Nous considérons la correspondance de Jones et Tod entre variétés conformes autoduales admettant un champ de vecteurs conforme et les monopoles abéliens sur les variétés de Weyl-Einstein de dimension 3, et nous montrons que les structures complexes invariantes correspondent aux congruences géodésiques sans distorsion. Comme les variétés de Weyl-Einstein tri-dimensionnelles admettent de nombreuses congruences de ce type, cette correspondance offre un mode de construction général de géométries autoduales, qui inclut les constructions bien connues des métriques kählériennes à courbure scalaire nulle et des structures hypercomplexes avec symétrie. Nous montrons également qu’en présence d’une telle congruence l’équation de Weyl-Einstein équivaut à une paire couplée d’équations de monopoles que nous résolvons dans un cas particulier. À partir de ces nouveaux exemples, appelés “espaces de Weyl-Einstein à symétrie géodésique”, nous construisons des structures hypercomplexes admettant deux champs de vecteurs tri-holomorphes commutant entre eux.
We study the Jones and Tod correspondence between selfdual conformal -manifolds with a conformal vector field and abelian monopoles on Einstein-Weyl -manifolds, and prove that invariant complex structures correspond to shear-free geodesic congruences. Such congruences exist in abundance and so provide a tool for constructing interesting selfdual geometries with symmetry, unifying the theories of scalar-flat Kähler metrics and hypercomplex structures with symmetry. We also show that in the presence of such a congruence, the Einstein-Weyl equation is equivalent to a pair of coupled monopole equations, and we solve these equations in a special case. The new Einstein-Weyl spaces, which we call Einstein-Weyl “with a geodesic symmetry”, give rise to hypercomplex structures with two commuting triholomorphic vector fields.
@article{AIF_2000__50_3_921_0, author = {Calderbank, David M J. and Pedersen, Henrik}, title = {Selfdual spaces with complex structures, {Einstein-Weyl} geometry and geodesics}, journal = {Annales de l'Institut Fourier}, pages = {921--963}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {3}, year = {2000}, doi = {10.5802/aif.1779}, mrnumber = {2001h:53058}, zbl = {0970.53027}, language = {en}, url = {http://www.numdam.org./articles/10.5802/aif.1779/} }
TY - JOUR AU - Calderbank, David M J. AU - Pedersen, Henrik TI - Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics JO - Annales de l'Institut Fourier PY - 2000 SP - 921 EP - 963 VL - 50 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org./articles/10.5802/aif.1779/ DO - 10.5802/aif.1779 LA - en ID - AIF_2000__50_3_921_0 ER -
%0 Journal Article %A Calderbank, David M J. %A Pedersen, Henrik %T Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics %J Annales de l'Institut Fourier %D 2000 %P 921-963 %V 50 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org./articles/10.5802/aif.1779/ %R 10.5802/aif.1779 %G en %F AIF_2000__50_3_921_0
Calderbank, David M J.; Pedersen, Henrik. Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics. Annales de l'Institut Fourier, Tome 50 (2000) no. 3, pp. 921-963. doi : 10.5802/aif.1779. http://www.numdam.org./articles/10.5802/aif.1779/
[1] The Riemannian Goldberg-Sachs theorem, Int. J. Math., 8 (1997), 421-439. | MR | Zbl
, ,[2] Einstein Manifolds, Ergeb. Math. Grenzgeb., vol. 10, Springer, Berlin, 1987. | MR | Zbl
,[3] Killing vectors in self-dual Euclidean Einstein spaces, J. Math. Phys., 23 (1982), 1126-1130. | MR | Zbl
, ,[4] The geometry of the Toda equation, Edinburgh Preprint MS-99-003, 1999, to appear in J. Geom. Phys. | Zbl
,[5] Einstein-Weyl geometry, in Essays on Einstein Manifolds (eds. C.R. LeBrun and M. Wang), Surveys in Differential Geometry, vol. V, International Press. | Zbl
, ,[6] Einstein metrics, hypercomplex structures and the Toda field equation, Edinburgh Preprint MS-98-011, 1998, to appear in Diff. Geom. Appl. | Zbl
, ,[7] (4,0) and (4,4) sigma models with a triholomorphic Killing vector, Phys. Lett., B 383 (1996), 262-270.
, , ,[8] Einstein-Weyl structures from hyper-Kähler metrics with conformal Killing vectors, Preprint ESI 739, Vienna, 1999.
, ,[9] La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., 267 (1984), 495-518. | MR | Zbl
,[10] Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale, Ann. Sci. Norm. Sup. Pisa, 18 (1991), 563-629. | Numdam | MR | Zbl
,[11] Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S1 x S3, J. reine angew. Math., 469 (1995), 1-50. | MR | Zbl
,[12] Hyperhermitian metrics with symmetry, J. Geom. Phys., 25 (1998), 291-304. | MR | Zbl
, ,[13] Gravitational multi-instantons, Phys. Lett., 78 B (1978), 430-432.
, ,[14] Complex manifolds and Einstein equations, in Twistor Geometry and Non-linear Systems (eds H.D. Doebner and T.D. Palev), Primorsko 1980, Lecture Notes in Math., vol. 970, Springer, Berlin, 1982, 79-99. | Zbl
,[15] An Introduction to Twistor Theory, Cambridge University Press, Cambridge, 1985. | MR | Zbl
, ,[16] Minitwistor spaces and Einstein-Weyl spaces, Class. Quantum Grav., 2 (1985), 565-577. | MR | Zbl
, ,[17] Explicit construction of self-dual 4-manifolds, Duke Math. J., 77 (1995), 519-552. | MR | Zbl
,[18] Counterexamples to the generalized positive action conjecture, Comm. Math. Phys., 118 (1988), 591-596. | MR | Zbl
,[19] Explicit self-dual metrics on ℂP2#...#ℂP2, J. Diff. Geom., 34 (1991), 223-253. | MR | Zbl
,[20] Self-dual manifolds and hyperbolic geometry, in Einstein Metrics and Yang-Mills Connections (eds. T. MAbuchi and S. Mukai), Sanda 1990, Lecture Notes in Pure and Appl. Math., vol. 145, Marcel Dekker, New York, 1993, 99-131. | Zbl
,[21] A kind of even-dimensional differential geometry and its application to exterior calculus, Amer. J. Math., 65 (1943), 433-438. | MR | Zbl
,[22] Einstein-Weyl structures in the conformal classes of LeBrun metrics, Class. Quantum Grav., 14 (1997), 2635-2645. | MR | Zbl
,[23] Integrability, Self-duality and Twistor Theory, Clarendon Press, Oxford, 1996. | MR | Zbl
, ,[24] Einstein metrics, spinning top motions and monopoles, Math. Ann., 274 (1986), 35-39. | MR | Zbl
,[25] Riemannian submersions, four-manifolds and Einstein-Weyl geometry, Proc. London Math. Soc., 66 (1993), 381-399. | MR | Zbl
, ,[26] Three-dimensional Einstein-Weyl geometry, Adv. Math., 97 (1993), 74-109. | MR | Zbl
, ,[27] Einstein metrics and hyperbolic monopoles, Class. Quantum Grav., 8 (1991), 751-760. | MR | Zbl
, ,[28] Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc., 45 (1992), 341-351. | MR | Zbl
,[29] Scalar-flat Kähler and hyper-Kähler metrics from Painlevé-III, Class. Quantum Grav., 12 (1995), 1535-1547. | MR | Zbl
,[30] Cohomogeneity-one metrics with self-dual Weyl tensor, in Twistor Theory (ed. S. Huggett), Lecture Notes in Pure and Appl. Math., vol. 169, Marcel Dekker, Plymouth, 1995, 171-184. | MR | Zbl
,[31] The SU(∞)-Toda field equation and special four-dimensional metrics, in Geometry and Physics (eds. J.E. Andersen, J. Dupont, H. Pedersen and A. Swann), Lecture Notes in Pure and Appl. Math., vol. 184, Marcel Dekker, Aarhus, 1995, 307-312. | MR | Zbl
,[32] On locally conformal almost Kähler manifolds, Israel J. Math., 24 (1976), 338-351. | MR | Zbl
,[33] Einstein-Weyl spaces and SU(∞) Toda fields, Class. Quantum Grav., 7 (1990), L95-L98. | MR | Zbl
,Cité par Sources :