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Conservation laws (*)

C. CATTANEO

(Roma)

Ann. Inst. Henri Poincare,
VoL IV, no 1, 1966,

Section A : .

Physique theorique.

1. - INTRODUCTION

In the present paper I propose to expound in general terms some of the
main attempts which have been made to establish conservation equations
in general relativity, emphasizing the difficulties which still remain in the
way of a satisfactory and useful definition of the concepts of gravitational
momentum and energy. From the start I want to apologise for the incom-
pleteness of my exposition mainly due to the necessity of keeping close to
a central thread. In the second part of my talk I shall present some per-
sonal considerations.

Since Einstein’s introduction of his canonical pseudotensor much work
has been done. Whilst on the one hand the structure of Einstein’s complex
has been more closely examined (Tolman [99], Freud [48]) and conditions
have been established whereby the correct global quantities may be obtained
from it in various physical conditions (Einstein [44], Klein [57], Fock [46],
Trautman [101 ]), on the other critiques have been formulated with regard
to its effective physical content (Schrodinger [95], Bauer [4]). Other

complexes have been discovered by Landau-Lifshitz [62] and by Moller [71] ;
whole families of such complexes including all the preceding ones have
been found by Goldberg [53] without however any of them presenting all
the requirements which, a priori, one would have desired to be present in
a « good » energy-momentum complex.

(*) Conference générale faite à la 5e Reunion Internationale sur la Gravitation
et la Relativité Générale (Londres, 1-9 juillet 1965).
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Much light has been thrown on the significance of such an abundant
choice, by the work of Bergmann and his collaborators [8] [9] [10], who
with the trend initiated by Noether in 1918 [78] directly associated it with
the general covariance of Einstein’s formalism. Bergmann’s work, which
fitted the infinite number of conservation laws of general relativity into an
organic scheme, showed how every law of conservation is in fact subordi-
nate to the introduction of a supplementary structure (vector field or

otherwise) into the space-time manifold. The conservation equations
subordinated to the introduction of a tetrad field (Moller [75] [76], Pelle-
grini-Plebanski [83]) or of a second metric (Rosen [90] [91] [92], Papa-
petrou [79], Graiff [54], Bonazzola [lfl [17]) or of a type of absolute paral-
lelism based on the Levi-Civita’s transport along geodesics (Rayski [87])
confirm this opinion.
At the same time Bergmann’s schemes marked the beginning of a research

for single index conserved complexes. It was this trend that enabled

Komar [58] to achieve local covariance with the minimum of auxiliary
elements (vector field ~). At the present time, bearing in mind the impor-
tant aspects pointed out by Pirani [86], among the various known complexes
Komar’s current vector seems to possess the most satisfactory qualities.
In the present paper we shall have occasion to observe that there exists a

possible alternative to Komar’s vector which may bring some possible
improvements.

The arbitrariness of the auxiliary structures on which the different com-
plexes depend, poses for each of them two types of problems which are not
completely separate : (a) What limitations must be applied to the auxiliary
structures themselves in order to conform to the different physical situations
at infinity in such a way as to obtain correct global quantities (b). Possible

research on preferred structures intended to single out the magnitudes of
general relativity which may justly be interpreted as the energy and momen-
tum equivalents of a Lorentz-covariant theory. Although a great deal
of work has been done on these problems there does not yet seem to be a
satisfactory answer to them, either through a lack of covariance or because
of insufficient physical justification. Komar has put forward an interesting
if questionable criterion intended to give a definite positive character to
energy. Another possible criterior will ben indicated in the present paper.
Both these criteria are linked to the important question of the sign to be
attributed to the pure gravitational energy.
Among the attempts which have been made to find an answer to the

problem of the gravitational energy it is worth mentioning separately the
attempt culminating in the four index symmetrical tensor discovered
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independently by Bel [5] [6] and by Robinson [89]. In spite of the appre-
ciable properties of this tensor which make it similar to an energy momen-
tum tensor of a Lorentz covariant theory and of the superenergy which can
be constructed with it, the latter lacks true properties of conservation so
that there is still doubt as to its exact physical significance. According
to a recent paper of Bonazzola, it is possible that the Bel-Robinson tensor
is linked to the variations in gravitational energy, rather than to the energy
itself.
Another thing which still remains uncertain is the question of the decom-

position of the total energy of a space-time into an energy of pure matter
and into a gravitational energy. These problems will be mentioned at the
end of the present paper.

II. - DOUBLE INDEX COMPLEXES

The various double index complexes which have been successively disco-
vered (Einstein [42], Landau-Lifshitz [62], Moller [71], Goldberg [53])
have a common structure which can be summarized by the following
points.
The fundamental element is a three index « superpotential » or 

made up from the grs and their first derivatives, which is antisymmetrical
with respect to a pair of indices. From the superpotential a double index
complex is obtained by the operations of derivation and contraction

Because of the antisymmetry of U, this complex automatically satisfies
a local identity of conservation

The explicit espressions of known superpotential are the following
(Einstein-Freud, Metier, Goldberg, Landau-Lifshitz):
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Neither these expressions nor those which derive from them have a real
tensor character but behave like an affine (1) tensor density (2). The posi-
tion of the indices derives from this.

The expressions under (2.2) are strong conservation laws, that is they
are valid whatever may be the functions grs(x) which intervene. From

these it is easy to obtain weak conservation laws, that is subordinate to the
condition that the satisfy the field equations

Limiting ourselves to a consideration of the complexes (E) and (L - L),
for example, it is sufficient to introduce the quantities t k or Ttk (generally
functions of gTS, gr’’,l, gTS,lm) thus defined

to recognise-taking into account (2.2) and (2.5)-the validity of the

following weak conservation equations

which in the empty regions become

Similar equations can be obtained for the other complexes.

Naturally for there to be an effective physical content directly or indirectly
linked to a complex or to the global magnitudes obtained from it, it must

display some relevant characteristics. Einstein’s and Landau-Lifshitz’s

complexes present the exceptional property of tki and not depending
on the second derivatives of the grs. Moller’s complex does not have the

(1) That is with regard to the linear transformations of coordinates alone.
(~) The complexes deriving from (2.3) are ordinary affine densities that is having

a weight 1. The complex (L - L) is an affine density with a weight 2. The
last are of a weight growing with n.
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same peculiarity but enjoys the notable property of giving rise to a density
of energy which is unchanging for space-transformations of coordinates.
The Landau-Lifshitz complex, like all those deriving from superpoten-
tials (2.4), is symmetrical in the two indices i and k; this permits the establish-
ment of a conservation law of angular momentum as well. On the contrary
the global quantities that are obtained from them do not have all the desi-
rable transformation properties.
Although all the above mentioned complexes are definable in every

system of coordinates they do not constitute a geometrical object and it
is therefore difficult to attribute a local physical content to them and to
their continuity equations.
The same is not so from a global point of view. The character of affine

densities in the various complexes considered enables global quantities of
undoubted physical significance to be obtained from them in isolated phy-
sical systems. If we consider Einstein’s complex, for example, they are
defined thus

the first integration being carried out on the hypersurface x4 = const.
and the second on a close 2-surface S belonging to the same hypersurface
and expanding to infinity.

Subordinately to the asymptotic conditions of Einstein and Klein

(r = radial space coordinate) which at the same time imply hypotheses of
a physical nature (absence of radiation) and limitations in the choice of the
coordinates, the magnitudes (2.9), which are certainly convergent, satisfy
all the requirements which allow us to interpret them as an energy-momen-
tum free vector of the whole system.
More specifically the Pis (a) remain constant (b) are invariable with

respect to all the changes of coordinates which do not operate at infinity (c)
they change like the components of a free vector of M4 with respect to all
the linear transformations of coordinates (d) for a Schwarzschild space-
time with a gravitational mass Mo, referred to asymptotically galileian rest
coordinates, they assume the specific values :
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These are certainly essential qualities which must be required from quantities
which set out to express the energy and momentum of an isolated system.
However Einstein’s complex does not allow the construction of conser-

ved global quantities, which can be interpreted as angular momentum.
Landau and Lifshitz complex on the contrary gives rise to such magni-

tudes ; conversely the P?s defined by this complex only constitute a vector
in respect of linear transformations that leave the value of g unchanged.
Meller’s complex is subject to more pronounced limitations but it has

particular local merits.
For an insular system, for which we do’nt exclude the possibility of

irradiating gravitational energy, the Einstein conditions (2.10) can be
substituted by Fock-Trautman’s asymptotic conditions [101 ] [102]

which compensate for the slower rate of vanishing of the with the
additional condition of asymptotic harmonicity imposed on the coordinates.
Within the limits of the coordinate systems complying with (2.12) the Pis
constructed by means of Einstein’s complex continue to satisfy the conver-
gence and invariance requirements with respect to changes of coordinates
not operating at infinity. Naturally in the new physical conditions accepted,
one should not expect at least in general-the conservation of the Pis.
The possible dependence of some of them on x4 will indeed serve to reveal
the cases of effective radiation.

The lack of covariance common to all the double index complexes that

we have reviewed seems to be remedied by a second complex it constructed
by M0ller in 1961 [75] [7fl and based on the introduction of a field of
tetrads hl(x) into V4. The process is based on the possibility of decompos-

a

ing the gravitational Lagrangean gR

into a divergence type term which does not influence the variation of the

action, and a term C constructed by means of the hi and their covariant
a
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derivatives hi ; r so that it turns out to be a scalar density with respect to the
a

changes of coordinates. Using a classical method we thus reach a cano-
nical complex

which satisfies a weak conservation law of the type (2.7) (2.8). This is

naturally associated with a strong conservation law satisfied by a complex T;
which contains also the second derivatives of hi and can be derived from a

a

superpotential

Obviously r~, t have a covariant character with respect to all the
changes of coordinates. However they lack covariance with respect to
the local rotations of the tetrads and also only with respect to their purely
space rotations; this covariance has been lost in decomposition (2.13).
Therefore, in order that the progress achieved be not wholly illusory,
the tetrad field introduced into V~ must be more precisely determined;
this Moller achieves by means of certain differential and asymptotic supple-
mentary conditions imposed on the hi ; these conditions are meant to substi-

a

tute, in covariant form, the known conditions of harmonicity imposed on
coordinates (de Donder, Fock). Perhaps there is not a sufficient physical
justification for the differential conditions.
The tetrad method on the contrary appears more satisfactory with

regard to the behaviour of the global quantities Pis, which, in virtue of
the asymptotic conditions which impose parallelism at infinity on the
tetrads, possess the correct vectorial behaviour with respect to the changes
of the common orientation of the tetrads at infinity (Lorentz’s transforma-
tions). The appearance of difficulties of the type made evident by Bauer [4]
is now excluded, not on account of the covariance obtained with respect
to the changes of coordinates, but because of the asymptotic conditions
of parallelism imposed on the tetrads.
The principal merit of the tetrad method consists in my opinion not so

much in its covariance, as in the extention it brings to Einstein’s method.
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The latter associates certain quantities 1’~ with every system of coordinates
(the choice of which depends on 4 arbitrary functions of the x). The

tetrad method associates the quantities Tf with every orthonormal (generally
non-holonomic) tetrad field the choice of which depends on 6 independent
arbitrary functions. The tetrad procedure can probably be extended to
fields of tetrads which are neither orthogonal nor normal; in such case

the choice of tetrad fields and therefore of the quantities T; associated with
them, would then indeed depend on 16 arbitrary functions. This greater
scope would enable the tetrad method to contain all the determinations of

Einstein’s complex 17, which would coincide with the determinations of the
complex Y" with regard to the holonomic tetrad fields alone (that is to

those with which a system of coordinates can be associated).
The advantage of considering such a wide class of frames consists mainly

in the opportunity offered by a wider field of research for the determination
of a possible preferred frame. Indeed it is not evident that a possible
preferred frame should necessarily be included among the holonomic

frames.

The double metric method also, introduced by Rosen [91] [92], Papa-
petrou [79], Gupta [55], aims to remedy the lack of covariance in Einstein’s
complex. It proceeds formally like Einstein’s method, but by virtue of
a second minkowskian metric associated with the riemannian metric it

is able to substitute the partial differentiation Q-k by the covariant differentia-
tion with respect to the minkowskian metric. The arbitrary nature of
the choice of the minkowskian metric, depending on the way in which the V 4
is mapped on M4, exactly corresponds to the arbitrary nature of the choice
of a system of coordinates in Einstein’s method. Basically it seems to me
that the double metric method is equivalent to interpreting the curvilinear
coordinates, which are used in V4, as cartesian coordinates of a flat space
(cf. Synge [96]).

Rosen’s method also can be justified when physically consistent criteria
are provided for the unambiguous determination of the minkowskian

metric.

III. - SINGLE INDEX COMPLEXES

Bergmann and some of his collaborators ([8]-[12]) have carried out

research into the reasons for the abundance of conservation equations in
general relativity showing how they are closely related to the general cova-
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riance of the theory. In accordance with Noether famous theorem which

associates the classical conservation laws of the Lorentz-covariant theories

with the properties of invariance of physical laws, Bergmann and his colla-
borators have demonstrated that in general covariant theories a quantity
which is conserved, formally corresponds to each infinitesimal transforma-
tion of coordinates that is to every vector field ~l(x). In spite of the fact
that the general process presents some specific difficulty in the case of
general relativity, Bergmann, associating the vector field çi with Freud’s
superpotential succeeds in directly constructing a double index superpoten-
tial

which in turn permits to define a « density of current »

which is conserved identically :

Other quantities Ci which are conserved weakly can then be associated
with the quantities Di. The former can be unambiguously determined
by the property of not containing second derivatives of grs.

Since the formal covariance of general relativity does not imply, in

itself, an intrinsic physical fact, Bergmann’s work implicitly shows that not
all the fields çi can give rise to conserved quantities having a physical
significance. Only those infinitesimal transformations of coordinates
which show some intrinsic property of symmetry of space-time (Traut-
man [102] [103]) possibly only verified at infinity, can give rise to significant
magnitudes.
Bergmann’s work is important for other motives as well. The possibility

which exists in the Lorentz-covariant theories of formulating the conserva-
tion of energy and momentum in a single local law using a single double-
index tensor is closely linked to the linearity of Minkowski’s space-time;
this quality is lacking in the V4 of general relativity. The work carried out

by Bergmann and his school, with its a priori renunciation of the energy
momentum synthesis, has opened the way for research into single-index
conserved complexes which have a greater possibility of fitting to the

specific situation of general relativity. The successive studies of Komar

and Pirani support this approach.
It should also be recognised that Bergmann’s work has given particular

emphasis to the fact that also in general relativity the conservation laws
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are linked to the introduction of a supplementary structure into V4 ; in

Bergmann’s formulation this structure is represented by a vector field, but
in other formulations it can be a tetrad field (M0ller) or a second metric
(Rosen) or simply a system of coordinates (Einstein).

This established necessity reveals in my opinion, a profound aspect of
the problem. Although the four dimensional formulation of Einstein’s
theory is perfect from a geometrical point of view, it cannot disclose all the
physical aspects without the introduction of a physical frame of reference
(preferred or not) which gives rise to the local separation of space from time.
This frame which according to one’s approach can be represented by a
tetrad field or even by a simple unit vector field, is, in my opinion, an
essential physical element and we should not be surprised that it is shown
to be in some way necessary in the problem of conservation laws.

It was pursuing the way opened by Bergmann, that Komar [58], who
was also inspired by an already quoted paper of Meller [71], succeeded in
achieving a rigorously covariant single index complex. His procedure can
be reduced to the following fundamental points :

(a) Introduction of an arbitrary vector field 
(b) Construction of a skew-symmetric tensorial superpotential

(c) Definition of a 4-density energy current (generalised)

satisfying the strong law

One can then associate a vector H1 --- + Ei to the vector El, free
from second order time derivatives, which is weakly conserved.
From (3.6) it follows that, under suitable asymptotic conditions, the

global scalar quantity

(a, space like hypersurface) is conserved.

In each particular case, particular and appropriate choices of the ç field
should give rise to the classic conserved quantities (energy, momentum,
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angular momentum). In a Schwarzschild universe, or asymptotically
such, for 03BEi = 81 (in almost galileian rest-coordinates) we obtain E = Moc2.

Specifying the field it in a field of time-like unit vector yi, Komar’s
vector Ei gives rise to a particularly significant vector, specifically linked to
the energy of the field, that Pirani [8fl obtained with different considera-
tions. The introduction of a time-like unit vector field has a particular
interest because it is equivalent to the introduction of a physical frame of
reference in Mailer’s sense, without any additional elements. The vector Ei[y[
then assumes the meaning of energy flux-density relative to the frame yi(x).
Its explicit expression and that of the corresponding energy density by
means of the characteristic elements of the frame of reference ( 1), are

respectively 
’

Taking into account the field equations, the density of energy, may, in a
vacuum, assume the following form :

C indicating the Lie-derivative with respect to the field yi.

In the case of a Schwarzschild space-time the global energy

calculated with a rest frame v, acquires the value 

Allow me to add here that the formulae (3.4) (3.5) are not the only ones
which provide a conserved vector starting from an arbitrary field ~.

(3) The characteristic elements of the first order of the frame of reference 
are the following space tensors : Kt/, rate of deformation tensor; space-

vortex tensor; C/, curvature vector. iij is the transverse derivative with respect
tol [24] [2~].
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Another possibility for example is the one which starts with the following
superpotential (4) :

from which we deduce the vector

which, like Komar’s vector, is linear in the second order covariant deriva-
tives of the y’s, and is conserved ( 0 ~W~ --- 0) (5). Corresponding with it
there is an energy density

in which in a vacuum, by virtue of the field equations, one can also reco-
gnise the form :

Comparing (3.9) (3.10) and (3.14) (3.15) we see that w[y] becomes identical

with Pirani’s energy density when the frame y is irrotational.
Naturally in the case of a Schwarzschild space-time the density w(y),

as well like Pirani’s density, gives rise to a global rest energy which has the
value Moc2.

IV. - PREFERRED DESCRIPTORS

There is the same problem for single index complexes as there is for

those with two indices : namely the problem of research for possible prefe-

(4) We have limited this definition to a unit vector.
(5) It should be noted that any vector field, which is a divergence of a double

antisymmetrical tensor (Wr - ~sW[rs]) is conserved. In fact :

Other possible superpotentials which produce conserved vectors are the follow-
ing :

(6) The formulae (3.10) and (3.15) are rapidly established starting from (3.9)
and (3.14) by means of the formulae of projection of Ricci’s tensor established
by I. Cattaneo-Gasparini [30] [31 ].
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rentiai gi fields, possibly unitary, which may give a sure physical significance
to the global magnitude E[ç]. As we are not longer dealing with a system
of coordinates but with a vector field, there is no doubt that the possible
preferential conditions may also have a covariant formulation.

Komar [59] [60], starting from the fact that if V4 admits a Killing field
the vector is conserved [102], and that also in the Lorentz-covariant
theories the existence of 10 constants of motion is associated with 10 indepen-
dent Killing vectors, inclines to give to these vectors, when they exist, a
preferential character. His conviction is further confirmed by the fact
that a possible hypersurface orthogonal Killing field also includes the

preferential properties of the minimum surfaces (Dirac [41], Arnowitt-
Deser-Misner [2], Rayski [~7] [88]) and of the harmonic coordinates

(Fock [46]).
When V4 does not admit Killing fields, which is the most likely case,

Komar maintains that the descriptor of a physically significant global
magnitude must possess at least asymptotically the qualities of a Killing
hypersurface-orthogonal vector. He succeeds in formulating covariant

asymptotic conditions which correspond to Fock-Trautman’s asymptotic
conditions, in such a way as also to include any possible radiative

systems.
There is also proposed in Komar’s work [59] a local type condition

imposed on the descriptor ~i ; this attributes a preferential feature to the so
called semi-Killing vector fields. There remains some doubt however as

to whether the condition imposes limitations not only on the field é/ but
also on the manifold V4.
We are also indebted to Komar [60] for a local preferential criterion for

time like descriptors which still corresponds to the idea of approaching as
near as possible to a Killing field, but with the precise condition too that
the resultant energy, globally, and locally, is positive definite. This criterion

agrees with a widely held opinion (Brill [19] ; Arnowitt-Deser-Misner [2] ;
Peres, see Komar [60]) that a possible free gravitational energy, that is
to say without a source, must have the same sign as matter energy.
With the aim of examining the question from a different point of view

we shall employ as descriptor a unit vector field yi, which corresponds, as
we know, to introducing into V4 a physical frame in Møller’s sense. With

this choice of frame we shall assume as a definition of the local density of
energy the formula (3.14) paying attention to the expression (3.15) that the
same density takes on in a vacuum. From this it follows immediately
that if one imposes the scalar second order condition on
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acquires the following properties : (a) it does not contain second order
derivatives of ylls (b) it is negative definite :

Moreover it has the noteworthy property that an eventual vanishing of
this density in a frame y satisfying the condition (4.1) implies the local
vanishing of the Riemann’s tensor (7).
The possible adoption of the formula (4.2) as the density of free gravita-

tional energy would put the latter in direct relationship with the typical
magnitudes of the gravitational field (8) and the vanishing of the energy
with the vanishing of the field.
The property of definiteness of sign satisfied by the density (4.2) is certainly

a good property for an energy density. Naturally it remains to be seen if
the negative sign is physically acceptable. An argument supporting the
plausibility of this assumption will be given shortly.
With regard to the preferential condition (4.1 ) not to be confused with

the condition of minimal area

it does not seem very restrictive.

(?) Still with regard to the projection formulae quoted in the previous foot-
note (6) one can recognise that if in an empty region D of V4 Ci, iliy, are simul-
taneously zero in value, Ricci’s tensor of the three dimensional varieties orthogonal
to the field y is also zero ; but for a three dimensional manifold, that implies the
annihilation of the Riemann’s tensor. Resorting finally to the projection formulae
for Riemann’s tensor of V4 one recognises that the preceding conditions imply
in D the annihilation of the curvature tensor of V4.

(8) According to the relative formulation of Einstein’s theory of gravita-
tion [24] [29] the gravitational field is locally represented by the tensor field ~ lY~
which is in turn represented by the space-tensors

The has at the same time relative and absolute features. It varies

with changes in the field y but its possible annihilation in one frame implies its
annihilation in every other as well as (in a vacuum) the annihilation of the curva-
ture tensor of V~.
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v. - ON THE ENERGY OF PURE GRAVITATION

Whilst there can be no doubt, at least for stationary systems, on what
is intended by total field energy, what is less certain is the possibility of
decomposing this energy into two or more parts which have separately
a physical significance, as for example a division into a purely matter energy
and a purely gravitational energy, with the possible addition of the energy
of interaction between the field of pure matter and the field of pure gravi-
tation.

There are also doubts as to what sign is to be attributed to the energy
of pure gravitation, provided, of course, that we can talk of the latter.
We can attempt to find our bearings on these important questions examin-

ing from close at hand the case of a Schwarzschild space-time; although
it should be pointed out that this is a very peculiar case. Naturally I intend
by this a complete space-time generated by a central spherical liquid mass
having a uniform proper density yo (9). In the zone occupied by the central
nucleus the ds2 has the form

where R2 = and ri is the value of r on the surface of the nucleus.

In the liquid there is a pressure

In the external zone the ds2, joining with the former, has the form

(t) Cf. for example Moller [70].
ANN. INST. POINCARÉ, A-I V-1 2.
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with

In the frame y of rest the total energy has, concordantly in all the defini-
tions, the value

I shall now examine the possibility of defining an energy of pure gravitation.
Besides the total energy (of rest) we can introduce a purely matter energy

of rest Moc2 calculated as a product of the constant density yoc2 for the
volume Vo of the spherical nucleus (10)

It follows naturally to assume the difference (Mo - Mo)c2 as energy directly
linked to the gravitational field

It is negative definite as may be easily recognised by developping the quantity
in brackets in power series of rl/R:

The value of first approximation, - 16 k ~2~.2r 5, coincides with the value of
the Newtonian gravitational energy for a sphere having a radius ri and a
density ~.o. The following terms, which correspond to the increasing
powers of k, constitute successive Einstein corrections; they come down

(io) Cf. MoUer [70].
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to zero for c - oo and are negligible for «(1. It is fairly significant

that Eg is negative 
Another criterion for introducing a global quantity linked to the gravi-

tational field is to integrate the energy density (4.2) we obtained for empty
zones for on the whole physical space, including of course the zones occupied
by matter :

, 

- 
~ ~ 

employing a frame y adapted to the staticness of V4. With easy calculations
that I shall omit here one obtains :

The formula (5.10) which provides Efg a value of first approximation double
that of Eg suggests the possibility of decomposing the total energy Moc2
of Schwarzschild’s space-time into an energy of pure matter Moc2, a free
gravitational energy Efg, and an energy of interaction between the field

of pure matter and the field of pure gravitation, Eint = j j 3p0d303C3:

(11) The result now obtained is substantially confirmed by a second process
which consists in carrying to infinity all the masses of the nucleus for successive
spherical strata, thus destroying the gravitational field without destroying the
matter; and in calculating the work carried out in this operation. The calcu-
lations, here omitted, give rise to a gravitational energy

which does not coincide exactly with the preceding one but has in common with
it the term of first approximation. This coincidence comes down in favour of
the substantial physical consistency of the two definitions. With regard to the
exact physical significance to be attributed to Eg (or E? I shall limit myself now
to observing that it is linked to the existence of the gravitational field and that it
would be lacking if k were equal to 0.
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One gives rise to the same decomposition also in a more general
case (Qij = 0 (4.1) satisfied) using the following definitions

The preceding is merely an attempt, to decompose total energy into its
principal physical components.
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