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ABSTRACT. - The quantized model of a simple cubic lattice serves to
study the gravitational radiation resulting from lattice vibrations. It is

shown that the series expansion in terms of mass multipole moments has
to be replaced by the retarded quadrupole moment if the extensions of the
emitting body exceed the wavelength of the radiation. The gravitational
analog of the Brillouin effect is analyzed. The results are obtained in a

general form not depending explicitly on the crystal model. The intensi-

ties are too low for detection at the present stage.

I. INTRODUCTION

A first possible experimental success in the detection of gravitational
waves has been announced very recently [6] ; this experiment which seems
to indicate the existence of long wavelength radiation from unidentified
stellar sources, is based on a coincidence of signals at distant points. An

involved statistical analysis is required to eliminate disturbing factors.
We may thus finally be supplied by this method with the long desired proof
of the existence of gravitational radiation but we can only expect real
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progress if either nature bestows upon us a suitable uniform polarized
source of radiation or if we succeed to create one through our own efforts.
The significance of the subject suggests that all possible physical pro-

cesses should be explored; the nature and magnitude of their interaction
with the gravitational field and the widest range of possible experimental
applicability should be determined. Only a limited amount of work has
hitherto been done in this direction. Some of its main aspects are the

following:
The gravitational radiation of binary stars [7] and neutron stars [8] is of

higher power in the long wavelength domain than their total electro-

magnetic radiation, but the sources are probably all too remote for obser-
vation. Other stellar and planetary sources indicate no better results [9].
The theory of the interaction of gravitational waves with classical elastic
bodies was developed by J. Weber [4]. He introduced forced oscillations

to obtain coherent emission of a body that is larger than the acoustical
wavelength. The thermal radiation of an elastic body was considered
by Mironowsky [5]. The quantum features of the elastic body were partly
taken into account in this work. B. de Witt and G. Papini (and somewhat
earlier, one of the present authors in an unpublished series of seminar

lectures) [10] [11] [12] began to analyze the interaction of a superconductor
with gravitational fields. Halpern and Laurent discussed the radiation of
microscopic systems as molecules, atoms and nuclei [1]. A first attempt
was made in this paper to obtain an enhanced rate by stimulated emission.
Kopvilem and Negibarov suggested enhancement of the emission by the
creation of a superradiant state [13]. Several authors considered the clas-

sical gravitational synchrotron radiation. The most up-to-date work
on this subject containing all references is probably to be published by
I. Khriplovitch. All the above mentioned investigations are based on

the linear approximation, which is considered to be a good approximation
to the field equations of general relativity. There have been numerous

attempts to quantize the gravitational field and to investigate its role in
elementary particle physics. These are, however, too remote from our

present topic to be considered here. Even the aforementioned publications
are quoted only to demonstrate some of the principal features and are far
from complete.
A detailed application of the theory of solids to the process of emission

of gravitational radiation has not been carried out. The interaction of

electromagnetic radiation with solids proves the existence of optical tran-
sitions and the Brillouin effect. In both cases an extended crystal contri-
butes coherently to the emission. The gravitational analog of these
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processes were not considered in the mentioned works of Weber and of

Mironowsky. It appears to us that Mironowsky did not take the conser-
vation of crystal momentum (which applies even to a continuum as the
limiting case of a crystal lattice) into account. His result in this case should

be modified.

We have considered in the present work a simple model of a crystal lattice
and investigated its gravitational radiation. The lattice is quantized and
the gravitational field remains classical. The quantum of action is occa-

sionally introduced for the energy flux of the gravitational field by dividing
the latter by hv. The pattern follows largely the work by Halpern and Lau-
rent [1]. Since one is dealing here with emitting bodies of extensions that are
large compared to the wavelength, the multipole approximation cannot be
applied. The main result of section II of the present work is that the series
expansion in multipole moments has to be replaced by the retarded quadru-
pole moment if the emitting body is not smaller than the wavelength. Sec-

tion III presents the crystal model, and section IV its quantization and
interaction with the gravitational field. These sections have been expounded
in some more detail for readers with limited knowledge of solid state

physics. The results appear in a form that show that they apply in greater
generality than for the model considered. Discussion of the results and

conclusions are presented in section VI. We used, if not otherwise men-
tioned, units in which % = c = 1 and length, time and energy-1 are measured
in centimetres. The flat space metric is of the signature - 2.

II. THE GRAVITATIONAL RADIATION

OF AN EXTENDED BODY

The gravitational radiation emitted by the quantum transitions of solids
is treated in the semiclassical, linear approximation. The procedure is

analogous to that of the transitions of microscopic systems which has been
discussed in a previous work [1]. The basic facts only are reviewed here
and reference is made to section II and the Appendix of the quoted work
for more details.

The classical gravitational field is expressed in terms of

where gik(X) is the contravariant metric tensor and
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A coordinate system is adopted for which

The linear approximation of Einstein’s equations relates the g~ to the
energy-momentum (e. m.) density of matter T~(:c) :

G = 2,6.10-66 cm2 is Newton’s gravitational constant (Ií = c = 1)

The general solutions of eqs. (2) is :

We deal in the following exclusively with the time dependent gravitational
field of the source Tik so that we choose 9~) = rik. rik is the flat space
metric tensor with the signature minus two.
The density of the energy flux of the gravitational radiation is expressed

in the present approximation in terms of the entities :

Greek letters are summed here from one to three and Latin letters from

zero to three.

The above expressions are obtained from the exact equations of general
relativity by neglecting higher powers of (gix - l1ik) [2] (*). The first three

terms enclosed by the bracket stem from the canonical part of the e. m.
density of the gravitational field and the last four terms from the spin part
of the same entity [2]. The question of the validity of the present approxi-
mation is discussed in some more detail in ref. [1]. The gravitational fields
considered here are so weak that one may expect that to indicates the right

(*) The last proofs of reference [2] were unfortunately not supplied to the author so
that it contains a large number of misprints.
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order of magnitude of the energy flux. The relation (la) allows us to
express g°k in terms of the g~ (Ct, À = 1, 2, 3). The spatial components
rÂ.(x) of the momentum density of the emitting solid, from which 9~ can
be determined, are in general not well known ; they depend on the nature
of the forces acting between the lattice constituents. Reference [1] shows
how the integral over T~(x) can be transformed in good approximation
into integrals over T°°(x) if the extensions of the source are small compared
to the wavelength emitted and its motion is nonrelativistic. The latter

condition is even fulfilled in the present case; however, the source cannot
be considered small compared to the wavelength, as in the multipole expan-
sion. The extensions of the radiating solid may exceed considerably the
wavelength of the gravitational radiation. In this case, the method has

to be generalized.
Neglecting the interaction with gravitation, the e. m. density of the source

of the gravitational field is conserved :

The retarded tensor components are :

where r is the distance from x’ to the observation point x. Therefore :

UA0153 ’

The derivatives w. r. t. XIX in the first term on the r. h. side of eq. (4a) are
assumed in this context to act only on the spatial part x’ and not on r in
the term xo - r which stems from the retardation.

Forming the divergence :

where the index n in Tin denotes that component of the direction pointing
from x to x’. Accordingly :
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The integrands of the following integrals are divergence expressions so
that they can be transformed into surface terms which vanish in case of a
spatially restricted source:

The summation convention for Greek letters extends from one to three.
The derivatives on the I. h. side of eqs. I-IV have been written as total

derivatives although they refer only to one component of x; this serves
to indicate that each derivative includes even the space dependent retardation
term: xo - r; this distinguishes the derivatives on the 1. h. s. from the
derivatives which in eq. (4a) were denoted by a comma. Considering the
case of a spatially restricted source one can make use of the fact that the
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r. h. sides of eqs. (4d II and III) vanish to bring the r. h. side of eq. (4d VI)
into the form :

or : o

even these integrals vanish in case of a localized source.
We shall specialize to the case when r = j jc 2014 ~ I is much larger than

both, the wavelength of the gravitational radiation as well as the extension
of the source. Terms of higher powers of r -1 can thus be neglected. The

motion of the source is nonrelativistic so that the rest mass of the mole-

cules contributes mainly to T°° and the energy density of the fields acting
between these molecules can here be neglected compared to it. The contri-

bution from terms of the form T°°,oo are then in general much greater than
from terms of the form T°n,°° and The first forms in a way the analog
of magnetic moments whereas the last constitute some higher moments
that have no analog in electromagnetic theory [1]. Neglecting of all these
smaller terms allows us to transform the radiation field of eq. (2a) with
the help of eq. (2b) and eq. (4d, e) into :

denotes here again the value of retarded w. r. t. the point x.
One arrives thus at the conclusion that the quadrupole approximation

can be replaced by the retarded quadrupole approximation if one deals
with an extended body.

III. DETAILS OF THE CRYSTAL MODEL

We consider here the gravitational radiation resulting from the vibrations
of crystal lattices. We shall see that it suffices to consider just one such
model because the results are of a form that is quite general. The nuclei
of the lattice constituents provide the principal contribution to the energy

ANN. INST. POINCARÉ, A-Xt-3 21
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density T°°. We assume the validity of the adiabatic approximation for
the electron states. The electrons in this approximation follow the motion
of the center of gravity of the molecule or atom adiabatically. The validity
of this assumption depends on a large ratio of the magnitude of the energy
level differences of the electronic states to those of the states of the lattice [3].
The adiabatic approximation results in the existence of a potential energy
which governs the motion of the lattice constituents. This potential
energy is a function of the position of all the heavy particles of the lattice.
Restriction is made here to the case of a Bravais lattice with a single atom
as the basis. We assume the existence of periodic boundary conditions
with N atoms per periodicity interval. The potential energy V(jCi... xN)
can be expanded in powers of the deviations u(n) from the mean positions R~
of the lattice constituents. Thus for the nth particle :

and the potential energy is :

(The summation convention for Greek indices extends again from one
to three.)
The anharmonic terms of powers higher than the second in u give rise

to the phonon-phonon interaction as well as to thermal expansion, etc,
We shall later take into account in a phenomenologic way some of the
effects which these higher terms produce. Here we shall treat the excitations

of the model of a simple cubic lattice in the harmonic approximation. Forces

of short range acting between the heavy particles are assumed so that the
contributions to V stem mainly from the interaction of neighbouring par-
ticles. We include the interaction of nearest, second- and third nearest

neighbours (these include all the neighbouring lattice points along the edges
of the cubes as well as along their face and body diagonals). The rest of

the terms of the potential energy are neglected because of the short range
of the forces. We consider saturated units in order to avoid as far as

possible long range electromagnetic fields which compete with the gravi-
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tational fields. A crystal of the Van der Waals type may be closest to our
model. The restriction to the harmonic approximation excludes such

effects as thermal expansion; one can in this approximation consider the
mean position x = R of the lattice constituents as the equilibrium position.
The potential energy at this position V(Ri ... RN) is then a minimum so
that

The potential energy then is :

Assuming central forces between the lattice points, the periodicity of the
lattice allows us to write this in the form :

where Fp(n) is the p-component of the force acting on the nth particle as a
result of a unit displacement from equilibrium position of the mth particle
in the a-direction. The potential energy is not altered by displacements of
the crystal as a whole so that:

The crystal assumes a state of equilibrium even if it is subjected to a uniform
strain. The displacement of the nth lattice point in such a state is propor-
tional to a component of Rn. The equilibrium condition is thus :

The invariance of the potential energy w. r. t. rigid rotations of the crystal
gives rise to additional conditions between coefficients of different powers
of the displacements. To fulfill these rigorously requires terms beyond the
harmonic approximation. The conditions for terms up to the second

power are in our case :
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depends only on the difference of the vectors R which deter-

mine the mean position of the particles forming the lattice ; its value is due

to the periodicity of the crystal determined by m-n alone.

We denote by  t (  = 1, 2, 3) three mutually perpendicular vectors each

of which is parallel and equal in length to one of the edges of an elementary
cube of the lattice. The only coefficients Rm) that do not vanish
are :

No summation is to be performed here over double indices. c, Ci can

each assume the values ± 1. The short range of the forces requires that
neighbours along the edges of the cube interact much more strongly than
neighbours along a face- or body diagonal so that :

We shall use the expressions :

their values can be expressed in terms of the constants y, ~, ~ and the lattice
constant a :
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The matrix Y_.0i) assumes thus the form :

The Hamiltonian of our system is :

The equations of motion are :

The angular frequencies of the normal modes of the system are determined
by the equations :

The periodicity of the lattice implies that the solutions of these equations
are of the form:

(see ref. [3]) consequently:

expressing U IXJl in terms of eq. (2b) this becomes :

Here

"f* ... , "~ ,

to obtain real values for UIX/l.
m is the mass of the atom or molecule that forms the lattice.
The eigenvalues mw2 are found by solving the equation :
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The resulting equation is of the third degree and the solution is a function
of the six parameters We consider here the particular case of
lattice waves propagating in the direction of one of the body diagonals of
the elementary cube. The three coefficients are in this case equal to
one value e(k) and in the same way all are equal to one value f(k).
There are two mutually perpendicular eigenvectors :

with the same eigenvalue :

and one eigenvector parallel to k :

with the eigenvalue :

IV. QUANTIZATION OF THE LATTICE
AND THE EMISSION OF GRAVITATIONAL RADIATION

The solutions of the equations (III.3a, e) constitute lattice waves. The

eigenfrequencies are expressed as functions of the wavelength = 2n/k
by inserting the expressions of eq. (III. 2c) for e(k) and /’(A:). Neglecting
for the moment the smaller constants 4&#x3E; and 03C8 one finds :

In solids assumes values for which the phase velocity is smaller by
a factor of about 10- 5 than the velocity of light. The gravitational waves
propagate even in the crystal with a velocity that is practically equal to
that of light because their interaction with matter is extremely weak. The

phase velocity of electromagnetic waves in the crystal is c/n where n is the
index of refraction. The large ratio of gravitational to elastic wavelengths
prevents an elastic body which vibrates with one given frequency from
coherent emission of gravitational radiation if its extensions exceed the
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order of magnitude of the acoustic wavelength. J. Weber was led by this
fact to introduce forced oscillations of his classical elastic body so that its
vibrations remain in phase with the gravitational radiation [4]. The diffi-

culty was however apparently not considered by Mironowsky in his semi-
classical treatment of the thermal gravitational radiation of an elastic

body [5]. A crystal lattice composed of more than one constituent may be
capable of optical vibrations that have a phase velocity equal to that of
gravitational waves. Optical lattice vibrations of higher frequency and
the correct phase velocity are however difficult to excite ; electromagnetic
waves which may serve for the excitation have themselves been shown to

propagate with a phase velocity that is too small. The superposition of
two lattice waves of acoustical character with somewhat differing frequencies
offers another possibility of generating gravitational radiation. The

radiation emitted according to quantum theory is in general not of the same
frequency as the vibrations of the source ; its frequency is the difference of
the frequencies of two different states of the source. The differing assump-
tions about the process of emission of radiation in classical and quantum
theory must yield compatible results in the description of slow vibrations of
a macroscopic source. According to the classical theory the position of
every small part of the source is known as a function of time. This situa-

tion can only be approximated in the quantum theory by superposition of
states of different frequencies of vibration. The matrix elements of tran-

sition of these different states also superimpose thus approximating the
classical result. One has in addition to this case in quantum theory (at least
within the harmonic approximation) the case of excitation of lattice waves
of a sharply defined frequency. Such vibrations may be excited for example
with the help of a laser. We consider here the superposition of two such
lattice waves of frequencies 03C9 and o/ and wave vectors p and p’ so that
p + p’ - k and co + D’ = cv" are equal to the wave vector and the fre-
quency of a gravitational wave propagating in the z-direction. The quan-
tum theory predicts a transition where one quantum of each of the two
states of vibration disappears and gravitational radiation of the frequency ~/’
is produced.
The quantization of the lattice vibrations is achieved by replacing the

classical entities by Hermitian operators satisfying the

commutation relations [4] :

with any two p’s and any two u’s commuting. One introduces then as
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new variables the amplitudes of excitation of the normal modes of vibra-
tions of given k :

which fulfill the commutation relations :

with any two a’s and any two a+’s commuting. Then :

and the Hamiltonian (III. 3) becomes :

a normalized state of n quanta (phonons) of polarization A and momen-

tum p as well as n’ phonons of polarization ~/ and momentum p’ becomes :

where I 0 &#x3E; is the state of zero phonons.
The classical expression (see eq. II. 2c) :

is in our approximation replaced by the matrix element of the same expres-
sion formed out of the corresponding operators between the initial state

I ~(~)~V) ) and the final state (n - 1)(~)(~ - 1)(~V) ). The pre-
cise values of depend on the character of the forces acting between
the lattice constituents. The overwhelming contribution stems however
from the rest masses; the contribution to (2e) due to the rest masses is:
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One forms thus the matrix element :

The vectors X(n) of eq. (2e’) are directed from the center of gravity of the
crystal to the instantaneous position of the particle in the nth cell (*).
One can replace xa(n) by M"(M) in eq. (2f ) because only the displacements u
contribute to the expression of eq. (2e’) after the time derivatives are taken.
The shape of the crystal is suitably chosen so that its extensions in one

direction let us say the z-direction is much greater than in any direction

perpendicular to it. The point P where the gravitational radiation should
be observed is then chosen on an axis (z-axis) which is perpendicular to the
smallest surface of the radiating body and traverses its center. The dis-

tance from the center of the crystal to the observation point P is large
compared to its extensions; one can therefore replace in good approxima-
tion the factor 1/r of eqs. (II. 2c and 2e, e’, f ) by the constant distance R
between P and the center of the crystal. The retardation of different

points on one x-y plane of the crystal with respect to P differs the less the
larger R is chosen. Points of the same x-y plane thus have due to our choice
of the extensions and distances practically the same retardation. Substi-

tuting the expression of eq. (2c) for u the matrix element eq. (2f ) becomes
then:

The momenta and frequencies have been chosen in such a way that :

falls in the z-direction. The crystal momenta p, p’ are almost antiparallel
because their absolute values are so much greater than that of the wave

vector of the gravitational radiation k. The exponentials of eq. (2f’) is

(*) One may of course choose the origin of the coordinate system at a point other
than the center of gravity but it can be shown that the difference does not contribute to
the time derivative of the mass quadrupole moment.
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The retarded expression obtained from (2g’) is :

The effect of the retardation is thus compensated by the factor exp i(p + p’). R
so that crystal momentum is conserved and the whole crystal can contri-
bute to the emission. This result is exact in the above approximation
which is justified by the choice of the dimensions.

V. DETAILS ON THE EMISSION

OF GRAVITATIONAL RADIATION

The energy flux density of the gravitational radiation is assumed to be
equal to the ~’component of the energy-momentum pseudotensor in a
coordinate system in which the De Donder condition (II.la) holds [1].
Expressed in terms of

this condition reads :

The source of the gravitational fields is of the time dependence: ~ ~ ~ t
with Ct/’ == co + and thus because of = - ~~,o ~

Considering the harmonic time dependence and the retardation lfJIXY(X) is

according to eq. (II. 2c) an expression of the general form :

thus

The part of that survives at large distances from the source is propor-
tional to - where n = (x’ - x - 9 [ . The components
of n do not change appreciably at different points of the source if the exten-
sions of the source are small compared to the distance R. Specializing to
the dimensions and position of the source quoted in section IV one sees
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that in case of an observation point near the z-axis n3 is the only significant
component of n. Therefore due to eq. (la) ~,3 ~ 2014 and due to

eq. (2a) even :

so that :

and furthermore : ~ = ~ ~ 2014 (p~~ + ~~~)

use has again been made of the fact that the distance to the observation
point is large compared to the source.
The terms of ig that remain after cancellations are in this case :

The real part of the lpik is to be inserted in this expression. Writing:
lpik = one obtains the time average of to :

of eq. (2) is then expressed in terms of the matrix elements of eq. (IV. 2f )
and the cpYIX(X) resulting from eq. (II. 2c, V. 2) and these expressions are
inserted into eq. (3a). The resulting flux density in the immediate neigh-
bourhood of the z-axis is :

Use has been made of the fact that the two phonon frequencies co and cv’ are
nearly of the same value and co + eo’ = co" in order to obtain the second
and third expression of eq. (3b) from the first.
The solid angle Q centered by the z-axis within which the gravitational

energy flux density is of the same order of magnitude as that of eq. (3b)
is determined by the relative phase of the product of the retardation factor
exp fco"r and the phase factor of the gravitational wave : exp z’).
The wave vector k of the gravitational wave and the vector -n (see eq. (2a)
form a nonvanishing angle if the observation point is sufficiently off the
z-axis and this causes a phase difference of the two exponential factors of
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opposite sign. The phases do not cancel anymore in this case. The maxi-

mal phase difference that can be admitted without destructive interference
from different sections of the crystal is about n/4. Thus cos ~),

~~ ~ 7T/4 where 1/1 denotes the angle formed by k and - n and L is

the length of the crystal in the z-direction. The solid angle Q is of the order

of 1/12 ~. 1 2 1t{co"L). The total rate of radiation emitted is thus of the

order of or expressed in terms of the energy density
p = E/V (volume of crystal V = 
We have restricted hitherto our considerations to the harmonic approxi-

mation. Consideration of terms of the third and higher orders of u in
the expansion of the potential energy (eq. (111.1)) takes account of the
interaction between phonons which results in a limited lifetime of the

phonons. The energy of each phonon is thus not precisely determined
and there results a finite line width. The line width is in general large
compared to the difference in frequency D 2014 ~ 10-500 of the two

colliding phonon beams which give rise to the gravitational radiation;
one may therefore consider two colliding lattice waves of equal frequencies.
Frequencies OJ and out of the whole domain of frequencies will add up
to produce gravitational radiation. The resultant gravitational field will
form a pulse of radiation of about equal lifetime as the phonons.

Equation (3b’) has been derived for a vanishing angle with respect to
the z-axis. Consideration of the phase shift at a small non-vanishing
angle may reduce the intensity up to one order of magnitude.

VI. DISCUSSION OF THE RESULTS

The gravitational radiation considered results from the anihilation of
two acoustical phonons. The frequencies of the two phonons differ only
by a fraction of the order of 10- s and their wave vectors must be almost
antiparallel in order to fulfill the law of conservation of crystal momentum.
The emission of photons by the anihilation of two phonons is also possible.
The difference ~ 2014 00’ I for a given 00" = 00 + cc3’ must be larger in this
case by a factor equal to the inverse index of refraction than in the gravi-
tational case. The most serious competition to the emission of gravitational
radiation stems rather from the phonon-phonon interaction than from
rivaling photon emission; the latter can be reduced by suitable choice of
the material. The phonon-phonon interaction results in a limited phonon
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life time and by consequence in a frequency spread. This spread exceeds
in general the required frequency difference of the two phonon frequencies;
one has thus to deal with two phonon beams of the same frequency distri-
bution and opposing directions of propagation. The frequency spread of
the gravitational radiation will be of the same magnitude as that of the
phonons and so is the pulselength of the gravitational wave resulting from
the anihilation of two phonons; one can view the process as the anihilation
of two particles of finite life time. The intensity resulting from two pho-
nons of fixed frequencies and crystal momenta remains of the same order
of magnitude within a solid angle of about where L is the length
of the crystal contributing coherently to the emission. The rate of emission

is proportional to each of the phonon occupation numbers of the two
phonon states ; it does not depend explicitly on the properties of the crystal.
The relation (V. 3b’) does not contain the mass of the lattice constituents
and not even the mass of the whole crystal. The power emitted is thus at

its best proportional to one quarter times the square of the kinetic energy
of the crystal vibrations. This dependence seems to be in contrast to the
relation usually given for the rate of emission of gravitational radiation of
nonrelativistic systems; the latter depends on GM2L403C96 where M is the
rest mass of the system and L its maximal displacement from an equilibrium
position. Agreement with the relation (V. 3b’) is, however, obtained in
the case of a harmonic motion by expressing a factor ro4 in terms of the
mass M and the centripetal force (which together determine co). Generally
one can show in the case of central forces decreasing with the distance
that the second time derivative of the quadrupole moment of a mass point
is at most of the same order of magnitude as its kinetic energy. The mass

which determines the power of the gravitational radiation resulting from
such a nonrelativistic motion is thus that of the kinetic energy of the system
and not its rest mass.

The angular distribution of the radiation is peculiar; if the crystal momenta
could be adjusted precisely enough emission should occur preponderantly
into a small solid angle in one direction only. The order of magnitude of
this solid angle is (~,/L) where is the wavelength of the gravitational radia-
tion. A shapely focused beam of radiation can in any case be achieved by
suitable choice of the crystal shape.
The smallness of the gravitational constant can only be compensated

by high energy densities to improve the rate of emission. Expressed in
terms of the energy density p of the crystal vibrations and the volume V of
the crystal the number of quanta emitted per second is according to
eq. (V . 3b’) at most: 5.10-’p2V2/(L); p has been expressed here already
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in Joules per cc. The crystal volume within which the oscillations can be
excited is in general limited. The energy density of lattice vibrations of a
given frequency can even for a short period not exceed 100 Joules per cc.
One graviton per minute should therefore be an upper limit for the rate
of emission of one crystal. Such an intensity is however as we shall see
much too low for detection. A higher limit of the energy density p is obtai-
ned for other processes than simple lattice vibrations. Phonon assisted

electron transitions allow a considerably higher energy to be stored in the
crystal and may possibly also emit gravitational radiation coherently.
The gravitational radiation of crystals remains of no practical use unless
better methods for the detection are discovered. The relation (V. 3b) shows
that the transition probability is proportional to the phonon occupation
numbers n, n’. The detection of one additional phonon becomes however
very difficult if these phonon occupation numbers are already high. A

crystal is thus not very suitable for the detection of gravitational radiation
of high frequency. A different method of detection is the absorption by
atomic or molecular quadrupole transitions; it was already mentioned
briefly in ref. [1]. A large number of molecules which are capable of per-
forming the quadrupole transition in question from their ground state are
cooled down so that thermal excitation is practically excluded. Absorption
of a graviton results in an excited state which can decay quickly to the
ground state via two electric dipole transitions. One of the resulting two
photons is likely to be trapped by the other molecules in the ground state
whereas the second which is in general of a different frequency may be
observed. The absorption cross section of one molecule for gravitational
radiation of wavelength A is where R denotes the ratio of gravitational
to electromagnetic transition probabilities [1] ; it is for molecules at most
R = The concentration of the radiation into a narrow beam might
facilitate this method of detection somewhat. A volume V of matter

consisting of such molecules would require a flux of (;’2V)-1 .105 gravi-
tonsfcm2.sec to achieve one absorption per day. We do not believe that

any human effort could at present lead to the successful performance of
an experiment of this kind but possibility of its realization may not be too
remote.
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