the use of the BCH series (2.30) for concrete
algebras is somewhat ineffective: one has first to execute all subsequent polarization
derivatives in (2.30) and only ofterwards can one substitute some specific operators for x
and y. The computation of the polarization derivatives of any order can be simplified
by the identity: 

-

which ammounts to:

The last identity can be demonstrated by using the integral representation

and (2.22). However, even with the knowledge of (2.32) the formulas (2.30-31) are still
not completely effective.
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By executing the operations on the right hand side of (2. 30) (or (2 . 31 ))
and by decomposing the resulting terms into orders of y (or x) we can also
obtain the development of x # y into the homogeneous Lie elements of
various orders in x and y. However, as far as this double decomposition
is concerned the most explicit solution was obtained by Dynkin [4].

3. Dynkin’s explicit expression

Dynkin’s method of determining the explicit form of x # y starts from
direct multiplication of the series which results in :

so that

This expression, although explicit, is not yet satisfactory. As known

from the Friedrichs criterion, x # y is a Lie element, i. e., a linear combi-

nation of the multiple commutators of x and y. However, the multiple
commutator structure is not evident in (3.2). The main problem of
the BCH exponent consists precisely in expressing x # y as a series of the
multiple commutators. This problem has been radically simplified
by the combinatorial lemmas of Dynkin, which we quote below in a further
simplified and generalized form:

LEMMA 1. - Let A be a free algebra generated by a set X. If a E d is

a Lie element, then for every bEd:

Proof : (3 . 3) holds if a E X, because from the definition { x~, b } = b].
Suppose that (3 . 3) holds for two Lie elements ai, a2 Ed. Then it must

hold for a = [ai, a2]. Indeed:

Thus, the lemma holds for any Lie element a E s~.
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LEMMA 2. - If a Lie element is an homogeneous n-th order

polynomial in the generators of the algebra, = nan. In par-

ticular { { xk1 ... ... xkn }.

Proof - The assertion holds for n = 1, since { xk ~ - xk for any gene-
rator Xk E X. Suppose that the lemma holds for two Lie elements an
and am, of the orders n and m respectively. We shall show that then it

holds for an+m = [aft’ am], Indeed:

Hence, our lemma holds for every integer n.
This lemma suggests the construction of the following operator D which

projects the algebra d onto the subset of its Lie elements :

(a being given by (2.1)). With its help lemma 2 can be equivalently
expressed by either of the two statements :

Now, Dynkin’s method of finding x # y reduces to the following remark :
it is already known that x is a Lie element, so that D(x # y) = x # y.
Thus applying D to both sides of (3 . 2) one obtains :

which represents the sought for expression of x # y in terms of multiple
commutators. The calculation of the few first terms yields :

in agreement with results obtained by other methods.
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Dynkin’s solution (3 . 5) has a distinguished role in the literature: it

exhibits the regular structure of the n-th term of x # y and, moreover,
is more directly applicable at the level of specific algebras than the original
BCH-formula (2. 30). It ought to be noticed, however, that solution (3 . 5)
cannot eliminate the other approaches to the BCH-formula but rather
completes them. In fact, expression (3. 5), although explicit, is still some-
what overcharged. In order to find the third order term of x # y which

is - x2 + 1 2x one has first to write down 8 multiple commu-
tators and then to make cancellations using elementary identites like

{ xyx } = 2014 { x2y ~. In higher orders this combinatorial task increases,
making the deduction of the final output of (3.5) troublesome. Thus,
the problem of finding more economical expressions is open. It is also

possible that in certain cases some other methods such as differential

algorithms can lead more directly to closed form results (*).

4. General properties

The methods reviewed in § 2 and 3 determine the « perturbative expan-
sions » of Q(x, y) = x ~ y. It is also worth while to mention some general
regularities of x # y which follow from the defining equation

The most obvious of them are :

These basic properties of the composition # permit us to prove some
_ secondary ones. Thus, for example, combining (4.1 c) with y = 0 and
(4.1 a) and making use of (4.1 b) one shows that

Having established (4.2) and using (4.1 a-b), one easily proves the
implication :

(*) In § 11 we apply the solution of the continuous BCH problem to obtain the integral
representation ( 11 . 12) of (3 . 5) which in some cases may be convenient.



229COMBINATORIAL APPROACH TO BAKER-CAMPBELL-HAUSDORFF EXPONENTS

From this rule and associatitivity (4 .1 b) one easily infers that :

Finally, setting in (4.1 c) y -~ x and using associatitivity one
finds y)ex - Q( y, x). Similarly eYQ(x, = Q( y, x). By com-
bining these identities with (4 . 4) one obtains :

Now, it is worth while to decompose Q into « even » and « odd » parts :

and

Because of (4 . 4) we have:

By splitting (5 . 5 a-b) into even and odd parts one easily obtains :

This result can be equivalently represented as :

Equation (4.8 a) shows that Q- determines Q+ uniquely, while (4. 8 b)
is a sort of consistency condition restricting the possible structure of Q-.
Given x and y, the conditions (4. 8 a-b) contain relevant information about
the structure of Q = Q+ + Q-. In fact, in some cases these conditions
plus the associativity property of the composition operation # permit
us to deduce the closed form of Q(x, y). Thus, e. g., if I = (Ii, 1~ 13)
are the generators of the group 0 + (3), i. e., IJ = i E and
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(x and y are real vectors) then using (4.8 a-b) and the associativity law (4.1 b)
one easily shows that

where

with X n y denoting the vector product (see also [8]).

II. - CONTINUOUS FORMULA

5. Preliminaries. The traditional approach

As has already been mentioned in the introduction, the problem of the
continuous BCH formula arises in the study of the « evolution opera-
tor » E(t, r) depending on real parameters t and r and defined be either of
the conditions:

The equivalence of (5 .1 a-b) is due to their common origin : for differen-
tiable E(t, 1) (5.1 a-b) imply and are implied by the functional equations :

Indeed, assuming that the conventional differentiation rules apply
to the operator-valued function E(t, T) and differentiating (5 . 2 a) with
respect to s one obtains:

Because (5 . 2 a-b) implies E(s, t) E(t, s) = 1, this is equivalent to
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The left hand member of this equations is independent of r while the right
hand member is independent of t. Thus, each member represents an

operator function depedning on s only. Denoting this function by H(s)
one obtains (5.1 a) and (5.1 b). The proof that either of (5.1 a-b)implies
(5.2 a-b) is equally simple.
The known solution of either of (5.1 a-b) in terms of H(t) is obtained

by the transition to the corresponding integral equation and then the
application of the iterative procedure. This yields:

where 0~ ~ = t), 0 being the step function :

and the symbols T and T stand for the operators of chronological and the
anti-chronological orderings respectively.

The problem of the convergence of the series (5.3) is for some operator realisations
of H(t) nontrivial. We do not intend to enter into this problem here, restricting ourselves
to the purely algebraic investigation of E(t, to). This can be formally achieved in two
ways: 1) we can assume that the symbols H(t) are certain parameter-dependent elements
of a free algebra j2/ of the form H(t) = Ci(t)xi + + ... where are complex
valued functions of the real variable t and xi are the generators of j~. Within this assump-
tion, our formulae will be convergent in the natural topology of .91. 2) We can also interpret
the symbols H(t) as generating a « continuous analog » of the free algebra. By this we
understand the set of all symbolic series A, B, ... of the form:

where An are the complex valued n variable distributions (Ao e C is a number). For any

ANN. INST. POINCARE, A-XII-3 17
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two symbolic series A, B E d[to,t] the linear combination aA + PB(rx, p E C) is defined by
(xA + PB)n = xAn + while the product AB is defined by

Since the sets of n-variable distributions are topological spaces, the natural topology
can be defined in as the weakest topology in which all mappings A - An are conti-
nuous. The resulting topological algebra is an extended version of the Borchers

algebra. It can be noticed that for [t, r] c [t’, T’] the algebra d[t,t] admitts a natural
embedding.in This fact makes it possible to attribute a definite sense to the pro-
cesses of differentiation of the series (5.3) with respect to t or to and to the equations like
(5.1) or (5.2). In what follows, our considerations refer to the algebra although
all our results can be reinterpreted immediately in the spirit of the first possibility.

The problem of representing the solution (5 . 3) as a genuine exponential
function, E(t, to) = traditionally approached according to the
following method [6] [8] [9]. One substitutes E into (5.1 a) and
one uses (2.24). This leads to the relation

Therefore, because the second of (2.4),

and so :

where the Bn, defined by

are Bernoulli numbers (Bo = 1, Bi 1 = - 1/2, B2 = 1/6, ... ). Of course

E(to, to) = 1 suggests an initial condition for Q: Q(to, to) = 0. Thus (5.5)
can be replaced by the integral equation :
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which is the starting point of the following algorithm: one seeks Q as a
formal series composed of terms of various orders in H,

Then by comparing terms of the same order on both sides of (5.6) one
successively obtains

This procedure suffices in principle to determine Q up to any desired
order. However, because of the increasing combinatorial difficulties in
higher orders it is still inadequate to find a general structure for Q. Until

n

very recent times it was even doubtful whether any compact explicit expres-
sion for Q could be given. The existence of such an expression was

n

demonstrated and its explicit form was found in [10] through the applica-
tion of a straightforward method similar to Dynkin’s technique of evaluat-
ing the discrete BCH exponent.

6. New method (Heuristics)

We shall first outline the new method in its most primitive version;
a more complete formalism will be developed subsequently. Following
Dynkin we start from the power series expansion of the logarithm yielding :

where for t &#x3E; to :

(*) Q 3 in this form is given in [9] where the calculation is carried out as far as 5~2.
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The main difficulty in determining Q is in evaluating the powers of the
infinite series T and then in grouping the resulting terms in (6 .1 ) according
to the orders of H. This task can be simplified by means of the following
techniques which covers the case of 03B8 in (6.2) being an arbitrary function
instead of the step function. Let us represent T2 as:

Comparing (6.3) with (6.2) we notice that all terms for T2 can be obtained
out of the terms for T by dropping out some 0~ as. The needed operation
of « dropping out 0~ as » possesses the formal properties of differentia-
tion. This fact can be described by introducing a symbolic opera-

_ 
d 

tion - which acts on formal series A, B, ... constructed from H’s and 0’
d9

according to the following rules:

d
With the help of - 

the structure of (6 . 3) is described by:

It follows by induction that

(*) This formula, in facts, is not so strange: by examining the structure of the series (6.2)
one notice that T is a particular realization of the symbolic series

d 
, 

d
The - operation corresponds to the polarization derivative I - and hence, (6.4) is a

dfl dJ

special realization of (2.25).
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Consequently, (6.1) becomes

Now by writing down T as

and by introducing the operator !)/( 2014 2014) under the sum

and integrals one obtains: ~ ~~~

where

Since we can neglect here all terms with for m &#x3E; n, the kernels Ln
can be explicitly -computed ; e. g.,

By setting 8 in (2.5) to be the step function we obtain the required series
for Q ordered according to the « powers » of H. Due to the Friedrichs

criterion Q must be a Lie element. Hence, DQ = Q, and by applying
Dynkin’s operator D to (6.8) we can express Q through multiple commu-
tators of H’s. This is, in essence, the new method in its most primitive
version.

Although (6. 9) allows one to evaluate the kernels Ln, it still involves some
combinatorial task of executing multiple differentiations. In order to

obtain a simpler technique of determining Lns through complex contour
integrals we shall reformulate our method by using the concept of the
resolvent operator.



236 BOGDAN MIELNIK AND JERZY PLEBANSKI

7. Method of the resolvent operator

The symbolic method outlined above can be generalized by the use of
the resolvent operator R(t, to ; ~~) E E C) defined by :

where = G(tk - tl), G(t) = t/I We shall show that from the combi-

natorial point of view this operator provides the most economical repre-
sentation for an arbitrary formal power series f (t) = f (E - 1). An

immediate analog of (6 . 4) is the differential equation :

which determines the dependence of R on À. + 1) = 8(t)
therefore, for t &#x3E; to (*) : 

2

’ 

C C 1
Thus, R(03BB) has the form R(/L) = 2014201420142014, , 

where R(l) == 201420142014 = - 
T

and C == R(l) = 2014-20142014 == 201420142014. Therefore
1 E + 1

1 1
(*) Also for t  to, = - 2 (E - 1).
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This formula already allows one to find the analytic functions of T
through the corresponding contour integrals of R(/.).

Before this will be done it is worthwhile to list same useful properties of the resolvent
operator. Since T = E - 1, (7 . 4) is equivalent to:

and since E where Q is the BCH exponent, (7. 5) leads to

Each of these relations implies that R(A) satisfies the Hilbert finite difference equation:

which in the limit ~. -)- p leads back to (7.2). The distinguished values of i are i~ = 1, 0,
- 1 where

Note that because of the general representation (7.1) formula (7.8 b) yields immediately
the Schwinger’s representation for the Cayley operator C, while (7. 8 c) ammounts to the
« antichronological » representation of E - l(t, to) = E(to, t). To close the review of the

properties of R we quote the differential equations:

which follow easily from (7 . 5) and (5 . a-b). With). = 0, (7. 9 a) reduces to

which have been traditionally used to derive the Schwinger’s algorithm for the Cayley
operator.

We now return to the problem of evaluating an arbitrary series
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in the operator T = E - 1. We first note that from (7.4)

It follows that :

Therefore, by using (7 .1 ) for t &#x3E; to one obtains :

where

This formula represents the sought for generalization of (6. 9). Because 0

is the step function, (7.13) can be represented more conveniently. Indeed,

each of the factors 1 + 1 equals either 1 or 1 + 1 . The number
’ 

z z z

1
of the factors equal to 1 + - is obviously:

z

while the remaining n - 1 - C n factors are equal to - . Therefore
z



239COMBINATORIAL APPROACH TO BAKER-CAMPBELL-HAUSDORFF EXPONENTS

depends on t’s only through en. The formulae (7.12) and (7.15) provide
the basic « perturbative » expansion of an arbitrary series f(T) = f (E -1) (*).

The structure of Kernels. According to (7.14) and (7.15) the kernel
..., ti) is a step function of n variables constant in each of the n !

sectors defined by inequalities of the type &#x3E; ... i2, ... , in
being a permutation of 1, 2, ..., n) : e. g., tn &#x3E; tn-1 1 &#x3E; ... 1 is the

chronological sector, t 1 &#x3E; t2 &#x3E; ... &#x3E; tn is the anti-chronological sector.

Moreover, the value of Fn must be the same for all sectors characterised
by the same number e = 8(tn - +... + 8(t2 - ti) which will

be called the chronological type of the sector. Of course, for each fixed n,
the chronological types of the sectors in the n-dimensional space of the
variables t2, ..., tn can vary between 0 and n - 1: the maximal value
O - n - 1 characterises the chronological sector, while the minimal

value 0=0 characterises the anti-chronological sector. The number

of the sectors of the other chronological types (0  O  n - 1 ) can be
found by an elementary combinatorial argument. However, we shall

show in § 8 that the complete information about these numbers is already
contained in the analytic formulae (7.12)-(7.15). Summing up: all the

kernels Fn have a common feature : each is a step function constant on the
area of all sectors with fixed chronological type; the actual value of this
constant is given explicitly by the integral (7.15).

Examples: By specializing to f(z) = (1 + z)" - 1 + + (2)z2 + ...,
where a E C, we obtain the integral representation (7.12) for E" = (1 + T)"
with the kernels:

The integral representation of the continuous BCH exponent Q = In E
is obtained by taking f (z) = In (1 + z); the corresponding kernels are:

(*) Similar formulae can be obtained from the second line of (7.1) when t  to.
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The resulting explicit representation is :

The last formula can be also derived more directly. Indeed, (7.6)
implies that :

which leads to

coinciding with (7.17).
Now, because Q is a Lie element, Q = DQ where D is the Dynkin opera-

tion (3.4) and therefore Q can be represented as a linear combination of
the multiple commutators:

The result (7.20) is the continuous conterpart of Dynkin’s classical

expression (3.5). It can be remarked, however, tha~ the scope of our new
method is wider than just the applications to the continuous BCH expo-
nent problem: indeed, within this method we are in possession of the
algorithm for f (E - 1) while the problem of BCH exponent concerns
only the specific series In[I + (E - 1)].

8. Numbers 

The numbers of sectors of given chronological type accounts for certain
common structural properties of all functions f (E - 1 ). Since:

the number of sectors type e = k in n-dimensional space is the same as

the number of sectors with 0 = 1 = n - 1 - k; the common value of
these numbers will be denoted by N(k, 1). (Thus, N(k, 1) stands either



241COMBINATORIAL APPROACH TO BAKER-CAMPBELL-HAUSDORFF EXPONENTS

for the number of sectors of type e = k or for the number of sectors of

type e = l in the space of dimension n = k + 1 + 1). Obviously:

Since the total number of sectors in the n-dimensional space is n !, the

following identity holds :

The numbers N(k, I) could be in principle determined by combinatorial
considerations. However, complete information concerning them is

already contained in formulae (7.12) and (7.15).
Indeed, specialise (7.12) for H = constant = number. Then the inte-

gration can be carried out, and leads to

where’ is an indetermined variable introduced in the place of H(t - to).
Since /(z) is arbitrary, this identity is sufficient to determine the numbers

z

N(k, 1). Taking /(z) = 2 +( 1 - ~, ) Z and’ = 2w, 
where ~, and ware

complex variables, we reduce (8 . 4) to :

By introducing the new complex variables u = w(~ 2014 1 ), v = w().. + 1 )
one arrives at the following identity which means that the N(k, 1)’ s possess
a simple generating function:
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Now, the partial differential equation:

implies the recurrence rule:

which permits one to construct N(k, I)’ s successively in the form of a triangle
where each row is determined by the previous rows according to (8.8)

The generating function (4.43) leads also to an explicit expression for
N(k, 1) :

which is an analytic function of n = k + I + 1. This result illustrates

how our solution of the continuous BCH problem can induce the solu-
tions of some other, apparently unrelated combinatorial problems.

It is of some interest to notice that the numbers N(k, I) induce the polynomials:

which are closely related with the structure of the resolvent operator. In fact, from (8.5)
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Therefore, according to (7 . 6) the polynomials ~,~ provide a development of R(i.) in
powers of the BCH exponent S2:

m

The polynomials 9n can be evaluated easily from an expression similar to the Rodriguez
formula. In fact, the partial differential equation

leads to the recurrence relation

1
which, since f!JJ o{À.) = 2 , yields

An equivalent representation is:

whence the n roots of ~n{~,) = 0 are all contained in the real interval - 1 K A K 1 and are

symmetrically distributed with respect to À = 0.
The polynomials ~n(~.j as given by (8.16) contain all information concerning the num-

bers N(k, I) (e. g., (8.16) =&#x3E; (8.8)). In particular, a relation among the N’s and the Ber-
noulli numbers Bn can be obtained by setting ~, = 0 in (8.12) and using the well known

development th v/2 = 2 (22k - 1) B2k v2k-1. By comparing the terms of the sameZ~ (2k) !
k= i

order in w on both sides of (8.12) one obtains:

(8.17 a) B, =

1 
,

Specializing (8.4) to f (z) = - In (1 + z) and using (7.17) with n - n + 1 one also

finds that for n &#x3E; 1 :

(*) This formula contains the numbers N(k, I) with alternating signs. If one wishes
to determine effectively Bis through N(k, I)’s derivable from the triangle (8.9) the for-
mulae (8.17) are more economical.
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A more general relation involving N’s and B~ can be obtained by executing the integrals
rJ-i i ~/.(~ - 1)~(/.)~J/.). Because of (8.16) and (8.12) the integration by parts leads

to the following « normalization condition »:

which contains (8.17) as a particular case.
The close realtionship among N’s and B~s explains the following problem : it can appear

strange that the numbers B~ so essential in the traditional algorithm (5.6) do not intervene
in our explicit solution (7 . 18). It now becomes clear that the Bis enter (7 . 18) in the disguise
of the numbers N(k, I) describing the combinatorics of sectors.

9. Consistency with the differential algorithm

An explicit verification of the consistency of formul ae (7.18) and (7.20)
with the differential equation (5.6) can be achieved by the use of an inte-
gral representation of Indeed, (7.5), (5 .1 ) and (2.17) imply that :

Now, because of (7.19), (9 .1 ) integrated over )B, in the limits - 1 and 1 gives

Introducing J1 = 2 arth A, E = ~ one obtains:

Using here the integral representation

for A = Q ~-- ~ and A = - Q - J1, and then performing the integration
over J1 and one integration over a one obtains :

(*) Of course, (9. 1) is equivalent to (7.9a).
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It is known, however, that

Thus (9.4) is simply an integral version of (5. 6).

10. Permuting operators

As has already been shown in [10] our results (7.12) and (17.15) can
be plausibly interpreted in terms of « F-orderings » which generalize
the chronological and anti-chronological ordering operators. In the

next sections of this paper we present a more complete and systematic
study of this aspect and outline some new results concerning the algebra
of orderings.

Preliminary remarks. Consider the formulæ (7.12) and (7 . 1 5). Since

all kernels Fn are constant inside sectors, it is natural to decompose the
integration domains in (7.12) into single sectors and then by the change
of variables to reduce all the integrations to those over the chronological
sector. This procedure leads to

where the last summation runs over all permutations

and the number F(i1,...,in) stands for the value of the kernel Fn in the sector

1 &#x3E; ... &#x3E; t;, 1 :

It is natural now to introduce some conventions : 
fil _

... ~/
be an element of the permutation group Sn and xl, ..., Xn any generators
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of an arbitraty free algebra (either discrete or continuous); we shall use
the symbol 1t(xn ... x 1) to denote the permuted product

More generally, for

(X(1t) E C) an element of the natural group algebra 9 n of the group Sn,
the symbol P n(xn ... x 1) shall denote:

Within this convention (7.12) can be represented as:

where

By comparing (10.4) with the well known series for the evolution ope-
rator

one is led to the idea that the series (10.4) can be considered as a result
of a certain linear operation applied to E, the operation being determined
by the sequence of the elements e 

Permutors. In order to formalize this idea let us consider the set ~
of all infinite sequences

Every sequence of this type will be called a permutor. For any two
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permutors P, Q the linear combination AP + ~Q (À., J1 E C) is defined

by (/’P + J1Q)n = + J1Qn and the product PQ is defined by
(PQ)n = With these definitions the set ~ becomes an associative

algebra; we shall call it the algebra of permutors. The unity of F is the

/1 ... n) ,

sequence [1J where l~ = 
1 ... n 

Since each ~ has the topo-

logy of a finite dimensional linear space, a natural topology can be defined
in ~ as the weakest topology in which all mappings P ~ Pn are conti-
nuous. With this convention ~ becomes a linear topological algebra.
We shall further assume that each element P acts in d[to,t] as a linear
operator mapping any series of the form

into

where PnH(tn) ... H(t 1 ) is given by ( 10 . 3) with x~ = It is evident

that each permutor P is completely defined by specyfying its action on E.
Therefore, (10.8) defines an isomorphic representation of permutors by
linear operators in d [to,t].

Of course, we are not bound to interpret permutors as linear operators in The

concept of permutor contains a « universal » prescription for the transformation of any
free algebra. Indeed, given a free algebra d and P E f!jJ we associate with P the linear
operation in d mapping any product of generators xn ... X into Pxn ... ,ri = ... Xi,
where the last expression is given by (10.3). The interesting examples of permutors are
the bracketing operation { } and the Dynkin operator D. Denoting the cyclic permu-
tations by:

we hawe

(The zero-order terms of both sequences vanish; the first-order terms are both equal to
11 = numerical unity).

ANN. INST. POINCARE, A-XII-3 18
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Within the formalism of permutors we can rewrite (10.4) more compactly
as:

with Po[ f = f(O) and defined for n &#x3E; 0 by (10.5).
The dependence of P[ f] on f is linear and continuous with respect to

the natural topology in the set of all formal power series f(z) of an indeter-
minete z and with respect to the natural topology of the algebra of per-
mutors. In what follows it will be convenient to denote any permutor P
such that P’E = F by P(F). Thus : P[ f = P( f (E - 1)).

Examples. The permutor L = P[ln (1 + z)] = P(Q) which generates
the BCH exponent (Q = LE) is determined by:

The permutor E" such that = E" (a E C) is given by

Since

we have the following development

where Lk - 
i 

are permutors which generate the powers of the BCH
k.

Qk
exponent according to L~E == 2014. In particular 1 0 forp g 

/(! 
p o

n &#x3E; 0 and L~ 1 = L. A convenient expression for Lf follows from the

identity L~ == 2014 (2014 ) ~ :

x = 0
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Because /0(7T) B n + XB 7 is a polynomial of the n-th order in oc, therefore

L~ = L~ = ... = L)-1 1 - 0, which embodies the fact that the series

for S2k starts from the k-th order in H. The first non-vanishing term of

L is Lk =  &#x3E; 03C0 (the « symmetrisation » operation in Pk). The other
k. / ~

non-trivial can be worked out explicitly from (10.15) in terms of the
Stirling numbers (*).
The technique of permutors forms an essential step in the theory of

analytic functions of T = E - 1. The formula P[ f]E = f (E - I) gives
a detailed insight into the algebraic structure of functions of the evolution
operator, and moreover, it stimulates some obvious associations with
the familar ordering operators of quantum theories, such as the chrono-
logical or normal orderings [7~]. This last aspect deserves a special
discussion.

11. Ordering operators

The general concept of an « ordering operation » although frequently
applied in quantum theories has no been formally defined. Intuitively,
however, the concept seems to be clear enough. First, it is natural to

assume that an ordering operator should be a linear operator in a free
algebra which maps each homogeneous element into an homogeneous
element of the same order. Next, the ordering operator ought to « force »
the elements of the free algebra to acquire a certain particular structure
(the « ordering »). Once this structure is introduced;it should be imma-
terial whether it is introduced again or not : thus, the ordering operator
should be idempotent. In what follows these two conditions will be

assumed as the definition of an ordering operator. In that sense, the

Dynkin operator D is an ordering operator which « forces » the elements
of a free algebra to acquire the Lie element structure. Similarly, the

symmetrisation operator S =  ~ P is idempotent (S2 = S) and
n. / j

therefore is an ordering operator. It is much less trivial that the permu-
/Q’B

tors L" == Pt2014t act also as ordering operators.
k.

(*) The definition and basic properties of these numbers are found in Milne-Thomson :
Calculus of Finite Differences. St. Martin’s Press, New York, 1960.



250 BOGDAN MIELNIK AND JERZY PLEBANSKI

To show this, we shall first demonstrate the following multiplication
law for the permutors =:7:

~ 

The origin of this law lies in a certain universality property of the per-
mutors P[ f ] understood as linear operators in each P[ f] gives a
« universal » prescription for constructing f (E - 1) out of E, valid for all
series E(t, to) independently of t and to. Since E(t’, t)E(t, to) = E(t’, to),
it follows that

By selecting now t’ = t + (t - to) and specializing H(r) in the interval
[t, t’] to be the « replica » of H(r) in [to, t], i. e., H(i) = H(i + t - to) we

get E(t’, t) = E(t, to) and therefore (*) ( 11. 2) implies:

Similarly one shows that

By specializing to j(z) = (1 + z)", a E C, we have

so that

where g(E) is any series of the form go + gl (E - 1 ) + g2(E - 1 )2 + ... ;
gk E C.

In particular

which proves ( 11.1 ).

(*) We presented the argument in the text for its intuitive clarity. More formalised

reasoning can employ the existence of the homomorphism h:

defined by: /2H(T) = H(r) and /!H(T + t - to) = H(T) for r E [to, t3. The basic property
of this homomorphism is: hE(t’, to) = E2(t, to). As an homomorphism, h can be intro-
duced under the sign of any analytic series: hf (A) = f(hA) where A E with Ao = 0.
Furthermore, since the permutation of the generators of a free algebra and the identifica-
tion of some of them are commuting operations, therefore h commutes with any permutor
P E ~ understood as a linear operator in the free algebra. Consequently :

to) = to) = hf(E(t’, to) - 1) = f(hE(t’, to) - 1) = f(E2(t, to) - 1).
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The law ( 11.1 ) has important consequences concerning the permutors LB
By substituting in ( 11.1 ) the developments ( 10 .14) and by comparing the
terms of the same order in a on the two sides one obtains

By setting k = we see that the permutors Lk are all idempotent; thus they
define ordering operations. Since 0 for k ~ l, we shall say that
the orderings L k’ S are « mutually exclusive » (*). Now, the summation rule

implies that the sub-spaces « ordered » according to the distinct opera-
tors Lk span the entire free algebra.

II should be observed that the equations (11.1) and (I1.8) although easily derived from
our general arguments are equivalent to collections of nontrivial combinatorial identities.
E. g., (11.1) is the abbreviated form of the sequence of identifies = which after

multiplying the expressions of form (10.13) as the elements of the natural group algebra (!J n
lead to the numerical equalities:

Using the definition of e(n), (10.2 b), one can easily verify (11.10) for n = 0, I, 2, 3. How-

ever, for higher n’s the straightforward proof of (11.10) would be troublesome.

As a particular consequence of (11.8) the permutor L = L 1 which
generates the BCH exponent is idempotent and therefore represents an
ordering operation. This fact is important in the understanding of the
algebraic structure of formula (7.18). By the application of DQ = Q
we replaced (7.18) by the equivalent (7.20), the last expression manifestly
constructed from multicommutators. Our present considerations, how-
ever, imply that the last transition is, in fact, unnecessary. We have

shown that L as well as D is an ordering operator producing Lie elements,
and therefore, it is reasonable to consider the ordered products

instead of { H(tn) ... as the most natural base for the Lie elements

constituting the continuous BCH exponent.

(*) According to this terminology, the symmetrization permutor S and Dynkin’s per-
mutor D also induce two « mutually excluding » types of ordering. In fact, one has :
DS=SD=0.
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It is worthwhile to acknowledge some simple interrelations among
the permutors D and L. It can be shown that L maps any free algebra
onto the sub-space of all Lie elements. Thus, D and L act as two idempo-
tent operators with the common range, and hence :

We sould like to observe that our solution for the continous BCH exponent contains
as a special case the solution of the classical « discrete » BCH problem. Indeed, specializ-
ing H(t) to the form H(t) = + 8( - t) y with x, y being two generators of a « discrete »
free algebra, one easily sees from (5. 1 a) that because of (5.2 a), E(1, - 1) = exe’’ = y

and therefore (7.20) implies

where H(t) = 0(t),r + 0(- t) y.
Of course, this expression is equivalent to the permutor L acting on the actual « evolution

operator »:

where the action of L in the discrete free algebra yields:

F-ordering algebra. - The formul ae ( 11.1 ) and ( 11. 8) determine the

general multiplication law for the permutors of the form P[ f ]. In what

follows the set of these permutors will be denoted by (!). Any element
P[ f = P( f (E - 1 )) E (~ will be alternatively denoted by or simply
P(ff) where ff is the power series :

(*) By working directly with permutations one can easily verify L"D" = D~ for low n’s.
A strictly combinatoric proof of LD = D appears to be nontrivial. The identity DL = L
is obvious from the fact that LE is a Lie element, however a combinatorial proof of DL = D
is also nontrivial.
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Because any permutor P(~ ) E (!) can be represented as a linear combina-
tion of Lk’s:

therefore the multiplication rules ( 11. 8) imply that the product of any
two permutors P(ff), P( ~) is again an element of (~ : P(ff) P( ~) = 
where the series Jf(z) is given by : Thus, denoting
MT = 3F * % we obtain the following multiplication law :

where * can be defined as the unique associative and distributive operation
in the set of the formal series of the free variable z such that

A closed form expression for #* % can be symbolically written as

Since ~ * ~ = ~ * ~ the set (!) is an abelian sub-algebra of the algebra
of permutors We will call it the F-ordering algebra (*). The minimal

idempotents of this algebra are the ordering operators Lk and the spectral
decomposition of any element P(ff) into minimal idempotents is given
by (11.14). The equivalent decomposition of P[ f is given by :

These results provide a complete insight into the mechanism employed
to create arbitrary functions of the evolution operator. This can be of

significance in quantum field theories. Up to now, these theories have
worked mainly with the perturbative expansion of the evolution operator
(and its limit, the S-matrix). However, in some cases the perturbative
expansions of some other operators which are functions of E - 1 (as, e. g.
the Cayley operator C or the phase operator Q) can be of interest. Our

(*) 6 is a relatively narrow sub-set of ~; e. g., the Dynkin operator D does not belong
to C because it does not commute with L.
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analysis of a shows that the structure of these expansions is not unduly
involved : all the functions of T = E - 1 can be constructed with the help
of the fixed sequence of ordering operators L°, L 1, L2, ..., which, therefore,
provide a natural extension of the familly of traditional ordering operators
of quantum field theory.
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