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Degenerate Lagrangean systems (*)
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Physique théorique.

ABSTRACT. - The algorithm by which Lagrangeans whose Hessian
has constant but not maximal rank can define consistent equations of
motion for a system of finitely many degrees of freedom is studied in a
modern geometrical framework. It is shown how such a Lagrangean
may (but need not) lead to a (locally) well defined manifold M of states
of the classical system, the real functions on which form the algebra of
observables. If this is the case then the Lagrangean also induces canoni-
cally a symplectic structure on M and thus a Poisson bracket on the set
observables. This is proved in the case where no constraints of higher
than second order appear.

RÉSUMÉ. - L’algorithme, par lequel le lagrangien, dont le hessien a
un rang constant mais pas maximal, peut définir des equations de mouve-
ment consistantes pour un système avec un nombre fini de degres de liberté,
est étudié dans un cadre moderne géométrique. On montre comment un
tel lagrangien peut (mais pas necessairement) determiner (localement)
une variété M des etats du système classique, dont les fonctions réelles
forment l’algèbre des observables. En ce cas le lagrangien induit aussi une
structure symplectique canonique sur M et ainsi des crochets de Poisson
sur l’ensemble des observables. Ceci est demontre dans le cas ou n’appa-
raissent pas des contraintes d’un ordre plus que deux.

(*) This work was supported in part by the United States Atomic Energy Commission
under contract number AT( I I- 1 )-34, Project Agreement N° 125.
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1. INTRODUCTION

In classical physics the set of (pure) states of a system with n degrees
of freedom is regarded as an n-dimensional differential manifold M. If

the state of such a system is known at one time to it can be computed for
any other time t by means of a given set of equations of motion. The

real (C~ 2014) functions on M or dynamical variables, which form a real
algebra ~. can then be called the « observables » of the classical system,
any complete set of which, i. e., any n independent functions on M, des-
cribes the system completely. (Cf. Souriau [13]~ where M is called spece
of motions).

Although this is unnecessary from the classical point of view one desires,
as a first step towards quantization, to give the set ~ of observables a
Lie algebra structure by defining a Poisson bracket on it. This, however,
is possible in a natural way whenever M is a symplectic manifold (see.
for example, Abraham [7] ] and, for more general cases, Hermann [7]).
Of course, the quantization of the classical system is by no means completed
if such a canonical formalism is set up, but. hopefully, it will become possible
to give a straightforward and reasonably unique prescription for construct-
ing irreducible Hilbert space representations of the Lie algebra ~. perhaps
in the spirit of the direct method of Souriau [13] or by first selecting a
certain physically relevant subalgebra of ~ and then finding its irreducible
representations (cf. Hermann [6] and [7]).
The knowledge of the classical system alone, that is of the state space M

and the equations of motion, does not give any clue as to what symplectic
form ÕJ should be given on M, except in cases of extreme symmetry if 16
is to be invariant under all symmetries of the system. In fact. the only
known way of restricting the arbitrariness of a) is to require that the equa-
tions of motion as well as the canonical formalism (i. e. follow from a

variational principle applied to a Lagrangean. This assumption excludes
certain physical systems like non-conservative ones and those with non-
holonomous constraints (cf., for example, Havas [4]) without, on the
other hand, fixing 16 unambiguously because there may exist different

Lagrangeans which lead to the same equations of motion but different

symplectic forms (cf. Currie and Saletan [2]).
In spite of these drawbacks Hamilton’s principle for a Lagrangean

seems to remain the most direct method to introduce a canonical formalism,

a fact which may justify further study also of the so-called degenerate
Lagrangean systems where the Hessian of L is not a regular matrix.
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Although no systems with finitely many degrees of freedom and any phy-
sical importance seem to be known a full understanding of this situation
is no doubt necessary for a rigorous discussion of the canonical formalism
in field theories where degeneracy of the Lagrangean is the rule.

After Dirac [3] initiated a general study of these systems they have
been treated by various people in different forms. (For a historic survey
see Shanmugadhasan [12]). The theory, however, still has unsatisfactory
aspects, mathematically as well as physically. As Dirac [3] already noticed
degenerate Lagrangeans used in Hamilton’s principle may or may not
lead to proper equations of motion. To arrive at a reasonable rigorous
theory that retains as much generality as possible it must therefore be

postulated that such equations of motion are well defined by the given
Lagrangean. Mathematically, the theory is not very attractive because
various forms and matrices defined by means of the Lagrangean must
necessarily change their rank on the manifold in order to lead to consistent
equations of motion. On the other hand, some regularity conditions
are necessary to make the formalism work, but their choice seems to
remain rather arbitrary.

In this paper the question is studied whether and how a degenerate
Lagrangean, provided it defines proper equations of motion, also induces
a symplectic structure on the state space M and thus defines a Poisson
bracket on the set of actual observables. This question appears not to
have been settled in other publications, because of the difficulty to agree
on what functions on the phase space ( = cotangent bundle of the configu-
ration space) should be called observables. (Cf. Kundt [9], also for further
references, and the end of section 2a of this paper). The definition adopted
here that an observable is a real function on the state space, defined inva-
riantly as the set of all physical motions (cf. [7~]). seems the simplest and
most natural, especially from the point of view of later quantization. The
treatment is geometrical and, since carried out in the homogeneous form-
alism which treats the time on an equal basis with the space coordinates,
applicable also to relativistic systems. One would hope therefore that
it should illuminate at least some of the simpler difficulties encountered
in the development of a rigorous invariant canonical formalism for degene-
rate Lagrangean field theories.

Unfortunately a complete proof of the conjecture that every degenerate
Lagrangean which defines a proper physical motion also leads to a sym-
plectic structure on M has not been achieved. The statement is proved
only in the case the Lagrangean leads to constraints of at most second
order but, very likely, it holds in general. Moreover, all considerations
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in this paper are purely local. Global existence of the constraint sub-

manifolds would be difficult to prove under such general assumptions
though the topology of M is probably essential for the further steps in
the quantization program. (Cf. Kundt [9] and Souriau [13]).
The next section reviews the homogeneous formalism for the non-

degenerate case in the modern geometrical language of Abraham [7] and
Souriau [14]. In section 3 the constraint submanifolds of a degenerate
system are explicitly constructed while section 4 deals with the existence
of a symplectic structure on the thus obtained physical state space.

2. HOMOGENEOUS SECOND ORDER EQUATIONS
AND LAGRANGEANS

a ) Second order equations.

In many simple cases the set of states of a physical system can be regarded
as the tangent bundle TQ of an n-dimensional configuration manifold Q
(with local coordinates ql, ... , q~, say) and the motion as a curve a : R - Q
such that its lift a’ : R - TQ is an integral curve of a certain given vector
field X: TQ -~ TTQ. That is

where a" denotes the lift of a’ onto the tangent bundle TTQ of TQ and X
is a second order equation, i. e., satisfies

(cf. Abraham [7] or Lang [IO], T denotes the tangent functor, TQ the pro-
jection map of the tangent bundle TQ). In terms of a bundle coordinate

system {(qk, vk), k = I" ... , n} of TQ condition (2 . 2) means that X has

the form X + 03BEk(q, u) 2014 . The curve parameter t is here

regarded as the physical time. The set M of all possible physical motions
or states is then the set of all curves in TQ tangent to the given vectorfield X,
and since there is exactly one curve starting at anyone point of TQ the
set M can be identified with TQ. 

’

In order to treat systems where X is time dependent and relativistic
ones (and even general relativistic systems where no global time need be
defined at all) in the same framework we will instead use the homogeneous
formalism and treat the time as one of the coordinates of the configuration
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space Q. The latter is then an (n + I)-manifold with local coordinates
~ qa, a = 0, ... , n ~ and a physical motion becomes a curve in Q regarded
as a point set, i. e. an equivalence class (under parameter transformations
s - Q. Each element a of such an equivalence
class satisfies again (2.1) for a vector field X on TQ. But now X is not the
same for differently parametrized representatives of the motion. The

latter is therefore no longer infinitesimally described by a given vectorfield
but rather by a twodimensional differential system on TQ.

It is not difficult to see that tff consists of all vectorfields of the form

where

a certain fixed vertical vectorfield, and a and b arbitrary functions on TQ.
A twodimensional differential system ff of this form will often be referred
to simply as a second order equation since it is the natural analogon of
the latter in the homogeneous case. As is straightforward to check,
C is involutive and therefore defines a foliation on TQ (cf., for example,
Palais [11] and Hermann [5] or also Hinds [8]). If this foliation satisfies
certain global conditions (as stated in [77]. chapter 1) the set of leaves
of M = TQIC.. carries a natural manifold structure. Moreover, there
is a canonical projection map vr: TQ -~ M whose tangent 7r* annihilates
precisely the subspace is x of the tangent space of TQ at each x E TQ, i. e.,

1f = ker 7~. M and 7r with these properties always exist locally. Though
global existence is by no means guaranteed in general cases we will assume
it for notational convenience.

In the following ~ will always denote a twodimensional differential
system of the form (2. 3) with respect to a bundle coordinate system of TQ,
but will sometimes only be defined on a certain submanifold M of TQ.
After Souriau [14] M could be called the evolution space, while M = M/~
is nothing but the set of possible physical motions or states and hence
called motion space or state space.
Any presymplectic form w on M (i. e. a closed 2-form with constant

rank) now defines another involutive differential system ker by

(~) Differential geometric symbols and conventions are those of STERNBERG 
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and the corresponding quotient manifold M = M/ker co is equipped with
a natural symplectic form (jj defined by

where x is any point and X, Y E Mx any two vectors satisfying
n*X = X and 1t* Y = Y. (See, eg, Hermann [7]). It follows immediately
that 7r*co.

Thus, if the evolution space (M, G) is given a presymplectic structure
such that 6 = ker co then the state space M is symplectic and a Poisson
bracket on the set # of dynamical variables can be introduced in the
usual way. This is the situation for the ordinary non-degenerate Lagran-
gean case as reviewed in the next subsection.
If  c ker co is a non-trivial subsystem the relation (2.4) (with bars

replaced by tildes) still defines uniquely a closed 2-form c5 on M = M/~
which is however only presymplectic. Hermann [7] has shown recently
how in this case a Poisson bracket can be defined not on the whole set of

dynamical variables but on the subset of functions on M that are
invariant under ker W’! i. e. = f E ~ /X( f ) = 0 for all Xe ker ill }.

Remark. It seems likely that  coincides with what other authors
define as the set of observables (cf. Kundt [9] for references). The remain-

ing functions on M are then called gauge variables.

b ) Homogeneous Lagrangeans.

Let L : TQ - R be a Lagrangean, homogeneous of the first degree
in the velocities, i. e., satisfying L(q, Àv) = ÀL(q’l v) for all 0 # or,

equivalently, ’!

The Lagrange equations,

which determine the physical motion a’ : s - (q(s), v(s))ETQ can be
restated in terms of the tangent vector a"(s) of a’(s) and the presymplectic
form

where
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(WL is obtained invariantly as pullback of the canonical symplectic form
mo = dq" A dpa. on the cotangent bundle T*Q by means of the fibre deri-
vative J~: TQ ~ T*Q: (q°‘, v°‘) ~ (q«, p« = cf. Abraham [1] ] or

Sternberg [15]). Equation (2.6) is equivalent to

On the other hand, a general vector field X = + on TQ lies in
ker WL if and only if X a WL = 0 or, explicitly,

and

If, in particular, X has the form (2. 3) these equations become

Due to the homogeneity of L the first of (2.10) is trivially satisfied and
the second equivalent to (2. 7) This proves that for any
second order equation 6 on TQ all integral curves of  satisfy Lagrange’s
equations if and only if

Note that this result is independent of any further assumptions on L
apart from the homogeneity in v. Moreover, it also holds if 6 is not
defined on the whole of TQ but only on a submanifold.

In the ordinary case, however, the Hessian = of the Lagrangean
has rank n, then (2. 8) implies ~03B1 = a03C503B1 for an arbitrary’function a on TQ
and the general solution of (2. 9) is ~ = ~ + bv" for an arbitrary function b
and any fixed particular solution ~". Therefore ker WL is a twodimensio-
nal differential system of the form (2 . 3), i. e., a second order equation,
and the integral curves of ker WL are precisely those satisfying Lagrange’s
equations, that is the physical motions. Thus, S = ker WL in this case
and the state space M = is symplectic.

c) Symmetries.

To end this preliminary section a few remarks about symmetries are
added, mainly because they shed some light on the relation between evolu-
tion and state space and the usual phase space formulation. Confining
the discussion to the case where 0T = ker W on the evolution space M we
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define with Souriau [14] a dynamical group of M as a Lie group G whose
action on M leaves co invariant, i. e., t/J: G x M - M: (a, x) - 
with .

The infinitesimal form of (2 .12) is = 0 for all Ae g where g is the Lie
algebra of G and A the Killing vector field to A. It follows that ~ leaves
ker (j) invariant and hence induces an action ~ on the quotient manifold
M = M/6 which again leaves the symplectic structure invariant. More-

over, the Killing vectorfields A and A on M and M respectively are n-related,
i. e. Ã = 

Suppose that for example time translations form a dynamical group
(this is the case when L does not explicitly depend on t), then = 0

and hence

Equation (2.13), however, is equivalent to d(XJ 0 and therefore

to the local existence of a function H on M satisfying X J a) = dfl, called
a Hamiltonian. One can now again consider the time development of
the given physical state, i. e. a point in M, as an integral curve of the vector
field X and thus recovers the usual formalism on the phase space. More-

over, the connection between the Hamiltonian H and time translations
is here rather evident.

3. CONSTRAINT ALGORITHM

FOR DEGENERATE LAGRANGEAN SYSTEMS

a) First order constraints.

Let L: TQ -~ R be again a Lagrangean. homogeneous of first degree
in v, but assume now that the rank r of the Hessian 0"a.(1 = a«aL is constant
in the open set of TQ = M° under consideration, but smaller than

n = dim Q - 1. (All following considerations will only apply to such
an open set of M° though this will no longer be mentioned.) A physical
motion of such a degenerate system is still given by an equivalence class
of curves a : R - Q whose lifts a’ into TQ satisfy Lagrange’s equations
or, according to section 2b, are integral curves of a differential system C
which has the form (2. 3) and satisfies also (2 .11 ).

In this degenerate case, however, these two conditions are no longer
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in general compatible. For, assume that the vectors for

AeI={L2.....R=~-r} span together with v the kernel of the

symmetric bilinear form cr = (8) dvP on the tangent space Vx to
the fibre at each point x E TQ. Let moreover ( ica, a = 1, ..., r ~ complete
this vector system to a basis of Vx and let {u = va.dvrJ., WA = M" = 

be a dual basis of Then 6 = gabua 0 ûb (2) with a regular matrix gab.
If now a vector field X has the general form of a second order equation,
i. e., 

,, , . , . , ,A . , ,a. , ,, , ,

then 03C9L = This expression vanishes if and

only if
_ ~ ~. ~ . ~ .

i. e., if and only if

Therefore a solution of the form (3.1) to

exists only on the submanifold M 1 of TQ defined as the point set on which
the first order constraints vanish for all A E I. There, on the other

hand, the coefficients çA remain undetermined. In fact, defining

(where ~ is the inverse of gab) we see that

for arbitrary functions ~ ~ ~ on TQ satisfies

and thus solves (3 . 3) precisely on M 1.
So far the set of vector fields X of the form (3.4) on M~ 1 does not yet

describe a classical system because the functions çA are still arbitrary.
However, since the motion is only defined on the submanifold M~ it must
remain in M~ 1 which means that X must be tangent to M 1, i. e.

(~) Whenever there is no doubt about the range of the indices the summation convention
is applied.
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or, more explicitly,

where

It turns out that

To see this note, that by definition = 0 identically in TQ. Hence

With the help of v03B3~L = - this leads to = = 0
whence

for certain functions cB and cB. Using this result and 03C503B3~03B303C903B103B2 = 0, which
follows from (2 . 5), one obtains

which vanishes on Since

and

which follows from (3.10) in the same way as (3.11), it is straightforward
to deduce that

for certain functions d£~ on M°. This shows that is actually
antisymmetric, at least on MI.

Equations (3 . 7) now reduce on M~ 1 to

and represent R conditions on the still arbitrary functions çA. It may

be that they determine 03BEA uniquely, namely when is a regular
R x R-matrix everywhere on M 1. Then the vector field X is determined

on M 1 precisely as much as necessary to describe a physical motion.
Thus (M 1, 8) where 6 = ( X/X = a(v + M + ~o + arbitrary}
can be regarded as the evolution space of the system. The reduction

process is then already completed. In general, however,
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(we assume it is constant on all of M~). Then if the functions CBB,

span the right kernel of (i. e. = 0 and

for some functions dB) (3.13) can be solved for çA if and only if

These are new restrictions of def X, the domain of definition of X.

b ~ Basic assumptions.

It is now clear how in principle this process has to be repeated. Before
this can be done in detail, however, and the consistency of the algorithm
proved it is necessary to observe that not every degenerate Lagrangean
need describe a physical system. Dirac remarked in his first paper on

degenerate Lagrangean systems [3] already that the consistency condi-
tions like (3.6) may result in actual contradictions. In the homogeneous
formalism the corresponding phenomenon would normally be that equa-
tions like (3.2) and (3.14) do not define smooth submanifolds but restrict
def X to a part of TQ where L is singular. Moreover, this is not the only
way how a degenerate Lagrangean can fail to give rise to a second order
equation and hence to equations of motion of a classical physical system.
It can happen, for example, that there are not enough conditions to deter-
mine all the arbitrary functions çA in the general form (3.4) for X because
too many of the qJ A are trivial or dependent of others. This case is illus-
trated by the simple example in which J«o is degenerate and vanishes

identically. Then all in (3.2) are trivial and no constraint conditions
are obtained at all. More generally, noting that and u rxp transform
like ordinary tensors under configuration space coordinate transforma-
tions, suppose that by a transformation q03B1 ~ 03B1(q03B2) it can be achieved
that simultaneously = 0 = wrxp for all 03B2 = r + 1, ..., n. The last
n + 1 - r components of çrx then remain completely indeterminate, and
it is clear why: the configuration space was simply chosen unnecessarily
large, suggesting many more degrees of freedom than the system actually
has. There seems no point in not immediately discarding these super-
numerary dimensions.
Our basic assumption before setting up the constraint algorithm and

investigating whether the state space of the system carries a natural sym-



404 H. P. KUNZLE

plectic structure or not will therefore be that an evolution space M with a
second order equation C actually exists, i. e., that none of the two mentioned
difficulties arise in the process of the reduction. Moreover, it will be

assumed that whenever a matrix like is defined on a certain sub-

manifold it has constant rank on this submanifold. Without this assump-
tion one would be led to countless case distinctions which would in fact

amount to different physical systems described by the same Lagrangean
in different regions of the original configuration space.
An immediate consequence of these assumptions is that the whole

configuration space is actually needed for the eventual description of the
system, i. e., the evolution space M is a subbundle of M° = TQ having as
its base space still the whole of Q, or infinitesimally, the subspace Mx
of M° at each point xeM is projected onto QTQx by TQx. From this

property it is straightforward to deduce that, if

for a certain index set I, say, then

c) Construction of the evolution space.

According to the last paragraph it is not obvious that the functions ~pA
defined in (3.2) are independent. From the basic assumption that the
formalism works, however, it will eventually follow that they in fact are.
Since their explicit form is to a high degree arbitrary it is essential to concen-
trate only on the invariant geometrical properties of the submanifolds
defined, in order to avoid physically irrelevant complications in the calcula-
tions. As to the notation, indexed or otherwise specified capital letters
like e. g. Ak will always range (and sum if occurring twice) over an index
set Ik with Rk elements unless indicated otherwise.

Suppose now that are any Ri independent functions defining M~ by
means of CPtl(x) = 0 for Ai eli, then Ri = R - Si 1 for SI  0. A certain

subspace of ker 6 c Vx will be tangent to M~ (at least the vector v accord-
ing to (3 . 9)) ; let {wA1/A1 eli ~ I1} span its complement. Then 

has rank R 1 which is manifestly an invariant number and thus the same as
the rank of the antisymmetric matrix in (3 .13). Hence Ri is even.
It is clear geometrically that by making a suitable transformation among
the it can be achieved that = and = 0 for

Bi ~ I1 B I1 (of course, all these relations generally hold on M1 only).
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The conditions (3 . 6) that X be tangent to M~ now split into

determining Ri 1 of the R arbitrary functions çA, and, yielding new cons-
traints, 03C62 A1 = = = 0 for A1 ~ I1 B I1 i where

Thus the vector field X is now defined on

where it is given by

for arbitrary a, b, ÇÃl with ii 1 ~ 1 = 
The next step consists in choosing any R2 = Ri - R1 - S2 (S2 &#x3E;- 0)

suitable functions that are independent of the and each other and
characterize M2 as the did in (3.15) and then demanding that

This process can be continued. It must end after a finite number m of

steps, such that on M = Mm the vector field X is of the form (2. 3) with ¿ 
.

completely determined. This M is then clearly the evolution space of
the system. We are going to prove inductively that it can be characterized
in the following way.

THEOREM 1. - If L is a homogeneous Lagrangean over an (n + J)-dimen-
sional configuration space Q whose Hessian has constant rank
n - R  n on TQ and if L defines a classical system in the sense of sub-
section 2 then the evolution space M is a subbundle of TQ which can be
described as follows : There exist

independent functions {~/~ ~ I = 1, ..., m, on TQ and
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vertical vector fields {wAk/k = 1, ..., m, spanning together with 03C5
the kernel of the Hessian in Vx for all x E TQ such that if a sequence of
submanifolds TQ = M~ =) M1 ::) ... ~ M is defined by

then

Moreover, there exists a vector field X of the form X = + on TQ
which satisfies X ~ WL = 0 on M 

1 such that

and

where e~ is an (R x R)-matrix of functions, nonsingular on The

second order equation on M is then given by all vector fields Y on M of
the form Y = a(X + bv) for arbitrary functions a and b. In particular,
X is tangent to all M~, W Ak tangent to M‘ for k &#x3E; I, but transversal 

Proof - To show first that v is tangent to all Mk for 0  k S In suppose
as induction hypothesis that by the method of the last paragraph Mk
has already been defined as the submanifold of Mk -1 on which all

independent functions vanish and that the general solution X of
X J ûJL = 0 tangent to M~ for I = 1, ..., k - 1 is given on Mk by

for arbitrary ~’’ where

Thus v and all 
1 
are tangent to and among the latter for

Ak E Ik C Ik-1 1 are assumed to be transversal to Mk. The conditions

that X be also tangent to Mk then amount to
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Now by the induction hypothesis the corresponding equation on Mk-1,

(since V is tangent to Mk -1 ), had been used to determine Mk; namely
the Rk - 1 vectors wAk -1 1 for Ik - 2 were transversal to Mk -1,
hence rk == The functions defining Mk are there-

fore of the general form

where are functions such that on 1

Thus, on M~’B

Due to (3 . 21) and since v is by induction hypothesis tangent to 
1 it

follows that both terms vanish; therefore v is also tangent to Mk.
Next we prove that there are as many independent functions needed

to define Mk as stated in the theorem. This is the case if and only if Sk = 0
for 1  k  in and follows from the basic assumptions that the reduction
terminates and defines an evolution space (M, 6). For, by construction,
Ri + Si = R and Rk + Sk = Rk -1 for 2  k  m. Summing over
k = 1, ..., m yields

by (3.19). But since the Sk are by construction non-negative integers (3.22)
implies that they all vanish. Thus, by (3.19),

ANN. INST. POINCARE, A-XI-4
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which immediately leads to

It remains to be shown that the R vector fields K~ and the R functions CPA
can be chosen and labeled such that the relations (3.17) and (3.18) hold.
For k = 1 this is already proved. For the general case note that the
actual form of is only important as far as it affects the definition of Mk.
Hence the set of functions

for arbitrary matrices C~ and DAk of functions will be equivalent to ~ 
provided only that the matrix C~ is non-singular everywhere on Mk.
Due to the selection of the WA we have already = 0 for k &#x3E; and

rk = Rk. By means of a transformation of the type (3.23)
with D = 0 it can therefore be achieved that the matrix assumes

the form (1 Rk x Rk ORk x ~Rk _ Rk~). This leaves the possibility that 0

for k  1. But it is easily seen that adding a linear combination  t ~
to eliminates these terms. This proves (3.17). Moreover, from

(3 . 20) and (3 . 21 ) it is clear that (3.18) also holds provided only that the
Rk + Rk + 1 + ... + Rm = Rk functions are suitably relabeled. I

4. EXISTENCE OF A SYMPLECTIC STRUCTURE

ON THE STATE SPACE

The manifold M constructed in the last section is endowed with a diffe-

rential system C of the form (2.3) and is therefore the proper evolution

space of the system described by the degenerate Lagrangean. Moreover,
there exists a natural presymplectic form on M, namely W = Z*WL where
i : M - TQ is the inclusion map. It is easy to check formally that
~ c ker M as remarked in section 2. For, suppose X E C is a vector field

on M, then

because 6 has been constructed such as to satisfy i*X J CùL = 0 for all
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Equation (4..1) also shows that a vector Y E Mx lies in ker cc~ if and only
if its image

« « " ,.,

satisfies WL) = 0 which is equivalent to

for certain functions cA on M. But Y, being of the form (4.2), also satisfies

Thus, if M is considered as a subset of TQ and Y identified with Y, then
ker (D consists at any point x e M of the vectors Y satisfying (4 . 3) and (4 . 4).
Suppose for the moment that the coefficients cA are fixed, then (4.3)

can be solved for Y if and only if Z J 03A3cAd03C6A = 0 for all Ze ker WL. To

construct first a basis for ker w~ let Z = + ~~. Then Z J WL = 0
if and only if

and

Equation (4. 5) implies that ~ = ~ + bAwl and (4.6) becomes

This equation in turn has a solution if and only if the right hand side
contracted with any vector of the kernel of u rxp vanishes, i. e., if and only if

and

for all Bel. (Here (3 . 2) and (3 .12) have been used.) The first condition
is satisfied identically on M~ (and hence on M) and places non condition
on the so far arbitrary factors bA. Since K~ were chosen to be tangent
to M1 1 if A = 1 ~ I1 = 1B11 1 equation (4 . 7) implies only that bAl = 0 if
A1 ~ I1 but all the other R - Ri + 1 coefficients a and b1 remain arbi-
trary. It follows that although ker co~ may have any dimension &#x3E; R + 1
at a general point of TQ its dimension for xeM is necessarily 2R-Ri +2
and as a spanning system of vectors one may take for example
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where X is as in Theorem 1 and

with 03B61 satisfying

These latter equations do not, however, completely, but only up to a
transformation Z1 ~ 1 = Z1 + + with arbitrary a1 and

(if it is assumed that the WB are fixed according to Theorem 1). Thus ZA1
can be required to satisfy

(Suppose they do not, then

according to (3.17) if is chosen equal to - The condi-

tions (4. 8), (4.9) and (4.10) then fix ZÃ1 E ker ûJL up to an irrelevant term
proportional to v. These vector fields ZÃ1 (which are defined on M 

1

only, but can be thought of as extended in an arbitrary smooth fashion
to the whole of TQ, where, however, WL and no longer
vanish in general) satisfy on M

Proof. - For 1 == k equation (4 .11 ) agrees with (4.10). If l &#x3E; k note

that the equations can be solved for r~~ on M at least in
view of (3.17). Let 1JfBl be such a solution, which extended to TQ satisfies

if = for certain functions and l &#x3E; k (cf. section 3c).
Then, always on M,
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In view of (3. 5), where 03BE03B20 is replaced as in X = v +  of Theorem 1,
the first term becomes on M

Since (due to (4.12))

on Mk and

on M the second term of (4.13) becomes

Here the first term vanishes on M and the second cancels with the second
term of (4.14). Then (4 .11 ) follows from (3.17).

This result shows, in particular, that not only W~ but also with
2  j  m are transversal to M.

In order to write down the general solution Y of (4.3) introduce also
the vectors for k, I = 1, ..., m, t &#x3E; k + 2 which are solutions (on M)
of 

Vk ~ , ~ __k , , .._,

fixed up to terms proportional to v and X by the conditions

(That (4.15) has a solution for precisely the indicated values of k and I
and that the conditions (4.16) can be imposed and fix Yl1 follows from
similar arguments as were used for the construction of ZAk).
The necessary and sufficient conditions for a solution Y of (4. 3) to exist

now become
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and

If they are satisfied the general solution Y has the form

To lie in ker w Y must also satisfy (4.4), i. e.

m-2 m

for all = 1, ..., m, j &#x3E;_ i. This yields, in particular, for i = j, in view

of (4.10) and (4.16), 
.

for all = 1, ..., na, similarly for j = f + 1, = 1, ..., m - 1

and, finally,

for

In the particular case where m _ 2 this last set of equations is empty
and it follows already that hence contained in ~. This

leads, according to section 2b to.

THEOREM 2. - A degenerate Lagrangean that describes a classical

system and leads to constraints of at most second order induces a sym-

plectic structure on the state space of the system. That is, there are no

« gauge variables », cf. the remark in section 2a.
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If m &#x3E; 2 the equations (4.17) impose restrictions on the

remaining arbitrary functions ck depending on the rank of the (S x S)-matrix
which since by (4.15) it can be written in the form 

turns out to be antisymmetric. If this rank is S then all ~I must vanish
and Y has precisely the form aX + M, hence ker co == 6. In particular,
in this case S and hence R must be even, which makes it easy to- conceive
situations where rk  S (e. g. m = 3, R1 = R2 = 0, R3 = R == 1).
However, no simple example of this type could be found. It seems indeed
more likely that the basic assumption that the construction of (M, C)
works implies that Rk is even for odd k, whence it would follow the

is even.

These remarks suggest that the conclusion of Theorem 2 holds in general
for « physical » Lagrangeans leading to constraints of arbitrary order.
The proof, however, in the present framework, would presumably depend
on the explicit structure of WL and {03C6A}2014somewhat as the proof of (4.11)
did rather than on general geometrical arguments.
The author wishes to thank Professor F. A. E. Pirani for his encourage-

ment to this work when it was begun at King’s College, London.
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