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Section A :

Physique théorique.

RESUME. - L’objet de cet article est de développer une série de pertur-
bation pour la fonction d’Hamilton-Jacobi d’un système mécanique dont
le potentiel peut se développer en puissances d’un petit parametre B. La

solution du problème non perturbe correspondant a e = 0, est connue

exactement. La série de perturbation est tout d’abord obtenue pour le

mouvement d’une particule dans un champ de potentiel. Ensuite, on deter-
mine la solution pour une particule chargée dans un champ electromagne-
tique. Finalement la méthode est generalisee pour un système mécanique
general qui peut etre décrit par un hamiltonien possédant un nombre arbi-
traire de variables canoniques.

ABSTRACT. - The object of the paper is to develop a perturbation expan-
sion of the Hamilton-Jacobi characteristic function of a mechanical system,
for which the potential function possesses an expansion in terms of a small
parameter s. The solution of the unperturbed problem corresponding to
G = 0 is assumed to be known exactly. The perturbation expansion is
first obtained for the motion of a particle in a potential field. Next it is
found for the motion of a charged particle in an external electromagnetic
field. Finally the method is generalized for a general dynamical system
which can be formulated in terms of a Hamiltonian with an arbitrary
number of canonical variables.
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1. - INTRODUCTION

The basic principle of the perturbation theory in classical mechanics,
where the Hamiltonian can be expressed in a power series of a small para-
meter, consists of determining suitable canonical transformations, which
reduce the problem to a stationary one, with successive degree of accuracy
in the small parameter appearing in the Hamiltonian [1]. This, in practice,
is to be attained by solving partial differential equations at each step. Alter-

natively, one has to express all the quantities in terms of time and each of
the successive canonical variable may be obtained by quadrature [2]. The

Lagrange-Poisson’s method of variation of parameter [3] is also, in practice,
equivalent to it. Though the aim of a dynamical problem is to express all
the momenta and coordinates in terms of time, yet in many physical pro-
blems one is interested to know integral surfaces and orbits expressed in
terms of the coordinates rather than expressed in parametric forms with
time. In this respect it is very convenient if one can find a perturbation
expansion of the Hamilton-Jacobi characteristic function. This is due to

the unique role of the characteristic function (we use simply the characte-
ristic function as abbreviation for the Hamilton-Jacobi characteristic

function) in a dynamical problem, as the momenta, the integral surfaces
and the evolution in time are obtained by partial differentiation of the
characteristic function. Thus once the perturbation expansion for the cha-
racteristic function is developed, any dynamical variable may be determined
to the desired degree of accuracy in the small parameter.

There is another important aspect of this investigation. In most of the

problems of classical mechanics, e.g. astronomical problems, one is usually
interested in the effect of small perturbations on an unperturbed simply or
multiply periodic motion. As such, in many cases it is suflicient to know
the time-average effects of the perturbation. Recently in many physical
problems in laboratory, in the earth’s neighbourhood as well as in extra-
terrestrial systems, one is not satisfied only with the knowledge of time-
average effects of perturbation. But it is imperative to know its effect in
the process of evolution (in time) of the motion. This necessitates the deve-

lopment of a perturbation theory which has general appeal.
In short the method consists of solving the Hamilton-Jacobi partial diffe-

rential equation with successive degreee of approximation in powers of
the small parameter in the Hamiltonian. It should be mentioned that
such an expansion has already been developed previously by various
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authors [4]. But this is in terms of action and angle variables in case where
the Hamiltonian (generally the unperturbed Hamiltonian) is separable in
the variables. We have tried to develop the perturbation expansion of
the characteristic function for a dynamical system without these limitations.
We need not restrict ourselves to problems for which the unperturbed
motion is simply or multiply periodic. An important point to be mentioned
is that the unperturbed motion being known completely, i. e. the unper-
turbed characteristic function being known exactly, the problem of the
determination of higher order terms is reduced to successive quadratures.
The method consists of developing the characteristic function correspond-

ing to the motion of the system which satisfies given initial values of momenta
and coordinates. It still represents a class of solution as the initial quan-
tities may have arbitrary values. This programme is carried out for the

motion of a particle in a potential field, in section 2. The convergence of

the perturbation series for the characteristic function is discussed in the
Appendix. In section 3, the method is extended to the case of a charged
particle in an external electromagnetic field. Finally in section 4, it is

generalized to the case of a dynamical system with an arbitray number of
canonical variables.

2. - THE MOTION OF A PARTICLE
IN A POTENTIAL FIELD

Let m be the mass of a particle moving in a potential field U(r), which
does not depend explicitly on time. It is assumed that U(r) may be expanded
in a power series of a small parameter 8, in a given region of space; thus

The characteristic function 8(r, t) satisfies the Hamilton-Jacobi partial
differential equation

where p, the momentum of the particle, is given by
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Since U(r) is independent of time, it follows from Eqs. (2) and (3) that

8(r, t) is of the form

where E is the constant energy of the particle. The differential equation
for time-independent part S(r) of the characteristic function 8(r, t) is
found to be

~ 
-+

Initially, i. e. at t = 0 let the position of the particle be ro and let its velocity
-+ 

be V 0 there. E is an integral of the motion, it can be written as

- m - -
where Eo = ko + Uo(ro), ko = - (Vo . V 0) the initial kinetic energy and

Un10).
-+

We assume that S(r) can be expanded in a power series of 8, i. e.

On substituting the expressions for S, U and E from Eqs. (7), (1) and (6)
respectively in Eq. (5) and equating the coefficients of en (n = 0, 1, 2, ...),
we get

It is clear from Eq. (7) that So(r) is the time-independent part of the unper-
turbed characteristic function, which should satisfy Eq. (8) with the same
initial condition. Since we assume that the solution of the unper-
turbed equation is known exactly, the complete integral of Eq. (8), i. e.

So(r; ko, kl, k2) is already determined. ki and k2 are two parameters to
be determined from the initial condition,
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It follows from

that

and

are the two integral surfaces of the unperturbed problem. We can take

8 _--- and 1/1 as curvilinear coordinates. This is admissible as the
Jacobian of the transformation,

is not zero (excluding some trivial cases). They are not in general ortho-

gonal since 0, though both of the latter surfaces are ortho-
gonal to 0 = constant surface.

Since e = So(r) is known we can determine Si, S2, successively by inte-
grating Eq. (9). For n = 1, Eq. (9) leads to

This determines S 1 except for an additive part which is a function ç and ~.
But this ambiguity is apparent, as what we need is a complete integral.
Hence we can write

where ai and P 1 are constants. It is clear that the above integral is a
complete one, as a 1 and fli are essential parameters. The constants a I

and fli are to be determined from the condition

as the initial condition is to be satisfied for all orders of the perturbation

expansion. Thus ai and PI depend on kl and k2. Finally, since So(r ; ko,
kl, k2) is a complete integral of Eq. (8), So + sSi is also a complete integral
which satisfies Eq. (5) upto first order terms in e.
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From E . 14 one observes that (~S1 ~03B8)r=r0 - 0 ; hence E . leads
r = ro

to two equations to determine a l and which are thus given by

This determines S 1 uniquely. For n = 2, Eq. (9) leads in the similar
manner

The integration can be carried out after substituting the expression for S 1
from Eq. (14) in the integrand. The constants a2 and 03B22 are given by

Hence S~ is determined uniquely. In general, from Eq. (9), one can write

Thus if S2, ..., Sn-l are known the integration on the right hand side
of Eq. (21) can be performed. One observes that the integrand on the right

hand side is zero at r = ro, hence = 0 for I = 1, 2, ..., n - 1.

So the constants an and Pn may be determined from the remaining two equa-
tions of

Hence
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Thus knowing the coefficients of the expansion for S, Eq. (7) upto (n - 1 )
degree of ~, one can find the coefficients of E" by quadrature. Hence the

perturbation expansion of 8(r, t) can be found successively to any desired
degree in 8. The question of convergency of the series, (Eqs. (7) and (21))
for S is discussed in Appendix. Here we only make an observation that

Eo - Uo, which is equal to the unperturbed kinetic energy of the particle,
appears in the denominator; so that the integrals in Sn (n = 1, 2, ... ) are
undefined if velocity vanishes for the unperturbed motion. This is not

unexpected as the perturbation method is justified only for small relative
change of the kinematics of the particle. This situation is comparable to
that due to small denominators in the theory of perturbation of multiply
periodic motion. Finally it is clear that the more the initial kinetic energy,
i. e. the more the magnitude of Eo - Uo in the interval, the more rapid is
the convergence of the series as the degree of this factor in the denominators
multiply in steps in each order of the perturbation expansion. The charac-

teristic function 8(r, t) is thus given by

from Eqs. (4) and (7). The perturbation expansion of the momentum
is obtained form Eq. (3) as

The two integral surfaces in powers of B are obtained from

and

The constants on the right hand side of Eqs. (26) and (27) are the values
- -

of the left hand side at r = ro. In order to find the evolution in time one

observes that

.

i. e.

-+ -+

The constant as before is the value of the left hand side at r = ro. The
coordinates may thus be expressed in terms of t, from Eqs. (26)-(28).

ANN. POINCARÉ, A-Vl l-3 16
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3. - THE MOTION OF A CHARGED PARTICLE
IN AN ELECTROMAGNETIC FIELD

We consider the relativistic Hamilton-Jacobi equation for a particle of
charge q and rest mass m in an external electromagnetic field. Because of
its wider range of applicability and elegance of form we work with relati-
vistic equation. One can pass conveniently to non-relativistic limit when-
ever needed. Let the electromagnetic field be derivable from the poten-
tial (A, 0). As before we restrict ourselves to time-independent fields so
that we can take the potential to be also independent of time. Let the

potential be expressed in power series of a small parameter s, i. e.

__ 

-

The characteristic function 8(r, t) satisfies the Hamilton-Jacobi equation

_
The momentum p of the particle is given by

- -

As before since A and C are independent of time, t) can be written
in the form

where E is the constant energy of the particle (1). The equation for the

time-independent part S(r) of S(r, t) is given by

Since E is an integral of the motion and at t = 0, the particle is at ro with
~ 

- 
~ 

velocity E is given from Eq. (33),

(1) 8 is not a gauge invariant quantity but the observable quantities are gJ:1ge
invariant. This follows from the fact o - 0 2014 - 2014~ and A --~ A + 

c at
from (Eq. (30)) to 8 - 8 + fq so that p and E are invariants from Eqs. (?1)
and (32). Next since the integral surfaces and the evolution in time are obtaLied
by differentiating 8 with respect to the constants of integration the 
term namely f does not contribute anything.
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where

with

f) 
- -

and 1&#x3E;~ stands for We assume a power series expansion of S(r)
as in Eq. (7) of the previous problem. On substituting this expansion of
- ~

S(7*) and the corresponding expressions for (A, 1» and E from Eqs. (29)
and (34), in Eq. (33) and equating the coefficients of ~ we get

So(r) is again the time-independent part of the unperturbed characteristic
function which satisfies the Eq. (36). The complete integral of Eq. (36)
is known as we have assumed that the unperturbed problem is exactly
solved. Let So(r ; k2) be the complete integral with two parameters
A’1 and k2 which may be assigned as before by the initial condition (Eqs. 10)).

£ 1 and ~S0 ~k2 are constants in this case also. We proceed exactly as before

and introduce curvilinear coordinates 8 --_ S (r), 03C6 _ and

_ ma be noted in03C8 = 2 
It may be noted that VSo. V 1 X V 2 =F 0 In

general. Thus we can determine Si, S2, ..., successively by integrating
Eq. (37); for n = 1, the complete integral of Eq. (37) is
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where ai and 03B21 are constants. They are to be determined from

Since ({ V0 - VSt - qAl }};: ~ = 0, Eq. (39) determines a~ and fli
uniquely, in the same manner as Eqs. (16) and (17). In general for any n

where ?~ stands for the right hand side of Eq. (37). The integration may
be performed if S/s, for all I  n, are known. a~ and Pn are given by

and

It is clear that

is satisfied for 1 = n if it is satisfied for all I  n; so that the initial condition
is satisfied to any order of the perturbation expansion. Thus the coeffi-
cients of the perturbation series may be obtained by quadrature. The

characteristic function 8(r, t) is obtained as in Eq. (24). The perturbation
expansion of the momentum is given by

The expressions for the coordinates of the particle in terms of time may be
obtained as before.

4. - A GENERAL DYNAMICAL SYSTEM

In this section we consider very briefly the perturbation expansion of
the characteristic function of a general dynamical system with an arbitrary
number of independent variables. Let qi’s (i = 1, ..., N) be the genera-
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1ized coordinates and p;’s be the corresponding momenta. The canonical

equations of motion are

where H is the Hamiltonian, which is a function of q;’s, p;’s and a set of
functions All’s (p, = 1, ..., M) which determine the external field. In

the special cases considered above All’s are the potentials. As before

we assume A"‘’s as well as H do not explicitly contain time. Further let

All be expressed in a power series of a small parameter e, i. e.

The characteristic function 8(qi, t) satisfies the Hamilton-Jacobi equation

We assume that H can be expanded in powers of pi’s and All’s. The gene-
ralized momenta are given by

As before, since H does not contain time explicitly, 8(q;, t) can be written
in the form

where E is a constant and corresponds to the energy. We assume the

perturbation expansion of S(q;),

so that from Eq. (49)

Let the initial condition be, at t = 0, ~ = qi and p; = pi (i = 1, 2, ..., N) ;
so that we can express E from Eqs. (47) and (49)
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where A~, H° stand for and ~, A"°). The summations for Jl,
v are from 1 to M and those for i, j’s are from 1 to N. With the help of
Eqs. (46) and (51), one can expand H in the form

Substituting these expansions of E and H from Eqs. (52) and (53) in the
Hamilton-Jacobi equation and equating the coefficients of the same powers
of 8, we get

Eq. (54) is the unperturbed Hamilton-Jacobi equation, hence So, the time-
independent part of the unperturbed characteristic function, is known

exactly. Let the complete integral of Eq. (54) be H~, A:,); are

N - 1 parameters, f = 1, ... N - 1. The N - 1 integral surfaces are 

In order to integrate the remaining equations we proceed as before.

Let us introduce curvilinear coordinate systems 03B80 ~ S0(qi) and 0, = ~S0 ~ki
i

(/ = 1, 2, ..., N - 1). It is easy to see that the Jacobian
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in general. Now since

where

we can integrate Eqs. (55) and (56) successively. The complete integral
of Eq. (55) is

the constants 0~1 are to be determined from

so taht (~S1 ~qi)qi=q0 i = 0. Similarly

where F2 is the left hand side of Eq. (56), excluding its first term and

The integration can be performed if S ~ is known. In this way we can

successively find S3, S4 and so on. Since the expressions are very much
involved we omit the general term. The perturbation expansion of the
momentun is obtained from Eq. (51) and the expressions for the coordinates
may be obtained as in the previous cases.

It is clear from above that the procedure can also be applied to the case
of more than one small parameter. The method can also be extended to

the case of time-dependent field, which will be followed up.

I wish to express my thanks to the Atomic Energy Commission, Govern-
ment of India for their kind support.
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APPENDIX

The perturbation series for ~S,

clearly converges for I e [  1 if [ V Sn [ is bounded for all n. It also converges
even in case [ V Sn [ ’s are not bounded but satisfy a kind of Lifschitz’ condition;
i. e. there exists a ~. and K independent of n such taht

for all n &#x3E; 0. The convergence of the series follows form the fact that

where ’ is an integer such that {jL + 1 Since the right hand side
of (A3) converges as 72 -~- 00 for I e  1, the series (Al) also converges. Hence

so long as I V Sn [ ’s do not increase with n as where [.L(n) increases without
bound with n for large values of n, there is always a domain, in the neighbourhood
of a (with I e [  1 ), in which the perturbation series converges. It is difficult
to assert the condition for this. However, for the convergence of the series, it is
necessary that U£ - Un are analytic in 0, p, ~ in the neighbourhood of 80, CPo’ ~
(i. e. of ro) for all n and similar condition for Au.’ s and 0. It is to be noted that
since we have assumed the possibility of expansion of Un in the given region of
space U~ 2014 Un’s satisfy an inequality of the form (A2).
Next it has already been mentioned that Q, which is proportional to the unper-

turbed kinetic energy of the particle in the first case, should be non-vanishing.
In general it can be stated that in the domain of validity of the perturbation expan-
sion the unperturbed characteristic function, during the evolution in time, should
not be in the neighbourhood of any of its extrema. It is also expected from the
very fact that we are only trying to study small quantitative changes due to the
perturbation. The rate of convergence depends predominantly on the magni-
tude of Q.
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