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Gravitational motions of collapse
or of expansion in general relativity

G. C. McYITTIE

(University of minois Observatory Urbana, Illinois, U. S. A.).

Ann. Inst. Henri Poincaré,

Vol. VI, n° 1, 1967,

Section A : .

Physique théorique.

ABSTRACT. - Einstein’s equations of general relativity are solved exactly
for a class of spherically symmetric distributions of matter in motion.
The solutions for the interior of the distribution are obtained by using
the notions of a co-moving coordinate system and the isotropy of internal
stress, which is reduced to a pressure. This is zero at the outer boundary
of the configuration and density and pressure gradients exist within the
distribution. The speed of the motion is calculated. The theory has
analogies with that of spherical blast waves in classical gas-dynamics;
it is also applicable to gravitational collapse.

The object of this paper is to describe a class of solutions of Einstein’s
equations of general relativity. They refer to a spherically symmetric
mass of material in radial motion which may either be collapsing onto
the central point (gravitational collapse) or be exploding from that point
(spherical blast). There is no limitation on the speed of the motion, apart,
of course, from the restriction that the local speed of the material must
be less than that of light. The results have analogies with the spherical
blast waves of classical gas-dynamics (Courant and Friedrichs, 1948) but
with the additional feature that the gravitational self-attraction of the

material is a controlling element of the motion. The other controlling force
is the pressure gradient. A by-product of the investigation is the discovery
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of the class of solutions of Einstein’s equations to which belongs a particular
case obtained in 1933 by a different method (McVittie, 1933, 1966).
The solutions are obtained from three general conditions: (i) from a

preassigned form for the coefficients of the metric; (ii) from the existence
of co-moving coordinates ; and (iii) from the assumption that the stress in
the material is isotropic. There is no a priori assumption that the energy-
tensor is of the form appropriate to a fluid though presumably most of the
applications of the theory will refer to this case.

Condition (i) consists of the assertion that an orthogonal coordinate
system (t, r, 0, cp) exists in terms of which the metric inside the material
has the form

Here Ro, c are constants, the function f is a dimensionless function of r
and S is a function of t. The functions X, ~ ~ are also dimensionless,
functions of a variable z which is given by

Q being still another function of r. The six functions are unknown a priori
and are to be found. The indices (4, 1, 2, 3) are associated with (t, r, 0, p),
respectively.
The Einstein equations with zero cosmical constant are

where G is the constant of gravitation. It is well-known that, for all

spherically symmetric metrics such as (1), the right-hand sides of (2) vanish
except for

and this means that the only non-zéro components of Tij are T14 (= T41),
T22, T 3 3 and T44. Of these T14 represents the momentum of the

material relative to the coordinate system in the radial direction. If

co-moving coordinates exist, as is demanded by condition (ii), then T14 = 0.
Incidentally, this expresses more than a « coordinate condition » as may
be seen from the following example. Suppose that the matter is collapsing
onto the central point while, at the same time, radiation is moving radially
outwards through the matter. Then T14 would consist of the sum of two

parts, namely (T14)m due to the matter, and (T14)r due to the flux of radia-
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tion. Clearly it would be impossible to find a coordinate system which
followed the matter inwards and simultaneously followed the radiation
outwards. Therefore the condition T14 = 0 not only defines a type of
coordinate system but also implies that all the material has a uni-directional
motion at each point of space and at each instant of time.
The equation (2) for T14 may be computed by the usual methods (McVit-

tie, 1964 a) and leads to the equation (A.l) of the Appendix. Inspection
of this equation shows that T14 = 0 can be secured for arbitrary S, Q
and f, if

Thus the metric (1) now takes the form

The equations (2) for the stress components of the energy-tensor can now
be calculated and are shown in their mixed forms in equations (A.3) and
(A.4). Condition is expressed by

This is a consistency relation (McVittie, 1964 b) which, though it is not a
tensor equation, is a relation that must exist when isotropy of stress is

combined with the form of the metric shown in (4). The equation (5)
yields (A. 5) which is of the form

Since r and y(z) are independant variables-z involves t as well as r it

must be the case that Fi, F2, F3 differ from one another by constant multi-
ples only. Thus are obtained the two ordinary second-order differential
equations (A.6) and (A.7), that involve the two fundamental constants a
and b, and give f and Q as functions of r. There also arises equation (A.8),
another ordinary second-order differential equation. It gives y as a func-
tion of z, which also involves the constants a and b. Thus the problem of
determining y, 7), f and Q is reduced to the solution of three second-order
ordinary differential equations. Moreover the condition for the isotropy
of stress does not involve S which, at this stage, is still arbitrary.
The déterminations of f and Q are discussed in Sec. II of the Appendix.

It turns out that they are expressible in terms of elementary functions and
that there are many different cases. These arise, not only because different
numerical values may be assigned to the constants a and b, but also because
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different combinations of the constants of integration of the equations (A.6)
and (A.7) are possible. An exhaustive analysis of all possible functions f
and Q has not been attempted; instead the methods of integration have
been indicated and specimen solutions have been worked out. A main
concern is the nature of the 3-space whose metric is

to which the 3-space in (4) is conformal. The radial coordinate q defined
by (A. 10) is sometimes advantageously employed in place of r and, indeed,
f itself may on occasion serve as the radial coordinate as is indicated in
equations (A. 15) and (A.16).
A particularly interesting sub-class of functions f is obtained by setting

b = 0. Then f and Q in (A.6) and (A.7) cease to be interlocked and f is
found to have one or other of the expressions

where C is the constant in (A.20). Therefore b = 0 is the condition that

the 3-space (7) should be of constant curvature. Conversely, if f is given
by (8) then b = 0 from (A.7) provided, of course, that the case Q = constant
is excluded. It is easily seen that Q = constant and b = 0 together lead,

by a transformation of the time-coordinate from t to T, to

where f is given by (8). Thus the metrics used in the cosmological models
and in uniform gravitational collapse (Mcvittie, 1964 c) constitute special
cases of (4) which could also be derived from b = 0, , = 0, y = 1 in terms
of the original coordinate t.
The integration of equation (A.8) for y as a function of z is not, in general,

possible in terms of elementary functions (see Sec. III of the Appendix).
To obtain its first integral it would be necessary to integrate (A.25) which
is Abel’s equation. Thus in general numerical integration would be needed
to find y as a function of z. Nevertheless there exist a number of elementary
particular integrals of (A.8), in which one of the two constants of integra-
tion is zero. Their defining first integrals are listed in equations (A.26)
to (A.29). Two of these cases will be considered in more detail presently.
The use of co-moving coordinates might lead to the (incorrect) conclusion

that the speed of the moving material could not be stated. A more serious

source of ambiguity lies in the fact that speed is the rate of change of distance
with time. Since there is no absolute definition of distance in general
relativity, and more than one time is definable, it is clear that speed must
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be to some extent a matter of definition also. With the metric in the

form (4), consider all the material which lies on the pseudo-spherical
surface £ whose radial coordinate is r. As the motion proceeds, the
material will continue to lie on ~ because r is co-moving. However the

« radius » of E at time t may be defined to be

and this could also be regarded as the « distance » of the matter on E from
the origin r = 0. At time t + dt, this distance is u + du where

by the differentiation of (10) treating r as a constant. One definition of
the speed of the material on 2 is obtained by asserting that it is the rate of
change of u with respect to t. The speed is thus v = du/dt where

Alternatively, however, it could be said that a coordinate time-interval dt,
for fixed values of r, 0, p, corresponds to a proper-time interval on 03A3 of
amount

Hence a second definition of the speed could be V = du/ds where

In either case, the speed is proportional to St.
The last stage in the analysis consists in determining the hitherto unspeci-

fied function S(t). The Einstein equations (2) are now reduced to two
which are written out in full in (A.33) and (A.34). The first of these gives
the component T: of the energy-tensor which will be called the density, p.

The second equation gives the three stress components Ti, T;, T~, now
equal to one another. Any one of them will be denoted by - p/c2, where p
is the pressure. It will be seen that p and p involve 7], y, f and Q and also
the still-unknown function S. Moreover p and p are found separately,
which always happens when Einstein’s equations are used « in reverse »
to calculate the energy-tensor which corresponds to a metric of given form.
An analogous situation arises in classical gas-dynamics when the method
of indeterminate functions is employed (McVittie, 1953).
The simplest way of finding S(t) is to impose a boundary condition.

If the region outside the spherical mass is a vaccum, whose metric is that
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of the Schwarzschild space-time, then the pressure at the outer surface
must be zero. Let the outer boundary be the psuedo-spherical surface ~b
on which r = rb. Then rb is constant throughout the motion since r is
co-moving. Thus f, fr, Q, Qr are constants on Eb whereas z becomes a
function of S alone. Hence the condition p = 0 on Eb will produce
from (A.34) an ordinary second-order differential equation for S as a

function of t. From this equation, S could be found, numerically if neces-
sary, and analytically in certain cases as will presently be shown.

In classical gas-dynamics attention is often fixed on adiabatic or isentropic
motions in which p is proportional to a constant power of p and the entropy
of a fluid elements is constant during its motion. Suppose that the present
theory were to apply to a gas. Then it is clear that, in principle at least,
either t or r could be eliminated from (A.33) and (A.34) to give relations of
the form

The probability that r and t could be eliminated simultaneously from (A. 33)
and (A.34) appears to be negligible. But this would be necessary if it was

desired to extract from these formulée a relation of the form p oc pY. In

general therefore it would appear that the present theory gives the analogues
of the non-adiabatic motions of classical theory. Or, at least, of those in
which the equation of state varies from point to point in the gas. However,
these questions need further investigation in the light of a general relativity
definition of entropy.

In order to examine some features of the motions that are possible, the
case of implosion (St  0) will be considered with the aid of two examples.
Consider first the 1933 solution. If C = 1 in equation (8) then

and if in (A.21), which implies b = 0, one puts

where yo is a positive constant, then

Again, if in (A.31), r = 1 and n = 1 because b = 0, it follows, with
es = Q/S, that
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But these are the coefficients of the metric of the 1933 solution in the form

given in McVittie (1966) (1). This solution is therefore the particular case
of the present theory obtained by taking a = 3 and b = 0. The detailed

examination will be found in McVittie (1966) where it is shown that the
boundary condition p = 0 gives S in terms of elementary functions. Ini-

tially S = 1 and the final value is S = 0 for implosions. The motions

can be interpreted as those of a spherical mass of gas falling onto a central
particle. The particle is defined by a Schwarzschild type singular region
of radius rs around the origin r = 0. The constant yo plays the part of
the length-equivalent of the mass of the particle at the initial instant. The

speed of the gas, V in equation (12), is, for f = sin r for example,

Thus V fails te vanish at the centre r = 0 and the same is true for v in (11).
But the solution is hardly applicable at the centre; for at time t the coordi-
nate-radius rs of the singular region is defined by Q(rs)/S = 1, which means
that

Hence rs increases as S decreases from 1 to 0. Therefore by (16) the material
on the singular surface 1~, of radius r = rs, is moving inwards, whereas
the surface itself is moving outwards. The pressure given by (A.34) contains,
in this case, a factor (Q - Qb)/(S - Q), where Qb denotes the boundary
value of Q (McVittie, 1966). Hence, since S - Q(rs) = 0, the pressure
becomes positive infinite as ~S is approached from r &#x3E; rs. The pressure
would be negative on the side r  rs of ~s, if it were legitimate to extend
the solution to that side. In some ways therefore ~s has the properties of
a shock front. At any rate, the motion continues until ~s and the outer
boundary coincide. Since, at this moment Q(rs) - Qb = 0 and

S - Q(rs) = 0 independently of one another, the boundary value of the
pressure is indeterminate. One may say that all the material has then been

swallowed up by the singular region.
These peculiar features of the motions defined by the 1933 solution are

absent in other cases. Consider the solution discussed in Sec. V of the

(1) The coordinate co is written for r and 8k stands for the three possible values
of f in (14), according as k = + 1 , 0, or - 1. The derivatives of S are denoted
by primes.
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Appendix in which a spherical mass collapses from a state of rest. The

configuration has an outer boundary r = rb and the motion is specified by
m ........

Since the outer boundary corresponds to Q = 0 and the centre to Q = 1,
there are no singularities or zero values of y or of eT. The function S is

found from p = 0 at r = rb and it satisfies exactly the same differential
equation as it does in uniform collapse (p and p functions of t alone). The
time T of collapse to zero volume depends on the initial value of the boundary
density and the formula (A.44) for T is similar to that found in uniform
collapse (McVittie, 1964 c). The time T is short in spite of the presence
of density and pressure gradients within the material. If n &#x3E; 0 and

(pb)o = 10-n gr.cm.-3, then (A.44) yields

Thus n = 20 would give less than 700,000 years for the collapse, whereas
n = 10 would produce an, astronomically speaking, instantaneous collapse.
The formula (A.47) shows that the speed of the material has no singular

values and is always zero at the centre.
In conclusion, it should be stated that an exhaustive search of the litera-

ture has not been made in order to discover if any of the results of this

paper have appeared in some other form elsewhere. One of the difficulties

encountered in such a search is that nearly every author has his own notation
and method of procedure. Two spherically symmetric metrics with ortho-
gonal coordinates may have a very different appearance until it is found

that some transformation of the t and r coordinates turns one metric into

the other. But certain investigations should be mentioned. Bondi (1947)
and later Orner ( 1965) discuss metrics with orthogonal coordinates in which
the coefficient of dt2 is unity and the coefficients of dr2 and dCJ)2 are general
functions of r and t. Attention is concentrated on cases in which the

pressure is either zero or spatially uniform. In the investigations of

Misner (1964, 1965, 1966) and his co-workers the coefficients of dt2, dr2
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and are more general functions of r and t than are those found in (1).
However, attention is concentrated less on the détermination of the coeffi-
cients than on conclusions about the nature of the motion. May and
White ( 1965) employ the Misner form for the metric but their aim is to
compute solutions numerically. Some of the 3-spaces found in Sec. II

of the Appendix, notably (A.22) and (A.24), also occur in the work of
Takeno (1963).
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APPENDIX

1. - The Einstein equation (2) for ij = 14 is

Hence = 0 is satisfied if ~ = 03B6 and

the solution of which is given by (3).
The remaining equations (2) are then, with the form (4) of the metric,

The isotropy of stress is expressed by (5) and means that

The independence of r and z implies that constants a and b exist such that

Then (A. 5) becomes

2. - Integration of equations (A. 6) and (A. 7). - The integral of (A. 6) is
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where A is the constant of intégration. Introduce the new radial coordinate q by

and then

The equation (A. 7) becomes

Alternative forms of the metric (7) are :
If f is determined as a function of q by (A. 12) then, by (A. 11) also,

and the associated expressions for z are

If f itself is used as the radial coordinate and the first integral of (A. 12) is
written as

~7~

then

The associated values of z are again given by (A. 14) with q = 

The curvature of the 3-space with metric da2 is obtained from the non-zéro
components of the Riemann-Christoffel tensor. These are expressed as follows :
When 1, 2, 3 represent r, 0, p, then (7) yields

When 1, 2, 3 represent q, 0, q&#x3E;, then (A. 13) yields

When 1, 2, 3 représenta 8, Q, then (A. 16) yields

Constant curvature occurs when

where C is a positive real constant and
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(i) Case b = 0, any a. The equation (A. 7) yields the three alternatives shown
in equation (8), where it has also been assumed that f = 0 when r = 0. Equa-
tion (A. 17) then shows that the 3-space (7) is of constant curvature. Also

by (A . 9),

where C+i, Co, C_1 are constants of integration.

tions (A. 12) gives

where y is a constant of integration. Thus f 2 as a function of q may be obtained
by quadratures. The form (A. 16) for the metric becomes

and it is easy to show from (A. 19) and (A. 20) that the curvature is not constant.
If b  0, a similar method applies.

(üi) Case a # 1, b =1= 0. The first of equations (A. 12) applies and the integra-
tion is performed by means of the substitutions

Suppose that

is positive. Then by a suitable choice of the constant of integration y, the equa-
tion (A. 12) reduces to

and is thus integrable by quadratures. For example, if y = then

where y 8 is the second constant of integration. The condition that f shall vanish
at q = 0 only, means that 03B4 &#x3E; O. The metric of the 3-space is given by the
form (A. 13). When 8 = 0, then the function F of (A.15) is equal to (2b1)-1
and the metric (A. 16) is

By (A. 19) this is a space of variable curvature.
The substitutions (A. 23) also reduce the integration of (A. 12) to quadratures

in the cases bf = 0 and bi  0.
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which is a form of Abel’s equation. When one of the two constants of inte-
gration of (A. 8) is zero, particular integrals of the equation arise as follows :

(i) If

then

(ii) If

then

(iii) If

then

(iv) For any a and b there is always the particular integral

In all four cases y can be found by quadratures.
For example, if in (A. 26), a = 1 /2, so that b = 0, then

where r is the constant of integration and 7] is found from (3), a multiplicative
constant of integration being taken equal to one. Again if a = 3 and
b + 1 = n2 &#x3E; 0, then (A. 28) yields

by a suitable choice of the constant of integration in the determination of 1).

4. - The energy-tensor. - Write

and use (A. 6) (A. 7) in (A. 2) and in either (A. 3) or (A. 4) to give
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In thèse expressions, of course, f and Q stand for solutions of (A.6) and (A. 7)
and y, ~ for those of (A. 8) and (3). Thus p, p are known to within one undeter-
mined function S(t). If q is used as the radial coordinate, the substitutions

must be made in (A. 33) and (A. 34).

5. - A Special case. - This is defined by

Then by (A . 21 ) with C+1 = 0 and A = - 1 /(2C2)

Again in (A. 30) let r = 1 and then

When these results are used in (A. 33) (A.34), there is obtained

If the outer boundary is r = rb, then C may be chosen so that

which means that ez = 0 at the outer boundary while at the centre r = 0, we
have ez = 1/S. Moreover

is a fixed time-interval. To fix ideas, consider a motion of collapse from rest,
so that, at t = 0, S = 1, St = 0, Srr  0. Let (pb)o be the initial boundary value
of the density. Then by (A. 37) (A. 39) and (A. 40)

The boundary is given by p = 0 at r = rb and, since ez/2 is zero there, S satisfies

whence
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which are exactly the same formulée as are found in uniform collapse (McVittie
1964 d). Thus T is the total time of collapse to zéro volume (S = 0) and

With the aid of the equations (A. 37) to (A. 44) we obtain

with

The formula (12) for the speed, together with the negative square root in (A. 43)
appropriate to collapse, gives
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