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Local existence of a solution of a semi-linear wave
equation in a neighborhood of initial characteristic
hypersurfaces *)

AURORE CaBeT ()

RESUME. — In this paper we are concerned with a semilinear wave equa-
tion with initial data given on two transversely intersecting null hypersur-
faces in the Minkowski space IR”*1. We prove existence and uniqueness
of a solution in a (one-sided future directed) neighborhood of the initial
data null hypersurfaces.

ABSTRACT. — Dans cet article, nous nous plagons dans ’espace de
Minkowski R+ et nous nous intéressons & une équation d’onde semi-
linéaire avec données initiales sur des hypersurfaces caractéristiques. Nous
prouvons D’existence et I'unicité d’une solution dans un voisinage dirigé
vers le futur d’un c6té de ces hypersurfaces.

1. Introduction

The problem we are interested in here is about a semilinear wave equa-
tion with data given on two transversely intersecting null hypersurfaces.
Many problems with characteristic initial values have been studied in the
last forty years. H. Friedrich [4] has written a few papers about characteris-
tic initial value problem in the context of Einstein’s vacuum field equations
(his work consists essentialy in showing the way to apply the results of
existence and uniqueness of solutions of wave equation with characteristic
initial value). R. Courant and D. Hilbert [3] have shown the uniqueness of a

(*) Regu le 14 novembre 2002, accepté le 9 avril 2003

(1) Laboratoire de Mathématiques et Physique théorique, Université de Tours, Parc
de Grandmont, 37200 Tours, France.
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Aurore Cabet

solution of wave equation with data prescribed on a characteristic half-cone.
Other works treat the Cauchy problem for quasi-linear equation with data
on a characteristic conoid as F. Cagnac [1], F. Cagnac and M. Dossa [2].
In this article the initial characteristic hypersurfaces are Ny, N_ defined in
the Minkowsky space R"*! by

Ny ={t+2'=0,t>0,(z?%...,2") e R*" !}
N_={t—z'=0,t>0,(%...,2") e R*"!}.

We know by standard results that there exists a global solution in the linear
case. But in the case of a nonlinear hyperbolic equation, the published proofs
give an existence (and uniqueness) of solutions in a neighborhood of the
intersection of the null hypersurfaces, namely neighborhood with a finite
time, as it is done in H. Miiller zum Hagen and H.-J. Seifert [5] or A. D.
Rendall [6].

In this paper we propose to demonstrate the existence and uniqueness of
solutions in a one-sided neighborhood of both null hypersurfaces and not
only of their intersection. More precisely, we consider in R”+! the problem

Bp(z,t) = Flp(e,1), 2, ¢)

el =+ (1.1)
plv. = -
2
where 0 = 32 + A,

and ¢ can be vector-valued .

We show, under certain conditions, that, for any positive real R, there
exists positive reals R’ and R” such that there exists a unique C? solution
in the domain Vg := {0 < t—az' < R, 0 < t+a' < R, (2%,...,2") €
RO <t+2! <R 0<t—z! <R, (2%...,2°) € R*"!}, then
U Vr gives a one-sided neighborhood of the initial data hypersurfaces. We
R

can visualize a part of this neighborhood by the following figure.

The proof is based on the Galerkin method with estimates of energy in
some special Sobolev spaces. The mathematics tools used in this article are
very classical, but the originality here is to apply a standard method by
considering a isotropic direction as the time direction. Moreover the imple-
mentation of the different parts of the proof are not so trivial.
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Local existence of a solution of a semi-linear wave equation

The structure of this article is organised as follows.

We start in section 2 by a short presentation and results about the spaces
in which we will work. In the third section, we give the assumptions on the
functions F, ¢4+, $— and we transform the problem to obtain an equation
more convenient with a new function (3,4, v,y) — H(@,u,v,y) where u =
(t—z')/2,v=(t+2")/2,y=(2?..,2") and H vanishes at (0,u,0,y).
In section 4, we construct a spectral approximation of a solution of the
precedent equation. Then we estimate in the fifth section the energy of
these solutions in the spaces introduced at the beginning. We deduce of this
in section 6 the existence of a solution ¢ and we discuss its regularity. After
that in section 7 we come back to the first equation and discuss also the
regularity and uniqueness of the solution of the problem (1.1), to prove the
uniqueness we use a classical tool namely the energy-momentum tensor. In
section 8, we resume the results obtained in the simpler case of dimension
1+ 1 where we can work in Sobolev spaces H*.
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2. Spaces Hp, i

Let R be a strictly positive real, and T"~! a torus of length 7" in each
direction. We will work in the spaces H,,  where

Hon (05 2R] x T"7F) = {<p € L2([0;2R] x T*™Y);

2R e o1 OVn—1
E: - i P dudv iy <
0<a<k /0 /”“‘la"aayfl ay;”——fw ey oo}
e

0K|v|Sm

with derivatives of ¢ understood in the distribution sense. Hnm, x is a Hilbert
space hence it is reflexive.

We take a orthonormal basis of L2([0;2R] x T""!). So we set
To(v,y) = (2R)"IT T v B+aVF)  ith o = (ap, @) € Z"
1 n—1 2R ; T L 2T
<V, f>=(2R)" 2177 / / e~ HQoWEAE2F) £y, 2)dw d" 2.
0o Jrn-1

We know that f = Z < W¥,, f > ¥, and we have

a€Zn
I f .. .= > Il DSDy f 1172 (q0:2m)xTm-1) -
0<a<k
og|vjsm

The proofs of the following results are similar as in the classical Sobolev
spaces W*? and can be found in Appendix A.

LEMMA 2.1.— We have the equivalence
_ 1
I It~ (O 1< W, £ 12 (14 a0 ) (14 | @ )*™)7
a€Znr

LEMMA 2.2.— Letl a positive integer.

n=1
Fd T2 T hen My k(0:2R] x TP ) € CL([0;2R] x T*Y)
k> 3 +1 ’

LEMMA 2.3.— Ifk < k' then Hum i — Hm i with compact embedding.
Similarly, if m < m' then Hm k = Hm,k with compact embedding.
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Local existence of a solution of a semi-linear wave equation

LEMMA 2.4.— If f € Hmp N Hpmp withk <k’ then V-« e€]0;1],
f € Hpiramppty @ ot o SIS el S .-
Similarly, if f € Hpm e N\ Hpr  withm <m’  then V’y € [0; 1]
f € H'ym+(1—'y)m’,k and ” f ||7'Lym+(1_.,)m/ k\“ f ”7—( ” f ”7—( 'k

3. Transformation of the problem

In this section, we show how we transform the problem (1.1) to obtain
a problem where the first equation is replaced by an equation of the form

0% = -
%ﬂ% v, y) = H(‘P, U, v, y) + Ay‘P(u? v, y)

t—a! t+az! .
where u = zx , U= +2x ,y=(z2,...,2™) and H(0,u,0,y) vanishes.
We notice that Ny = {v=0,u >0,y € R*"1} and N_ = {u=0,v >0,
y e R* 1}

2 32
If the function ¢ satisfies 2090” = 3o5a”? the equation becomes:
0? 1
=— = H Ayp. .
Buge? = ~Fle s’ y) + Ayp = H(p,u,0,9) + Aye 3.1)

Concerning regularity of the functions F, ¢4, ¢ in the problem (1.1),
we shall assume for the moment that there exists m € N such that the
following holds :

(i) F : (6,t,z%,y) — F(0,t,z',y) satisfies that for any a,b € N,
0<a<l,0<bsL,yeNpueN"LO0o<y+ |y <m+1,
D¢Db, D DEF is continuous in all its variables.

(ii) @4 is of class C™+5, @_ C™** and ., p_ satisfy the corner condi-
tion:
#+(0,y) = ¢-(0,y).
iii) There exists a real T > 0 such that F, ¢, p_ are T-periodic in each
+
Yi-

Remark. — The corner conditions are only those in (ii) because for the
partial derivatives with respect to u or v separately, we have
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oF oF
WSD(O, 0,y) = a—u—k<P+(0,y)
oF ok
WSO(O, 0,y) = WSO—(O, Y)

and for the partial derivatives with respect to mixed u and v, the corner
conditions are assumed by the equation (3.1), namely

52
305070, 0,9) = H((0,0,9),0,0,3) + Ayp(0,0, 7).

By induction, we get higher derivatives with respect to mixed w and v at
(0,0,v). O

With the definitions of H,u and v above, we see that H satisfies : for any
0<a<1,0<b<L,0<y+|u<m+1, DZDgD;’DgH continuous in all
its variables.

After that we calculate %cp(u, 0, y) with the initial values as follows: we
know that

82
mw(u, 0,9) = H(p4 (%, y),u4,0,y) + Ay (u,y)

(we can invert A, and the limit in v = 0 because ¢ is supposed C? in all
its variables, for the same reason we will invert 8, and the limit in v = 0 in
the second line below). So by integrating in u, we obtain

0 15) w
—(u,0,y) = —¢(0,0,y) + f H(p4(5,9),5,0,y) + Aypi(s,y)ds
v Ov 0

a U
= 359-0)+ [ Hlpal0:1),.0.0) + Aypas)ds

Then we set

@(u,v,y) = p(u,v,y) — (¢(, 0, y)+§—)¢(u, 0,9) v) =: ¢(u, v,y) = (P4, p-).

Thus @ and its first derivative in v vanish at v = 0. On another hand, if we
take the equation (3.1) and put ¢ in it, we obtain
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Local existence of a solution of a semi-linear wave equation

82
m@(% v,9)
2

= HB+0(04,0),0,0,8) + 86+ 8p1,9-)) — 5os=0(04,0-)
= H(¢+0(p+,0-),%0,9) + Ay(S + (o4, ¢-))

~(H(p+ (1), ,0,8) + Ayior (1,9))
=: H(¢,u,v,y) + Ay (32)

H has the same regularity as H because §(¢4,9—), Ay0(¢+, ) and
%‘5(9‘4, @_) are of class C™+1.

If we look the value of H + Ay@ at v = 0 we can see that it vanishes:

H(p(u,0,9),4,0,y) + Ay@(u,0,9) = H(p(u,0,),4,0,y) + Ay()(u,0,v)
62
- Sudv 6((P+, 90—)

= H(p(u,0,y),u,0,y) + Ay(p)(u,0,y)
2

0
*m@(u, 0,y)
= 0.

But if ¢ is supposed C? in all its variables, then @ is continuous in all its vari-
ables, so we can invert A, and the limit in v = 0, thus Ay (@) (u, v, y)|v=0 =
0, hence we have

H(p(u,0,9),4,0,y) = H(0,u,0,y) = 0 (33)
So in setting

B-(0,) = 9~ (0,9) ~ (p+(0,8) + - (0,3) 0 (34

we want now to solve the problem:

8% M -
au_a;‘p('% v, y) = H(‘P(’“ﬂ v, y)) U, v, y) + Ay‘P(’% v, y)

¢(0,v,y) = ¢-(v,y)
where the assumptions of the regularity of the functions H and @_ are the
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following:

(@) H:(0,u,v,y) — H(0,u,v,y) satisfies that Va,be N, 0<a <1,

0<b<1,yeN, peNL 0<y+|pf<m+1,
DZDSDngfI is continuous in all its variables (3.6)
(#1)  @— is of class C™*4

(443) there exists a real T > 0 such that H,@_ are T-periodic in each ;.

4. Spectral approximation of @

We take an arbitrary real R > 0. Let J.p = Y < ¥a,@ > ¥, We
lel<

know that there exists a continuation of A in v from [0; R] to [0;2R] such
that for any 0 < a < 1, 0 < v+ |p| < m+1 we have DngDgI:I continuous
in all its variables (indeed, it suffices to set for v > R, H(6,u,v,y) =
H6,u,R,y) + (v — R)%ﬁ (6,4, R,y)) . The function H in the following
will be this function multiplied by a smooth cut off function ¢g of v equal
to 1 on [0; R] and to 0 on [3%;2R)]. Similarly, there exists a continuation of
@_ in v from [0; R] to [0;2R] of class C* in all its variables. The function
@— in the following will be this function multiplied by ¢r .

We will build a solution @, of the problem:

A

Jeﬂbe = Pe

8% A .
m%(u, 0,Y) = Je H(@e (4, v, ), u, v, y) + DyPe (u, v, ) (4.1)
‘;55(“, 0, y) =0

~

(ﬁe (O, ’U, y) = J€¢— (’U, y)

We first show the existence of the @.. By the first equation of problem
(4.1), @ has a finite number of components @ o :
Pe(u,v,9) = Z ‘ﬁs,a(u)\l’a (v,y) With @e,qa(u) =< Vo (v,9), ‘;be,a(u, v,y)> .
<2
We differentiate @, in v, after in u, on one hand, we have

a . T, -

5&‘?& (u, v, y) = Ezl gl aO‘PE,a(u)\I,a(v, y)

8% T, d .

Fudo e (u,v,y) = K Z aObE‘ps,a(u)\I’a(v, y).

lel<2
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Local existence of a solution of a semi-linear wave equation

On another hand we have by using the second equation of the problem
(4.1) :

8% = -
msas(u, v, y) = Z < ‘Ilﬁ7H< Z 906,"/‘1’73 u,v, y)

1Bl Ivl<2
Ay Y Py Uy (v,4) > Us(v,9)
lvl<t

= Z < Wg, H( Z Pey ¥y Uy v, Y)

1Bl<d lvl<d

n—1
4n? -
+Z"ﬁ D B Va(v,y) > Up(v,9).

=1 <t

Hence with these both results, by making scalar product by ¥, (recall
that (¥4)qez~ is an orthonormal basis), we can identify the components:

T 7]
E@aoa (Ps a(u) <‘Ila)H( Z <PE ’Y‘IJ’)"u ’U y) +Z T2 Z’Y] <P€,"y "Y(v y)>
lvl<d =l |«

7]
We can distinguish two cases. First if oqg # 0 we obtain Fu(‘be’a(u) =
0
Fo((®e,8)153<2>u) With Fy and %—-—Fa continuous in all their variables
€ E,ﬁ
((Pe,8)18)<2>u) because H and DgH are continuous in all their variables
and <, > is sesquilinear.

Now, if o = 0, to assume the third equation of problem (4.1) we want
that

Pe(u,0,y) = Z Pe.a(u)(2R)” -2t @y F .

lel<2
Recall that o = (ag, @), we can decompose this sum in a sum on @ and a
sum on ap, and as g just intervenes in @, o we obtain :

S Y Gea®)@R)TETTF ™V = 0. As this holds for

[@l<: {aoil(eo,@)|<t}
every y in T"™!, we necessarily have

Va such that [a] < 1, Z Pe,a(u) =0

{aoil(co@)I<2}
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hence we define ¢ oz by

1 N 5
¥a such that [ < =, Ge,0m) (W) = - > Pe (aom) (1) (4.2)
{ao#0;|(a0,&)|< 2}

Finally all the @, (o7 are C'-function of the Pe (ao,m) With ap # 0 so
Wwe can express %gbsya(u) in function of ((e,5){|81<1;330}, %) as follows :

1 o . ~
Vag # 0, || < o %%,a(u) = Fa((@e,8) {181< 2:8020}> )

with F,, and '672;}304 continuous in all their variables.

By the theorem of Cauchy-Lipschitz, we know that if a function f is
continuous, locally Lipschitz with respect to its second variable, the problem
y' = f(t,y) with y(t) = yo has a unique C'-solution y(t) on a maximal
open interval I. Here we take

Y = (Pe.e){jaj<tiaoro} f= (F“){|a|<%;ao¢0}
and y(0) =

9R _lT_"%l 2R B —i(cowf+o.23F) 5_(w, z)d a1 .
(er? Jo " Jrove p-(w, 2)dw z){|a|<%;ao¢0}

For all € > 0, there exists a maximal open interval I, containing zero,
in which we have a unique solution @c = (P¢,a){jaj<;a050} C! in u (the

(Pe,a){laj<L;a0=0} aT€ given by (4.2)).

Moreover, @, is smooth in (v,y) on [0;2R] x T*~!, so we can commute
all the partial derivatives in v and y; at any order. And as for all 8 in N,
~ in N7 1 | %%‘ﬁe is a finite sum of products of C'-function in u by
Cl-function in (v,y), we have 3%;;‘%7;@ in CY(I. x [0;2R] x T""1). So we
can commute % with all the partial derivatives in v and y; at any order.

Remark.— In all this section if we keep the expression of H with H and
0(p+,p—), we see that we just need the following assumptions:

(@) H:0,u,v,y) — H(8,u,v,y) satisfies that
H and % are continuous in all their variables

. 3’H 9°H 8°H 8*H
Vi=1,..n—1, 5% 5558 560y oy2

(#6) ¢4+ is of class C* or H® with s > £ + 2
(ii1) _ is of class C3 or H*"!

, are continuous in variable y;

(7v) there exists a real T' > 0 such that H, ¢4, p_ are T-periodic in each y;
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Local existence of a solution of a semi-linear wave equation

(when we take ¢4 in H®, the gain of an "half order” of derivative in com-
parison with the embedding H® — C* for s > 4 + 7 comes from the fact
that at a certain step we just need the continuity of ¢4 in variable y).

5. Estimation of || ¢.(u) ||, ,

To estimate || @c(w) ||, ., we will first bound diu | @<(w) ||, by a
continuous function of || @.(u) |lx,,, and then we will use the Gronwall
lemma.

PROPOSITION 5.1.— Ifm > "—;—l , we have the following estimation

d . . -
du | @e(u) ”31,,,,2([0;2R]><Tn—1)< F(| @e(u) ”i{mg([o;z}z]x'u‘n—l),u)
with F continuous in both variables.

Remarks
1) The assumption m > 251 comes from the embedding Hpm, 2 in L> and

so we can bound H (., u,v,y) by a function of the norm H,, 2 of @ ().

2) By writing in details the partial derivatives of H with the function H
and 6(p4,p—), we can reduce the assumptions on ¢, p_. Then, for this
proposition, we can replace assumptions on ¢4, p_ by the followings:

0 €CENH™S or g € H* with s>+ Zands>m+5

po_ €C3NH™* or p_ e H*L.

3) If the functions H and @_ are not T-periodic in each y; or not defined
on R™7! in their variable y, we can get the existence (and uniqueness) of a
solution of the problem (1.1) but in a smaller domain. We will see this in
theorem 7.3.

Proof

d
1. Estimation of o | @e(u) ||22.

As @, is in C1(I, x [0;2R] x T*~!) we can commute dilﬁ and / S0

d 2 2R 9 2 1
a | e(w) ||L2([0;2R]><’JI‘"~1) = /0 /n_l _ﬁ(%) dvd" 'y

2R ) L
2/0 /Tn_l Pe(gge)dv d"y.
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2 52
As ——¢ Is ——¢@
i ® Bvou ¥ 1 Gudy e
in v:

and so is continuous, we also have by integration

a g ,. vo9r
5e @) = 2@ 0n+ [ grplwsnds (G

But @, is C! in variable (u,v) so we can invert in the expression
@E(u + h‘a 0, y) — @E(u’ 0, y)
h

responding to 581: As @.(u+ h,0,y) = @:(u,0,y) = 0 given by the third
82

o]
equation i2n (4.1) we obtain a—u(gbe)(u, 0,y) = 0. Now, by using M@

Oudv

the limit in v = 0 and the limit in A = 0 cor-

@ and the second equation of (4.1) we obtain

equals

d .
7 I #e(w) 12 (0,2 xT=-1)

2R v
=2 [ gewy) (LB oo+ Ap)ds do @y (52)
0 Tr-2 0

On one hand, by using Cauchy-Schwarz inequality in L2([0;v]) and the
fact that v is in [0;2R] we have for the first term of the sum in the right
member of (5.2)

I / jsﬁ(SZE’ u, s, y)d8| < (2R)% ” jsﬂ(¢€a u, s, y) ||L2([0;2R]) .
0
And so by definition of the norm L? we deduce
” /0 js.f{(gbg,'u,, 5 y)ds ”L"’('I['"'l)S (2R)% ” jsﬁ((ﬁﬂua 5, y) ||L2([O;2R]><T"—1) .

By using Cauchy-Schwarz inequality in L?(T"~!) and the inequality above,
we obtain

v
I/ 355‘/ JEH(SEE’U’ 8,y)d8|
' -1 0

v
< || @) lzseon | fo JoB(@eruy 5,9)ds || garns,

< (2R)% ” @E(u, ’l)) ”L2(T"“1)” jsﬁ«aaua 8y y) ||L2([0;2R]x'11‘"-1) .
We know by Plancherel’s theorem that for any (2RxT"~1)-periodic function
f we have || f ||2.= Z | < ¥, f>* so

a€Znrtl
I Jef <l f Il (5.3)
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Local existence of a solution of a semi-linear wave equation

and as the function H is continuous we can bound as follows

| /1r Be / JoH ($eru 5,5)ds d™ 1y
n—1 0

1 ~ o
< (2R)? || Ge(u,v) [[L2(Tn—1)ll H(Pes us 85 Y) | L2(j0;2R]xTn-1)

< CRIT™E | gelu) sy | max A6,
6€oO,
ye Tr-t

where ©. = [~ || @(u) [lLeo(o2R)xTn-1), || Pe(w) ||Loo(0;2RxTn-1)] SO We
obtain

|/ 855/ j8(¢5’uasyy)ds dn—lyl
Tr—-1 0
< er(ll @< (v) L (o2rxT-1),u) || Pe(w, v) l|L2(Tn-12)

with cg continuous in all its variables.

On another hand, for the second term of the sum in the right member
of (5.2), we have in the same way

| / o / AyGeds d™ Ty
™1 Jo

< 1l B, ) [l 2z /0 Ay@eds lz2nes)

1 ~ ~
< (2R)?2 || @e(u,v) llL2(Tr-1yll Ay@e(w) | L2(j0;2R)xT-1)
< @R} || $e(u,v) lzma-1yll (@) [l »(0:2R) xT-1) -

Finally, we integrate in v and add these two estimations, so we obtain

d , .
= 1 @) 122 (o2 xTn-1y)
< 2| Ge(w) llz2(o2r)xTm-1) CR(|| @e(w) || Lo ((0;2R]xTm-1), )
+2(2R)? || Ge(w) || c2(os2mpxt—n) | @e(W) . (t02R1T-1)

hence as if m > %51 we have My, 2([0;2R] x T"1) € L([0;2R] x T 1)
(see lemma 2.2), and we can write

d , _ .
du | @e(u) ”%2([0;2R]><']1‘n—1))< c1r(|| @e(w) "'Hm,z([();ZR]x'll'"—l)vu) (5.4)

with ¢1r continuous in all its variables.
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d  0°
2. Estimation of || By B(pg(u) 2.

3
Let 3 € N*71 1 < |8] < m, we denote a—ay—ﬁ where 8 = (81, ..., Bn—1) to

mean that we differentiate |3;| times with respect to y;.

o8
As nge is in C*(I, x [0;2R] x T""1) we can commute Zl% and / , and
o 3+2
after as we have done for —82('55 in (5.1) we use that W(Z)e equals

ops+2
Oudvdy

A A5 Pe and so is continuous , hence

4,2, 2 Y dv d*™*
7 | a—yg%(u) IZ2(os2RIxTR-1) = - ayﬁ(pea 3y ﬂ(%) v y

2R 5
) 2/0 /Tn 15?7%[55(@5%)(“’0,3/)

i o o7 dsldv d"*
4 [ o g P 5,0) dilde 7y,

9 8
We can show that (— 88 3 ?e))(u, 0,y) equal zero in the same way as we

5
o ~ n—1
have done for o (@e)(u,0,y) = 0 because for any (u, y) in I xT"~*, we have
9"
@e(u,0,y) = 0, and for any |y| < |8], _6.?((’55) is in C(I x [0;2R] x T™~1)
so we can invert the limits in v = 0 and in hy = 0,...,hgy; = O for the
partial derivatives in u and ¢ .
of+z of+z

as voudyP #- equals OyPOvou ¥e
tion of (4.1), we obtain

Finally, and by using the second equa-

d  8° _
2 | @5%(") 172 o:2m1xTn-1)

2R o8 3/3 »
= 2/0 /n—l :9—3/7¢5 ; (J H(@e,u,8,y) + Ay@e)ds dv d™~

. B . ., OF
Now we will show that 5;5(-]5(1{(%,% $,Y)) = Js(gy—EH(goE,u, 5,9))-

By the definition of Je, and in the end by doing an integration by parts, we
have
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Local existence of a solution of a semi-linear wave equation

15)
ay U, $,Y)
)__T.._/ / —i(aow%+a.z2%'
'n—1 ~
"ol ' H(e,u,w, 2)dw &'z a(5,) )
2R
- / [ @R (Fagerianimsie)
lal<2 = H(@e,u, w, 2)dw d" 1z o (s, Y)
2R
Z / /Il‘ 2(2R)_%T_nT_1[e—i(aowﬁ-i.-&'zz%)g(@sauvw’z)]zz'éﬂ'
lal<2 dw d* "%z Pa(s,y)

+ Jo (- H(@e, u,5,1))

where [f(2;)],,eT means f(b) — f(a) if T = [a;b]. We have supposed that H
and ¢ are T-periodic in each y; , it implies that @, is T-periodic in each y;
(by uniqueness of solution given by the Cauchy-Lipschitz theorem in section
4), thus the first part of the second member in the equation above vanishes
and we have

9 - - 2 0 =~
—J . H(Pe,u, 8,y) = Jo=—H(c,u, s,
e (@e y)=Je ” (@ Y)

For higher derivatives, we proceed by recurrence with the same method
L.

(we can notice that for any |y + v| < ||, the functions WH , %4%

are also T-periodic in each y;). So the following holds:
For any B e N*"1, 1 <B<m,

F; L I S
W(JEH(%, u, 8,Y)) = Js(gy—BH(%, u, 8,9))- (5.5)
Hence we obtain

d 98 2
du I Wﬂ%(u) ||L2([o;2R]x’Jrn—1)

2R aﬂ ) v aﬁ o ) |
= 2/ /]I‘n . (W%)/ [Jeé—ﬂH(%,u, 8,y) + Ay@elds dv d™* "ty
2R
_2/ /JI‘" 1/ ayﬂ('oe H(cpg,u,s y) + Ay Pe]ds dv d* "y

(we can put 2 gos under [ by continuity of the functions on [0; 2R] xT"~1).
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Now for the first part, as we have done before, by using the fact that v
is in [0; 2R], Cauchy-Schwarz inequality, and (5.3) we can bound as follows

| Jpos fo ( yﬁ%) €7H(Soe,u,3 y)ds d"Ly|
2R 8
/Tn 160 e s A sl
o8
<l By ﬁ%(“) llz2to; 2R]><T"‘1)” Je 3y A5 H(@e, us 5,9) |12 (02R)xTm-1)

9° 98
<| By 5.5 P=(W) [l L2(jo;2R) < T~ 1)|| H(<pg,u,s Y) || z2(o:2r)xTm-1) -

Therefore we notice that (;9 ﬂ H(@e,u,s,y) is a sum of
oot
(5g5ggn ) (Per s, y)H 3 S pe(uss,y) with |5+ < 8] and X Iv] < 161.
§o+n
By assumption (3.6) we know that WH is continuous, so when we take

9®
the norm L2 of WH (Pes u, 8,9), We can extract it, thus we obtain

o
” a_yﬁH(SOE, u, s, y) ||L2([0§2R]XT""“1)

S Z s€ [o 2R] |6053 #H(H w8, y)! |l H dy V‘PE(U) ||L2([o :2R]xTn—1)
ls+ul<i8l ° g ¢ o,
yeTTr?

where ©, = [— || Z(u) ||L°°([02(l xTn— 1),|| Pe(u) "L°°([0 2R]xT~-1)]- Then
as we know that @.(u,v) is in CO(T*~!) N H™(T"" 1), we can apply the
proposition 3.6 page 9 of Taylor [7] (which is still available with T"~! instead
of R™) with f = ¢ = @.(u,v), thus we get

o . . ~
I H a—y,,sos(u, v) ||L2('Jrn—1)< c || Pe(u,v) ||L°°('Jl"n—1) | Pe(u,v) ”Hm('ﬂ‘"—l) -
14
Now we integrate the square of this inequality in v on [0; 2R}, it gives
o . 2
| H 5&;%(“) ”L2([0;2R]x’11'"‘1)
v

< | @e(u) "%w([o;zR]xT"-l) | @e(u) "?—[m’o([o;zR]xT"—l) .
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Local existence of a solution of a semi-linear wave equation

Hence we have

o8
“ WH((PE»U’ S, y) ”L2([0;2R]><T”‘1) (56)
a%+u
< ——H 07 5 Sy ~€ R ~5 .
e X max Iz 0w 6e) e | 2w It
[b+ul<IBl gceo.
ye']l"'n—l

Therefore if m > l‘z‘—l, we obtain

| /‘n— / ( aa )'j 6 Z ( ) ot |
. 5805 Ea 611 Scsau’s’ded 9
< CZR(” S&E(U) ”'Hm,2([052R]X]I 1) )

with Cqi continuous in all its variables.

Then by integrating in v on [0; 2R]

2 [ ‘& L2 ds dv dn1!
A s Jo (6—1/5805) €5gF (Pe,u, 5, y)ds dv y
< 2RC2R([| @e() llnt,n o(10:2R)xTm1), )

On another hand, for the second pa.rt by continuity of the functions we

can commute [r._, and fo , and as 5—;;_—(,05 is T-periodic in each y; , we
have by integrating by parts in each y; on T:

2R PY: .
/ /’]l"" 1/ ayﬁ‘PEa 3 AyPeds dv d™ "y

2R = Kl aﬂ 8 9° -

nl 2R
e d m—1
/ //n_16y36<p)dv sd' 'y

Thus

d o® -
o I 5@/—5%@) 122 ((os2my -1y < 2RC2R (|| $e (u) 1+ 2 ([0;2R] x T =1y, ©)(5.7)
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d 0 0°
3. Estimation of H 509y Bgog(u) 122

3
Forany e N*71, 0< |8 <m, (;9 aaﬁgoelsm CY(I. x [0;2R] x T*1)
d d 4 6B+2 ) H8+2 n
te — e A 5a o Peo
we can commute —- an /,an 5u9007 o 12 equals 55 5 @e , we have

d o o°
5 30 By 575 P () 22 ((0,2r)xTn-1)

2R §B+1 3,3 52 1
_2/ fn_ avayﬁsos 6 ﬂ( Sudv Sos)d’l)dn )

Then by using the second equation of (4.1) and (5.5) , we obtain

d 8 8°
” dv dy ﬂ%(u) ||L2([0 2R]xTn—1)

2R 8+1 ) _ 96 .

= ~€ Jem— ~s, y Uy — A, P )d .

2/0 /Tn_l(———avayﬂw XN sayﬁH(SO u,v,y) + 37 JPe)dv &y
As we have done in (5.6), we can deduce that

2R HB+1 . 98
| ('—"'<Pe) € H(‘PEau s,y)dv d*~ yl
0 Tr-1 3v8y5 8 8yP

X CsR(” %02(“) ||Hm,2([0;2R]><'JI‘""1)>u)

with C3g continuous in all its variables.

§8+1
For the second part, by integrating by parts in each y; on T , as W(ﬁg
B+l
and ——— ;097 ——— . are T-periodic in each y;, we have:

2R oB+1 o8 .
/ /’ﬂ'ﬂ L avayﬁ"/’s)a B Aypedv d* "y

2R n-l
o 1 o & -
/ Z /n_1 dy; 8v8y5 ‘ps)ﬁy Oy 5 P Y-

os+1 _ LI an

By, 5vByP 7 = By y;ayE v s

We know that —
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Local existence of a solution of a semi-linear wave equation

2R 85‘5‘1 8’8 B
/0 /]I‘n 1(81163/13(‘05)8 3 Aypedv d* ™y
2R a 8/3+1 8’3+1 -
——214”/'8”®ﬁw%%Maﬂ%“d y

n—1 1 aﬁ+1 ~ 2dn~1
__ g /T 35y 5%

B+1 _

6 a ﬂwe
a7

(4.1) and the continuity of all the functions % 5. on [0;2R] x T~ | so

But (,0,y) = 0, indeed it comes from the third equation of

we get

2R o8+1 98 .
/ /']1'" N 8vayﬁ(p€)a ] y‘)oedv ar Y

< 1 85+1 ~ 2 m—1
=-> . §(W%(U, 2R,y))d" "y
j=1"2"" ’

<0.

Finally, we have if m >n —1,

d 0 0°
5. 55 557 Ge(WlZ2qo2ryxmn-1)< Cor (| Be(W) |l (0121 xT-1), 1) (5.8)

with C3r continuous in all its variables.

d 0% 98
4. Estimation of || 302 By B%(u) II? T2

% 98

For any B e N*~1 0 < |B| < m, as Wé—gﬁ—@s is in C1(I; x [0;2R] x

ob+3 oBs+3

T"~1!) and W¢E equals 3 @ we can proceed as before, so

OvdyP dudv

d 9% 9°
|| 92 Dy B%(U) ”L2([02R]x']I‘" 1)

2R ob+2 o8+l 52 o -1
22/ /n—l vzayﬂ%)a'vayﬂ(aua Pe)dv y

2R oB+2 s+l
2 [ [ (s )5 e G 0,0) + Ay 'y, (59)

H
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We estimate the first part of (5.9) corresponding to the first term in the
sum beyond. By (5.5) we have

o8+t 7]
30057 (Je H(@e,u,v,7)) = 55 “3y ﬂ(H(%,u v,9)))-
Now by integrating by parts on [0; 2R], we obtain
o . 08

8_(J€a_ﬁ(ﬁ(¢e, u,v,Y)))

X ZR/ @RI (Raglem o R

laf<?

F; —
W(H(‘PEau’w’z))de 1z "/’a(s,y)

= % - [ @RIT R eieonhime)

Jol<

6y/3 (H(Soe, u, w, Z))]ZR d" 1z wa(‘% y)
L OB+l _
+ JEW(H(‘PB u, v, y))

where [f(w)]3® means f(2R) — f(0).

ok . -
But BZE(H (@e(u, 2R, 2),u, 2R, 2)) = 0, indeed H is a product of a func-
9 A
oy

tion f by v — ¢r(v), so for any v such that |v| < |3,
and ¢r(2R) =0

B
On another hand, 583/—6(H (@e(u, 0, 2),u,0,2)) = 0. Indeed

(3 (u,v,9),u,9, y))

8

Oy;
For the first term, @, (u,0,z) = 0 and we can invert in the expression
(H(0,u,v,y + he;) — H(0,u,v,y))/h the limit in (6,v) = (0,0) and the
limit in h = 0 corresponding to 8—37 because of the regularity of H. As
H(0,u,0,y) = 0 for any (u,y) (see (3.3)), this first term vanishes at v = 0.

For the second term, we already have seen that (2 37 Pe) (s 0,y) = 0 so it
vanishes at v = 0. For higher derivatives we proceed snmlarly

——H)(¢e(u,,9),u,v, y)+( H)(sos(u V,Y), U, V, y)(a @e)(, v, ).
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Local existence of a solution of a semi-linear wave equation

Hence we obtain

os+1 oBs+1
Body 555 (JeH (@, u,0,y) = J. (a 5 5 (H(Ge, u,,9))). (5.10)

Remark.— We can see here that we can’t get an estimation with higher
2

derivatives than two in v. Indeed, in e 2J H(ge,u,v, y) appears a term

O -~
%H(gbs(u, 0,v),u,0,y)— 59 <,0€('u, 0,y) under the sum on |o| < 1 and there’s

no reason for it to vanish. Then if we keep it, the estlmatlon contains a
factor of type c(é) which is not uniformly bounded as ¢ goes to 0.

Now we can write that if m > 1;—1-,

2R aﬂ+2 G+1 .
/ / v2ayﬂ90€) 5(6 6 gH(SOe,u 'U,y))d’v d

OB+ HBs+1
2 5075y ,;‘Pe ll22(0:2R) x -1y | Je “ 500y ﬁH(%,u,v Y) llz2([0;2R)xT»-1)

§8+2 _ s+ R
<2 ERr AL |22 ((o;2R) x T3y WH(%,U, v, Y) llz2(0;2R)xT~1)

< Car(|| @e(w) ”Hm,g([0;2R]x'JI‘"—1)’u)
because of the assumptions (3.6) on H, with C4g continuous in all its vari-
ables. Indeed we bound the second factor of the right member above as we

have done in (5.6), by applying the proposition 3.6 page 9 of Taylor 7] with
/= ¢E(u, 'U) and g = %S‘bs(u’ v), it gives

alll _ al/2+1 _
Il 8—y,‘;%(u, U)W%(u’ v) ||L2('1rn—1)

- 0
<c | @e(u,v) ”L°°(T"—1) I 5;%(% v) ||Hm(1rn—1)

o . -
+c | 902w ) llLooqrn-1) I| @e(w,v) lmrm(wn-s) -

We integrate the square of this inequality in v on [0; 2R), use that (A+B)? <
2(A? + B?), thus we obtain by taking the square root and as /(4 + B) <

V(4) +/(B),
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V1 vo+1

o 0 -
| By_"f%(u’ v)w%(u, ) | L2([0;2R)xT-1)
- 0 .
< V@) |l () | (oszryxT-1) |l 5P (@) Il 0 (0:2RIxT=-2)
J . .
+/@2)¢ || -6-1;%(’“) |l Lo 0:2R) xT7=1) | Pe(¥) 12, 0([0;2RIxT-1) -

Then as a%(ﬁa(u) is in H,,,1 and as if m > 251, we have the embedding
Hp,1 in L, we get

s+l B
l WH(%,U, v,9) l2(o;28)xT»-1) < | Pe (W) [177m.2)

with € continuous.

Now, we estimate the second part of (5.9) corresponding to the second

term. We know that we can commute any partial derivatives in v and in y;
6+2

on @.. By integrating by parts in each y; on T, as %’(ﬁs and -37?917—57@5
are T-periodic, we obtain

2R o8+2 g8+1
2[) /]I‘n 1( vzayﬁ(’%)a dy 5(A (@e))dv dnt Yy
_—2/2R ) / ks ) ( 0% )dv d™t
= Tr—1 S 8v8y,ayﬁ¢’€ EREIE Bcps v y

s 052 1 -1
_/0 /n—l ov avay,a ﬂ%) dv d™"y
) Oy R ARy 0,y)d" !
= —;/Tn_l(avayiayﬁsoe) (U,2 ,y) - (st) ('LL, ,y) Y.

8 9 9% _

The first term is less or equal to zero. For the second one, as 30 5:; éy_ﬁ(‘os

is in C1(I, x [0;2R] x T"~!) we can write

(avaya 5%e)(w,0,9)= (——6 9D 5%:)(0,0,9) + (W%)(S ,0,y)ds.

Then as 3 (0,v,y) = J.$_(v,y), and by the fact that we can commute the
partial derivatives, we have
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Local existence of a solution of a semi-linear wave equation

8ﬂ+2 HB/+2 . u 98+l
(avaya 5%e)(u,0,y) = (WJ&—)(O, y)+/O (8 r 5 JeH(pe, 5,0,y)

Hs+1
a a B y‘PE(S O y))
We have seen in (5.5) that we can commute J. with the partial derivatives
3+1
with respect to y, and 58—87
§5+n
( oéayﬂH)(soe,u v,y Ha Vsoa(u v,9)
with |6+ u| < |8 +1 and > |lv| < |B]+ 1. But we know that @.(u,0,y) =0
v +1

H(@e,u,v,y) is a sum of

o . . ow

) Ay (u,0,y) = 0 and for the term (WH) (Pe(5,0,7),5,0,y) =
B+1 i

(3zi8yﬂ H)(0,5,0,y), as H(0,5,0,) = 0 it vanishes. Thus it only stays
oP+2 We \

(3v8yi8 B J.¢-)(0,y). We show that

a8+2 j 98+2
Yodn o P- = g 5P
Ovdy; Oy vy 0y

by proceeding as we have done in (5.10) because ¢_ is T-periodic, @_ is a

6+1
product with a factor ¢r and §W¢_ (0,2) = 0. Indeed by (3.4)
os+1 oh+1 ohst+1 B+l 9
550y 5 P-(w,2) = W‘P—(waz)—w¢+(0yz)—W%W—(O,Z)w
9o+l B+1 §o+1

hence =0

0
g P09 = 5550~ (09) — 5 5+ (0:2)

by the corner condition ¢_(0,) = ¢4(0,y). Now as || J.f | L2(Tr-1) <
Il f llz2(Tm-1), we get

= 8%+2 .
;An_l(w%) (u,0,7)d" 1y
- 9%+2 .
=Z/ 1(W¢—)2(0,y)d" 1y
i=1 n— 3

>l _o 0) 117

< 85— 0 L2(Tn-1) < ¢
— Ovdy;0yP

by the assumptions on ¢_.
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Finally, we obtain if m > "T"l,

d 0% 9° _ -
a;”a—ﬁ@g%(u)”%z([o;m] «Tn-1yS C4r([|Be (Wll2¢,,, o ([0:2R] xT-1), @) (5.11)

with Cyg continuous in all its variables.

5. Conclusion
Now it suffices to add (5.4), (5.7), (5.8), (5.11), and we can conclude that
ifm > 1‘—;—1,

d . . -
u | &e(u) ”‘%—[m,z([o;zR]xTn—l)g F(I| @e(w) ||3{m‘2([o;2R]x'n‘n—1),U)
with F continuous in both variables.

PROPOSITION 5.2. — Ifm > "T"l , there ezists a interval [0; Br[ and a
function hg : [0; BR[— R such that

(i) ¢ exist on [0; BR[x[0;2R] x T"~!
(i1) we have the following estimation for all u in [0; Bg|

| Pe(w) 4,0 2(10:2R)xTn-1)< hR(W)

with hg continuous in its variable.

Proof.— We first apply the nonlinear differential Gronwall’s lemma,
recall if f is C1(I) with I real interval including 0, f(0) < M, % < F(f,1),
and F continuous then there exists I(M) including 0 and a continuous
function Gas : t — Gp(t) defined on I(M) such that f(t) < Gu(t) on
INI(M)NR*.

Here f(u) =| @e(u) ”3{,,.,2([0;2R]><Tn—1)’ f(0) =[| ¢- ”?—tm,z([o;2R]x’1I'"—1)<
¢(R) and I = I,.

So there exists I(c(R)) including 0 and Gg : u — Gr(u) continuous and
defined on I(c(R)) such that || @ (u) [|3, 2(0:2R)xT-1)< GR(u) for all u in

I.NIR)NR*.

Let [0; Bgr[= I(c(R)) NR*. Now we want to show that [0; Bg[ is included
in I.. Let I, =]—T.; T."[ the maximal interval of existence of ¢, with respect

to its variable u. Suppose that T.X < Bg , we set ¢ = max GRr(u) then
0<u<gT,

we have
= +_T +
| P<() ll+m 2 (j0s2R) xT-1)< € On [0; T — 5] (for any T < 2T7").
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Local existence of a solution of a semi-linear wave equation

Let K = [0;2T.] , ¢ > 0, by the theorem of Cauchy-Lipschitz, there exists
T, x > 0 such that the solution of

3¢sa) =
* — = FO( e, 1. , U
) < Ou {lel<d;00#0} ( (Bes)aictionso) )){IQK%:%#O}

with the initial value gc(to) (to € K) satisfying || Ge(to) I+, 2([0;2R)xT7-1)
< ¢, exists on [to;to + T¢ k|-

Let v.(u) = @e(u) for all u in [O T — L—] , and v (u) solution of (x)
with, at to = ToF — Lo 3K 0 (T — L, =E) =@ (TF - L, 5%) (indeed || (T —

T8 gy, 2 (0s2R) < T 1)< C)

Hence v, exists on [T — ], ve is a solution on [0; T + TCZ’K I,
which is contrary of max1mahty of |- T ;T-+[. So we obtain that [0; Bg| is
included in I..

cK

6. Existence of ¢
We can show now the following proposition

PropPOSITION 6.1.— Ifm > Eg—l + 2, there exists a solution ¢ for the
problem (3.5) with assumptions (3.6), and this solution is in C°([0; R] x
Tn—l)

Moreover, if m > max(n — 1, 25% +2) then @ is in C°(I x [0; R] x T™™1).
Moreover, for olll > 2, zfm > max(n — 1, "‘"1 + 4+ 1), and if for any
0<a<!-1,0<b<l-1,0<y+| <m+1, D¢D'DJDLF is
continuous in all its variables. then @ is in C*(I x [0; R] x T~ 1).

Remark.— We suppose that n > 2, the results for the case n =1 state
in section 8.

Proof of the proposition 6.1. — In the first step we prove the existence
of a solution @, then in the second step we study its regularity.

1. Existence of a solution of the problem (3.5).

We have shown in the proposition 5.2 that for any € > 0, @, exist on
[0; BR[X[O; R] X Tn_l and Yu € [0; BR[, || <,5€(u) "Hm,z([O;R]XT"_l)g hR(u)
with hgr continuous.
So on I = [0; Z&] we have || @c() ||#,. »(0;R)]xT-1)< max hr =c.
Thus for any uin I, @, (u) is bounded in Hm, 2([0; R] x T"~!). As this space
is reflexive , we can extract a sub-sequence @, (u) which weakly converges
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to G(u) in M2 and || $(u) [|n,,,< Gminf || @e(u) [#,,,< ¢ so @ is in
L% (I, Hm,2([0; R] x T"~1)).

By compactness of embedding Hy, 2 < Hm,o (see lemma 2.3 ), if (G, (u))
weakly converges to ¢(u) in H,, 2 , then (P, (u)) strongly converges to @(u)
in Hpm, - By interpolation (see lemma (2.4) with v = £) | if 0 <k < 2 we
have

k _ ~ 2—k
| Per (W) = Be() [Hm s S || Per(u) = @e(u) 17, |l Ber(u) — Be(w) 57, ,
. - £ - . 2-k
S @er(w) = @e(u) NI, o (I Ger (W) 17, + I Pe(w) ll2,,,2) 2
~ . k 2—k
< @er(w) = @e(u) IR, , (20)77 .

From which we can deduce that (@, (u)) strongly converges to @(u) in Hp, .
In particular, if k = 1, by inclusion Hm,1 C C? (see lemma 2.2 ) we see
that (@e(u)) strongly converges to $(u) in C°([0; R] x T™1).

Then by continuity of H , we get (H(@.(u),u)) strongly converges to
H(p(u),u) in CO([0; R] x T*1).

Now by observing that

| Jer H (Ger (), w) = H(P(w), ) fleo < | js'ff(fe'(U),U) - I:-’(?a'(U),u) llco
+ I H(@er(u)yu) — H($(u), u) llco

and that
| Jer H(er (), u) — H(@er (w),u) |lco<|| Jer — Id |l o(z2,am) | H(@er(u), ) ||o

with || Jo — Id llz(z2,m1)— 0 and || H (e (u),u) ||co bounded, we can show
that

Jor H(@er(u), u) — H(@(u),u) in CO([0;R] x T*Y). (6.1)

Now we show the convergence of the partial derivative of ¢, with respect
to v. We have

o _ -
I 5P @) Nt s <1l G (W) e < €

and H,, 1 is reflexive so we can extract a subsequence (%(ﬁgn (u)) of (53;555/ (u))
which weakly converges in H,, ; (then strongly in H,,_1,; by compactness
of the embedding Hm,1 — Hm—1,1) t0 (1) € Hm,1 and || $(w) ||x,. . < ¢
Now we verify that ¢(u) = %cﬁ(u). Weakly convergence in Hp, 1([0; R] x
T"1) implies weakly convergence in L?([0; R] x T*~!) , itself implies conver-
gence in D’([0; R] x T"~1). So on one hand, -é%gben (u) = @(u) in D'([0; R] x
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T"~!) and on another hand @.»(u) — @(u) in D’'([0; R] x T*~') , hence
%«ﬁgv (u) — %cﬁ(u) in D~’ ([0; R] x T*~1). By uniqueness of the limit in
D'([0; R] x T"™1) we get ¢(u) = a%gb(u).

In the following we see that -2- % Pe» (u) converges to = 9. 3(u) in C°([0; R] x
T™~1). It suffices to apply the argument of interpolation:
for all u such that 1 < u < m let o defined by u = o + (1 — o)m, we have

o . 9
” E}"ps” (u) - ——‘p(u) ”7‘(,‘ 1
8 17}
< s () = o p(u) [y oo () — () 1457,
. J . 1—
< =@ (1) — — g °,
< Il peer(u) — 5-0(u) 5, (20
Thus 5 5
| 0% (u) — %S"(U) ll#,.,.— 0.
In particular, if we choose m—1 < py<m,asm—1> Z’;—l Hyy = C°,
S0

o _ o .
| 5= @ (u) = 5=6(w) llcoqo;r)xTn-1)— 0- (6.2)
v ov

Similarly, we can show the following lemma that we need for the moment
with Dy = Ay:

LEMMA 6.1.— Ifm—la| > 251, D2@(u) is in CO([0; R] x T*™1).

Proof of lemma 6.1.— For all || < m ,we have || Dg@e» (u) [|#,,_a). <
| #e» (w) l|H,.. < €. So we can extract a subsequence (that we will denote
also ¢.» for more commodity) weakly convergent in H,,_|q|,2 then strongly
in Hym—|l,1- Arguing by uniqueness of the limit in D’([0; R] x T"71) , we
show that its limit is Dg@(u).

By interpolation, for all 0 < k < 2, || Dy Ger (u) — Dy@(u) 14, jay = O
In particular, if k = 1, as m — |o| > 252 by embeddmg Hun—ja1 <= C°,
we get

| Dy @er (u) — Dy @e(u) |l co(jo;rxTn-1)— 0.

Then as C°([0; R] x T""!) is a complete space, we get that DI@(u) is in
CO(0;R] x T*1). O

By applying this lemma with D —y—g and addingoni=1,...,n—1, we
obtain that if m > 2+ 251 , Ay@(u) is in C’O([O, R] x T™1). We will deduce
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from these results that ¢ is a solution of the problem (3.5). Indeed,on one
hand, from the continuity of 3—‘3—2-,;@7’ (u) we have

38;@;" (u) - é—%cﬁsv 0) = : %Zv‘/}s” (0)do. Therefore we use the theorem
of dominated convergence of Lebesgue. By the convergence of Ay, @.» (o)
and (6.1) we can say that, for all ¢ in I, 3%2-;955” (0) = Jo H(@er (0),0) +
Ayf?g” (o) converges to H(3(0),0) + Ay@(o) in CO([0; R] x T~ ). And
I 3ezs Per llzo= (1,00 (10:RIxTm-1))
= rglé)?{ | Jer H(@er (0),0) + Ay(ﬁe”(ﬂ) ”CO([();R]xTn-—1)§ ¢r which is in
L([0,u]).
So [, %cﬁgn (0)do — [ H(p(0),0)+Ay@(0)do in CO([0; R]x T ). Fur-
thermore, 2 @.» (u) — & @ (0) — [5' H(@(0),0)+Ay@(o)do in CO([0; R] x
Tn—l).
On another hand, by (6.2) 535@5” (u) — g)—gben 0) — aigb(u) — %@(O) in
C([0; R] x T*~1). Hence by uniqueness of the limit in Cﬁ([O; R] x T*1) we
get _
25(u) — 25(0) = [ H((0),0) + Aydlo)do.
Then we differentiate with respect to u and we obtain

2 ~
O () =A@ 0,9 w0,0) + Apwvy). (63)

We notice that @(u,0,y) = 0 is given by @¢»(u,0,y) = 0 and the con-
vergence of @¢»(u) in CO([0; R] x T*71).
For the last equation of the problem (3.5), we recall that @.»(0,v,y) =
Jer@—(v,y) , and as

| Jopo =@ llce < | Jer = Id llqze,mmyll &= lico
with || J., — Id llccz2,m2y— 0 and || $_ ||co finite, we can show that
Jop_ = @_ in C°(0;R] x T*Y).

Now with the convergence of @.» (0) in C°([0; R] x T"~!) and the uniqueness
of the limit we can conclude that ¢(0,v,y) = ¢_(v,y).

2. Regularity of ¢.

Now we are going to show that ¢ is C°(I x [0; R] x T""!). To reach
this goal, we will show that @ is in C%(I, Hy 1([0; R] x T™~1)) with m/ >
(n — 1)/2 By the continuity in v of 5%@ , We can write:

(u+h,v,y) — ¢(u,v,y)
- - v o, -
= (p(u +h,0, y) - ‘p(u7 0, y) + V/O EJ—(SO(U + h, 0o, y) - QD(U, g, y))da'

— 74 —



Local existence of a solution of a semi-linear wave equation

Let m’ = m/2 , as we have seen beyond @(u+h,0,y) = 0 and @(u,0,y) = 0,
so

| ¢(u+h) — G(w) lln,,, , (o:RxT-1) (6.4)
v a B 5
=|| /O %(VD(U-F h,0,y) — ¢(u, 0,9))do ||n,., , (j0;R]xT-1) -
Here we need the following lemma, the proof of which can be found in
appendix B:

LEMMA 6.2.— Suppose that f is a function of (s,y) such that for all
0<v<m , Dyf is in CO([0; R] x T™ 1), then

v 3
I /0 f(s9)ds 1w, qo:rixTn-1)y < (B2 +1) (| £(5,9) 7, o((0;R)xT-1)

Here by using lemma 6.1 with a = v, we get that if m —m’ > (n—1)/2

ie.m>n—1, then for all 0 < |v| < m/, Dy@(u) is in CO([0; R] x T 1).

So we can apply the lemma 6.2 on %@(u + h,s,y) — %(ﬁ(u, $,7), and by
observing that

I £(5:9) I, o(10;RpxT-1)<I (8, 9) I,/ , ([0;R]xTn-2) We can write that

Yo 0
[ 5t hoy) = 5000000 e, ompeases
2 0 0 .
< (R2 + 1) ” %QO(U-I- h,a, y) - %<P('Uz, o, y) ||Hmr_1([0;R]><T"“1) '(65)
On another hand we know that for all 1 < u <m,

d _ o _
I 507 (u) — %w(u) l#¢,..,(10;R]xT~=1)— O.

Hence

0 . 0 . . 0 . J .
I 558w+ h) = 5-¢(u) I, = Im || 5-Ger (u+h) = o Ger () Il -

g’

Recall that =2 5e» is continuous in all its variables (u,v,vy), so we have
Budo ¥

9 o _ . u+h 92 _
| ot h) = 520 b= Jim [ 5o () do I

Then we need the following lemma, the proof of which can be found in
appendix B:
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LEMMA 6.4.— If (u,v,y) — f(u,v,y) is a function such that for all
0<|vl<p 0<ax, DyDyf is continuous in all its variables, then

u+h u+h
I / F(0)do |lx, < / | £(0)do |1, do.
u u

Now we apply the lemma above to f = a—s—g—v@w , SO we obtain

) 9 u-+h o2
3 _ < 1l B
| 5520+ W = 50 s < Jim [ 1 520 ©) s do

But
9% s
" auavws” (0) ”'HP,,1 =“ Js”H((stn (0'), U) + Ay(ﬁs” (0') “Hu.l

<l H(@er (9),0) lInr + 1| Ay@er (0) I,
< er(|| @7 (0) llLoe, )1+ || G (9) lI1,,1)+ || @ (0) s
with ” P (‘7) ||L°°707 “ Pe» (U) ”7‘1,4,1’ ” Pe» (0’) ”'H“+2,1 bounded on 1. Hence,
2
I 5,552 (@) .. < Cr.

Thus, we have with p =m/ (asn > 2 and m’ = 2 = I max(n—1; 251 +2)

we get 1 <m’ <m)
9 _ o _ . u+h_ B
I g5 P+ h) = 2=@(u) Il (0;R)xTm-1) < Lim Crdo =Cgrh. (6.6)

U

From (6.4), (6.5), (6.6), we can deduce that
| @+ R) = B() Il , oimIxT-)< (RE +1)ezh.

It means that @ is in C% (I, Hypr 1([0; R] x T™1)).

But C%(I,H,n 1([0; R] x T"7Y)) C COI, Hm 1([0; B] x T*™1)), and as
m’ > (n—1)/2 ie. m > n — 1 we have CO(I, H,n 1([0; R] x T* 1)) C
CO(I,C°(J0; R]xT™ 1)) = C°(I x[0; R] x T™~!), which allows us to conclude
that

@ € COI x [0; R] x T ).

Now we show that under certain conditions @ is in C?(I x [0; R] x T"~1).
We start by getting %(ﬁ in C°(I x [0; R] x T*1). As H is continuous in
all its variables, we have (u,v,y) — H(®,u,v,v) is in CO(I x [0; R] x T*~1).
So it suffices to prove that Ay is continuous. Here we introduce a lemma
because we will need it later too. Its proof can be found at the end of the
section.
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LEMMA 6.5.— Ifm—|a|-2> 25 | D2 is in CO(1 x [0; R] x T* 7).

We apply this lemma to A, and finally, we obtain that if m > max(n —
1,251 +4) H(@) + Ay@ is in C°(I x [0; R] x T"1). Now by the equality
(6.3), we get

5 ; @€ C'I x [0;R] x T ). (6.7)

Then we show that ¢ is in C?(I x [0; R] x T"~!). First we can deduce
from the result above that %(ZJ is continuous in all its variables. Indeed

o _ o _ w92

%‘p(u> U’ y) - %SO(O, ’U, y) + o auav
- 25 >+/u—‘9—2—~< vy)ds.  (65)
- av(p— ’y o auav(p S, ,y S. .

By the definition of ¢_ we see that '2%95- (v,y) = -%cp_ (v,y)— 5%(,0(0, 0,y) =
Zo_(v,y) — 29-(0,y). As p_ is C™H, we get

0 . 0 . n—1
5;(,060 (I x[0; R] x T %).

Now by this continuity of %@ we can write that

- - Yo
¢(w,v,y) = ¢(u,0,9)+ / 59w 8, y)ds
0 v
v g _
= ‘/0 -(%go(u,s, y)ds. (6.9)
We differentiate in u and with (6.7), we get
o . vo9r
é—d(to(u’v,y) - /0 auav‘p(u, S, y)ds (610)
So
2]

3.7 € C%I x [0; R x T™1).

If we differentiate this equality in v, we obtain

02 0?

- 0 n—1
6’06u = Sudv ——@€C°(I x[0;R] xT" ™). (6.11)
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For derivatives in y; of first and second order we just have to apply the
lemma ?7.

We differentiate (6.10) in y; and as ¢ satisfies the equation (6.3), it gives

ay,au ~ 3y / H(@,u,5,y) + Ay@(u, 5,y)ds. (6.12)

If a?, H and aaoH are continuous in all their variables that it is the case
by the assumptions on H, and if 5 cp is continuous in all its variables
that it is the case if m > max(n — 1 1 + 5), we have v (H(cp, u, 8,y) +

Ay@(u,8,9)) = (3 H)(B,u,5,9)+(5 )(so, U, 8,Y) g P+ 5o Ay By, 5, 9))
continuous in all its variables. So we can commute f(;' and Biy{ and conclude
that

¢ Ix[0;R] x T* ™).
ayla,U/(peC ( X[O? ]X )
By the continuity of 3%95 we can write
“ 9
Py = G000+ [ Fplsv)ds
0 U

N v o .
= ¢y + /0 2 p(s, v, 9)ds.

2 . .
As we have shown that -8—5—5;@ is continuous, we have

i~(uv )——8—~ (v )+/u—§2—~(sv )ds (6.13)
v 'V, Y dy; -0,y ) 3yi3u(P » U, Y)as. .
We differentiate this equality in u, thus
32 a 0 n—1
Buay,(p By a<,o€C’(I><[OR] x TP,

For %g& we differentiate (6.8) in y; and as we have done for 5%;@

we obtain that if m > max(n — 1, 251 + 5)
82
——pE
Oy;0v ¢
Now we differentiate the equality (6.9) first in y; , then in v, hence
0? 02
G =
vdy; Ay;0v

C%(I x [0; R] x T™1).

@ € C%I x [0;R] x T*71).
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It remains to show that 3 <p and 3 <p are continuous. For this we
will see that we need the contmmty of ——;Aygo and so we must take m >

max(n — 1, 25 + 6) . We start by d_lfferentlatmg in u the equality (6.10)
and as ¢ satlsﬁes the equation (6.3), we obtain

o? 0 v

59 = 5ol | A@us0)+ Ayl s,)ds).

We notice that

% (AFI (1w, 8,Y)+Ay(us 5,9)) = () (5w, 5,9)+(55H) (B u,8,9) g7 6+
5 Ay P(u, s, y)) The both first terms of the right member are contlnuous by
the assumptions on H and the results above. For %Aygo we look at 355-0.

If m > max(n—1, 1‘;—1 +6), %Aycﬁ is continuous and by the assumptlons

on H, we have the continuity of

8% - . ~
597 (H(@,u, 5,9) + Ayp(u, 5,7))
82 - B 82 ~ - 8 ~
= (@H)(%u,s, y)+ (MH)(%“’ S»y)f‘P
+(—?E—I:I)(¢ U, 8 y)—a—¢+( H)(@,u y)
9y;00 T 062 e

+(aﬁ)("us )_Bi_+_BiA 5(u, s,y)
EY) Y, U, 8,y ayzzso ayzz yP\U, $, Y )
So by differentiating the equality (6.12) in y;, we get

83 . 52
55?0+ Ayl )ds.

Hence

83 ~ 0 m—1
————8yi28u<p € C°(I x [0;R] x T™™+).

Now we differentiate the equality (6.13) first in y;, then in u, and so we
obtain

o3 o3

oudy? $= Ay20u

It suffices to add on y; to get the continuity of —Aycp Finally we can say
that if m > max(n — 1, 251 +6),

@ e C%I x [0; R] x T™1).

2
58172(’5 € C%(I x [0;R] x T™1).

- 79 —



Aurore Cabet

We proceed similarly for 649;5 5 (we have supplementary terms, g; P
and —T—cp_ which are continuous by assumptions on ¢_). If m > max(n—
1’ n;l + 6),

2
%@ € C%(I x [0; R] x T 1).

At the end, all the results above allow us to conclude that if m > max(n—
1,251 4+ 6)
b 2 ?

@ € C*(I x [0; R] x T*™1).

For the class C* we follow the same method and so we take m > max(n—
1, "T‘l + 1+ 4), but we need also greater assumptions on H and so on H,
that is to say
forany0<a<!—-1,0<b<1-1,0<v+|ul <m+1, DID5D;D4H
continuous in all its variables. This is equivalent to the assumptions on F:
forany0<a<l—1,0<b<!-1,0<y+|u/<m+1, D¢DYD]DEF
is continuous in all its variables. |

Proof of the Lemma ?77.— In the proof of the lemma 6.1 we have seen
that || Dg@e (u) — DgP(w) ||7,,_ 10— 0- So we can write

" D;@(u + h) - D:SE(") ||Hm—|a|—2,l
= lim || Da(ﬁg" (’u + h) - Daﬁbs” (u) "Hm—|a|—2,1

1o}
E —»O ” / Dy ou ‘PE”(U) do ”'H —la|-2,1

because of the continuity in all its variables (u,v,y) of 5 2 32Dy Per -
Hence by lemma ?? and by taking the limit, we obtam

| Dy &(u+ k) = Dy@(u) a2,
u+h

. (9
< l,lm ” D SOE” (O’) ”Hm-—|a| 2,1 do.
e’—0 /J,

But by the continuity of 3 el D"‘ = (. and the fact that we can commute
the partial derivatives, we have

) ) .
D Y Ju ‘Ps” (07 v, y) D Y Hu <p€” (U,O y) +/ Dy udv ‘Pe” (0)3 y)dS

— 80 —



Local existence of a solution of a semi-linear wave equation

The first term of right member vanishes (indeed the third equation of the
problem (4.1) gives that @e»(u,0,y) vanishes, so by differentiating in u and
in y, it also vanishes). By using the second equation of the problem (4.1)
and the result (5.5), we get

o . Yo e N
DS%(QE» (0’, v, y) = /0 JE” Dy H((Pe” , 0,8, y) + (D;Ay)soe» (g" s, y)ds

Now, we take the norm H,,_|q—2,1 of the both members and we apply
lemma 6.2 on the right one, so

3
” D SOE” (0) ”Hm_|a| 2,1
< (RE+1) || Jo AyH (e (0),0) + (D DY) G2 (0) 1o 20
< R2 + 1)(| AyH(Ber(0):0) [z ii—20 + | e (©) l34,0.0)

Then by the assumptions on the regularity of H, we obtain

8
” D ‘PE” (0’) ”7'( —lal—2,1

< (R2 + D) (c(ll @ (9) llzoes )1+ || @ (0) 10— japo)F | @2 (@) 130mso )
< Cr

because || @e»(0) llzee, 0y | e (0) #m_japor | Pen(0) |17,m,0 are bounded
onl.
Hence

u+h
” D;@(u + h‘) - D;(ﬁ(u) ”Hm..|a|_2,1 < 51”190 Y CRdU = CRh
It means that D@ is in CON(I, Hp_|aj2, 1([0 R] x T*71)).
But C%(7, Hm-—|a] 2,1([0; B] x T""1)) € CI, Hp—a—2,1([0; R] x T™ 1)),
and as m — |a| — 2 > (n — 1)/2 we have C°(I, Hpy—|o|—-2,1([0; R] x T* 1)) C
C°(I,C°([0; R} xT™"1)) = C%(I x[0; R] xT™~1), which allows us to conclude
that

D € COI x [0; R] x T™ ).
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7. Existence and uniqueness
of the solution of the problem (1.1)

We can show now the following theorem
THEOREM 7.1. — If m > max(n — 1, 251 + 4), and

(i) F : (0,t,2',y) — F(0,t,z',y) satisfies that for any 0 < a < 1,
0<b«1,
0<y+lul <m+1, DD DJDLF is continuous in all its
variables

(ii) @+, - are of class H™¥5, and ¢4, ¢_ satisfy the corner condition:
P+ (0, y) =p- (0’ y)'

(#ii) There exists a real T > 0 such that F, ¢, are T-periodic in each
Yi-

then for all real R > 0 , there exist some reals R’ > 0 and R’ > 0 such
that there exists a solution ¢ for the problem (1.1) in the domain Q@ = {0 <
t—z! <R 0<t+z! <R, (22,..,2") e T 1}U{0 < t+ 2! <R, 0<
t—2! < R, (22,..,2") € T" "'} where T" ! is the torus of dimension
n — 1 and of length T in each direction, and this solution is in C°(f2).
Moreover, for alll = 2, if m > maz(n — 1, "—2‘—1 + 4+ 1), and if for any
0<a<!-1,0<b<1-1,0< v+ |y <m+1, DfDSDJDEF is
continuous in all its variables, then ¢ is in C'(Q).

Proof of the theorem.— In the first step we prove the existence of a
solution ¢ satisfying equation (3.1), then in the second one we study its
regularity, after that we show that we can do the same along N,.

1. Existence of a solution ¢.

We set I = [0; R'] and
- 0
(U v,9) = (4,0, 9) + ¢+ (w,y) + (5-0-(0,9) (7.1)
u
+/ H((P+(3, y),s,O, y) + Ay‘P"f’(sv y)dS)’U
0
‘We notice that

‘P(u, 0,y) = ‘ﬁ(ua 0, y) + o4 (’LL, y) =P+ (ua y)
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and

0,0,9) = $0.08)+ 90,9 + (5o (0,9)
= )0+ (e (0
o-(v,y)
by the definition of @_ given in (3.4).
Now as we know that

82

~=ﬂ- ~ A ~
R (@, u,v,y) + Ayp

and by the regularity of the functions H, ¢, ¢_, we obtain
32
Oudv

Y= ﬁ(¢’ U, v, y) + Ay‘ﬁ + H((p+(u7 y)a U, 07 y) + Ay(p+(u7 y)

By the definition of H given in (3.2) we get

32
m‘ﬁ(u’ ) y) = H(p,u,v, y) + Ay‘P(u, v, y)

2
udv”
. We differentiate the equality (7.1) first in u, then in v, hence

To obtain ¢ solution of the problem (1.1) it remains to show that
52
Ovdu

B2 89
Foou? = Boou’ + H(p+(u,9),4,0,9) + Ay (u, y).

But we know (see (6.11)) that if m > maz(n — 1, 25+ + 4),

8 5?2
ovou v = Oudv ¥
= H(@uv,y)+Ayp.

Thus we have

52 52
duow’ = Bvou”’

which gives that ¢ is a solution of the problem (1.1).
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2. Regularity of ¢.

To study the regularity of ¢ it suffices to study the regularity of (¢4, p—)

= o4 (U, 1)+ (Ze-(0,9) + [3 H(p+(5,9),5,0,9) + Ayp4 (s, y)ds)v because
we have already results about the regularity of @ by the proposition (6.1).

We start by the derivative of first order of 6(¢4, p—). We have

; O(pg,0-) = "?—<P+(U y) + (H(o+(u,9),4,0,y) + Aypi (u, y)ds)v

and
o o “

5350+ 9-) = 5o0-(0,y) + / H(p4(5,9):5,0,9) + Ay (s, 9)ds
v v 0

which are in C%(I x [0; R] x T"~!) by the assumptions on the functions
H, ¢4, . At least, these assumptions on the functions H, ¢, ¢_ allow us
to commute f: and aiy-’ s0 we can write

o (0 )+ [ (G s )9,0,) s 5,9)
8U(P_ ?y o 60 (P+ s,y 787 7y 8y1<p+ 7y

0
= 5&;<P+(U, y)+ (3

2 E
+(ayl )(‘P+(3’ y)’ 5,0, y) ‘|’ y y$0+(8 y)ds)
So _‘5(<P+,<P ) is in CO(I x [0; R] x T™~1).

For the derivative of second order of 6(¢4, p—) we get similarly

2 2

7] 1%} “ . 0 0
55300 9-) = 500 + [ () (a(5,9),8,00) 5004 (5,0)

d 3
((9 H)(p4+(5,9),5,0,9) + 5~ oo Aypi(s,y)ds
82
= "_avayi‘s(‘”"p’)‘

O S 0) = mo oy (w9) + (S H) (04 (5,8), 5, 0,8) 4 (5,9)
ayzau P+ P— _6yzau90+ u,y EY) P+18:Y),50,Y ayi(P+ 'Y
a - B
+(5;H)(<P+(3, ), 5,0, y)+ y<P+(3,y))
32
= Budn 6(p+,p-)-
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Local existence of a solution of a semi-linear wave equation

62
8_,“6—56(304—’ SD—) = H(‘P+ (u, y), u, 0, y) + Ay§0+ (u7 y)
32
= 505509+ #-)

H? 2 5] 0o
“9;2‘5(904(&—) = 5u—280+(% y) + ((%H)(<P+(U, ¥), 4,0, y)%<p+(u, )

d - 0
+(5;H) (90+ (u’ y)7 Uu, O’ y) + %Ay¢+(ua y))'l)

We can see that they are all in C%(I x [0; R] x T"~!). Now
82
%55(<P+,<P—) =0.

92 92 93
a—yzg5(80+,<P—) = 6—yi2<ﬂ+(u, y) + (m%’—((’, )

U 92
+/0 (‘3%2"1[1)(<P+(3ay),S,O,y)aiyigo+(s,y)
+(*£2—H)( (5,1), 50, 1) =

g6 ) (#+(5:9),8.0.9) 5 204 (s,9)
+(_8‘H)(<P+(3 Y),5,0 y)a—zw (5,9)

06 1S/ 9 8’5/12 +(5, Y
+(iH)( ( 0.9)2 & = .
9609y; P+ 3,3/)15, ay)ayiﬁ"+(8,y)+(ayi2 )((p...(S,y),s, ,y)

82
+:9—3—/§Ay<p+(s, y) dS)’U.

SO -%f&((P'f') SD——) is also in CO(I X [O; R] % Tn—l),

Thus we can conclude without adding assumptions, that if m > maxz(n—
1, 251 + 6) the solution ¢ is in C%(I x [0; R] x T"!). We come back to the
variables t and z! by the fact that t = u + v and 2! = v — u, so we get the

same regularity.

‘We proceed similarly for higher derivatives and we see that the assump-
tions necessarily to obtain ¢ of class C! are not stronger that those neces-

sarily to obtain @ of class C.

3. Conclusion.

So we have finally the existence of the solution of the problem (1.1) in
a one-sided future neighborhood of a compact ([0; R] x T"~1) C N_ where

[0; R] is as large as we want.
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To obtain the existence of the solution of the problem (1.1) in a future
timelike neighborhood of a compact ([0; R] x T"~!) C N, it suffices to ex-
change the role of u and v and to apply the same method.

For the uniqueness of the solution ¢ we take a piece of time to examine
the geometry of the problem.
Let 7 = %, 7 € R*! and P the point of coordinates (7 + R/, —7 + R', §)

in R"*1. We consider J5 a part of the past light cone issued of P, precisely

Jp ={(t,z',y) eR™*1)0<t <7+ R,

(t=(+R) = ("~ (~r+R) +y— 3}
We recall that N, is the hypersurface Ny = {(¢t,z',y) € R/t + 2! =
0, ¢ > 0}. It is easy to see that Jp [N+ is a part of the parabola P
of top P'(,~7,9), P = {(t,a',y) € R™*!/|y — g = 4R'(z! + 7)}. We
call Up the set J, intersected with the future of NV, and the future of
N_ ={(t,x',y) e R"*!/t —x! =0, t > 0}. We can visualize the situation
by the following figure.

We’re going to prove the uniqueness of the solution of the problem (1.1)
found before, in Up. Then we call Up,+ the set Up intersected with the
past of the hypersurface {(t,z',y) € R**!/t = 7'} which we denote simply

{t=""}.
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Local existence of a solution of a semi-linear wave equation

Let 1, ¢2 be two solutions of the problem (1.1). We set ¢ = 1 — 2,
so we have

m :F((Pl’taxl’y) —F((pg,t,.’l:l,y)
SO|N+ =0
¢ln. =0

As %g is continuous (recall that @ is the first variable of F) and ¢, @2
bounded (indeed (u,v,y) — ¢1(u,v,y) and (u,v,y) — @2(u,v,y) are C? so
continuous on [0; R] x [0; R'] x T"~!), we can write that

|F(301(t,331,y),t,.’121,y) _F((P2(t7x17y) t '77173/)'

<l =2 | uas, | 20 (1= s)pr +502) |
<clell.

Furthermore
mel <cllell- (7.2)

To prove that ¢ vanishes in Up, we first estimate for any 0 < 7/ < 7+ R’
some energy E(7') of ¢, namely

= nwﬂJ¢+|M)

a
where |Vo|? = (8():) 8.'1)1 2+ Z (83/

Then we show that E(7’) vanishes for any 0 < 7/ < 7+ R'.

For this we use some notions of physics sciences and so introduce a tensor,
called tensor of impulsive energy. As it is usually denoted in differential
geometry literature, we set

X =>"X"9,
1"

where {9, } is a basis of local coordinates system of dimension n + 1.

We denote V, a covariant derivative with respect to 9, and V¥ := 3~ n*'V,
where 7 is the diagonal matrix of dimension n+1 of diagonal: (—1,1,...,1).
Now we consider the tensor T acting on one-vector field, namely

T(X) = > T“X",
with T%, = V¥oV,p-— %((Z VeVagp) + ¢%) 0%,
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(6%, is the Kronecker symbol i.e. 6%, vanishes if 4 # v and equals to 1 if
u=v).

Notice that for 4 = v = 0 we obtain
1
To = —009)" = 5(= (09)* + (0 9)* + -+ (00,9)” + ¢°)

1

= —5(@p)* + (82,90)" + . + (80, 9)* + ¢°)
1

= —5(?’2 +Vel?).

By the theorem of Stokes we know that, for every open set €,
/ T(X)dS:/ div(T(X))dV
2] Q

where dS is the infinitesimal element of surface on 952, more precisely
T(X)dS = ZT"(X )dS,, dV is the infinitesimal element of volume on

Z ;
Q, and as we will take a constant vector X (more precisely X = 0p),
div(T(X)) = > _ Vu(THX").
I"R%
Therefore we calculate VT,
M © 1 [ 2\ su@
VT = Vu(V*eVp = 5 (3 VoeVap) + %))

1
= (VuV*0) Vo + V¥o(VuVig) = 384 Vu((}_ VoeVap) + 7).

Now we sum on yu:

Z VT, = Z (VuVH0) Vi + ZV“‘P(VMVV‘P)
7 p 2
1
~5Vu(D_VeVap) — oVue.

For the first term of the right member of the equality above, we can notice
that

( Z VMV”<P) Vo= ( Z U”aVuVaV?) Ve =0pV,e.
3 oo

For the second and third one, we have

Y VHe(VuVip) = D 1 *Vap(V,u Vi)
"

oo
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Local existence of a solution of a semi-linear wave equation
and
1 1
=5Ve(D_VeVap) = =5 3 (1 (VuViup) Vap + 1*Vup(Vo Vayp) ).
« JN"

Then if ¢ is of class C?, it is easy to see that

Z V,.TH = (g — ¢)V.,e.
"

In particular if v = 0,

N VLT = (@ — ¢) Vop = (mp — ) dsep. (7.3)
“w

We apply the theorem of Stokes with 2 = Up .+. By looking the intersection
of Up ,+ with the hypersurfaces N_, Ny and {t = 7'}, we can decompose
OUp, .+ in four parts as it follows:

dUpr = (Upr NN_) U (Upr NNL)U (Upr N{t=7"}) UCr
where C, is the only curved part of OUp ;.

As ¢ vanishes on N_ and N,, when we integrate on Olp, it only
remains the integrals on Up - N {¢t = 7'} and on C;/.

For the integral on C,., we integrate on characteristic hypersurface, by
elementary lorrentzian geometry, we know that integrate on a characteristic
hypersurface is equivalent to integrate only the component in isotropic vec-
tor tangent to this caracteristic hypersurface, but Y 7,,Y*Z” > 0 when
Y, Z are timelike or isotropic future directed vectors.Hence this integral is
less or equal to zero.

For the integral on Up, N {t = 7'}, as the time is constant, all the
elements of surface dS,, vanishes except of dSy.
So we obtain

/ T%dS, > / > V. THhdV
Up 1 N{t=""} Up -1

®

E(r) < - /u P#,ZV”T%dV.

m

On another hand by using (7.3) and (7.2), we have

[ on@av) = 1 (e e)awav]
Up, 1 Up, .1
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< / clolldspldV
Up

!

1
< 56/ lol? + |8:|?dV
Up

’
VT

1
< L / lof? + [V |2aV.
P

2 u,
By the theorem of Fubini, as Up ,» = [U : (L{p,,./ N{t= s}), we get
sefo;r’
1 1 [
Ec/ lo]? + |Ve|?dV = §c/ (/ lo|? + [Vo|?dS)ds
Up .1 0 Up 1N{t=s}
= c/ E(s)ds.
0

Finally for any 0 < 7/ <7+ )\,

’

E(r') < c/OT E(s)ds.

Then we set h(t) = e~ fOt E(s)ds. We have h/(t) = —ce™° fot E(s)ds +
e~ E(t) < 0sofor any 0 < t < 7+, h(t) < h(0) = 0, it means that for any
0<t< T+, fot E(s)ds < 0. Hence E(t) < 0 almost everywhere on [0; 7+ ],
and as E is continuous, we can conclude that for any 0 < t < 7+ A, E(t) = 0.
This implies that ¢ vanishes almost everywhere in Up .+, then everywhere
by continuity of ¢.
Hence if the functions F, ¢4, @_ are periodic in y, we get the uniqueness
in LI%VR, where Vg := {0 < t—2! < R, 0 <t+a! < Ry, (2%,..,27) €
T 1}U{0<t+az! <R, 0<t—z!' <R}, (22 ...,2") € T" 1} (RR and
'z are the reals found at each R see theorem 7.1). Notice that L}%VR is a set
of length T in each y; with a transversal section in (u, v) which looks like a
strip limited from below by N, U N_, limited from above by an hyperbola,
we can visualize it by the following figure.

Ny N_
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Local existence of a solution of a semi-linear wave equation

We resume all the results in the following theorem:

THEOREM 7.2. — If m > maz(n — 1,252 + 4), and

(i) F : (0,t,zt,y) — F(0,t,z',y) satisfies that for any 0 < a < 1,
0<b«1,
0 < v+l <m+1, DiD%DJDUF is continuous in all its
variables

(i) ¢+, are of class H™®, and ¢, p_ satisfy the corner condition:
2+(0,y) = ¢-(0,y).

(%ii) There exists a real T > 0 such that F, o4, p_ are T-periodic in each
Yi-

then there exists a unique C°-solution ¢ for the problem (1.1) in one-sided
future neighborhood %VR of the initial data hypersurfaces Ny and N_ .

Moreover, for olll > 2, if m > maz(n — 1, "2;1 + 4+ 1), and if for any
0<a<i-1,0<b<i-1,0< v+ |yl <m+1, D§D%DJDLF is
continuous in all its variables, then ¢ is in C'.

Remark. — We have worked with the same periodicity T in each y;, but we
can proceed similarly with different periodicities in each y;, the functions
¥, (v,y), and < ¥y, f > will be a little more complicated, but we will get
the sames results.

Now we remove the assumption of periodicity in y. We can consider two
cases: first Y = R"™!, then Y open set strictly included in R*~!. If H and
@_ are defined on a set Y = R”~1 in their variable y (which is equivalent to
F, 4, p_ defined on Y = R"~! in their variable y ), we can work in a torus
T'"~! of length 2T in each y;, multiply the functions F, ¢4, ¢_ by a cut off
function in y equal to 1 on the torus T"~! of length T in each y; strictly
included in T, vanishing outside of T"" . Then if we replace T"~! and
T by (T')*~! and T” (length of T’) in all the arguments, we get a solution on
a one-sided future neighborhood Qr of Ny and N_, of length T in each y;.
We do it again with a torus T”™ ! of length 47T in each y; strictly including
the torus T’ nﬁl, we get another solution on a neighborhood a7, but by
the uniqueness it is the same on the intersection of both neighborhoods. So
we have a solution on Q7 U Qar. By induction we construct a solution on

U Qokp.
keN 2T

Now if Y is an open set strictly included in R*~1, we can consider some
torus T*~! cC (T')*~! C Y (where A CC B means A C B). We multiply
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the functions H and @¢_ by a cut off function equal to 1 on T~ ! and
vanishing outside of (T")"~! and we replace T"~! and T by (T')"~! and T’
(length of T’) in all the arguments, so we get a solution. We can’t enlarge
the torus as much as we want, but we can remark that when we consider
again the intersection of the past light cone issued from P(u,v,¥) (u as large
as necessary) with N, it’s a part of parabola P, which limit when v — 0 is
a segment {(s,0,7); 0 < s < u}. This means that for any u > 0, we can find
a v > 0 small enough such that the intersection of the past light cone issued
of P(u,v,q) with the future of Ny U N_ is a set of points Q(u/,v’,3’) with
y’ in T*~1. So by eventually reducing the thickness of the neighborhood
obtained in theorem 7.2, the well known uniqueness of a solution of a wave
equation in the past light cone of a point assures that the solution obtained
in our argument is the right one. Hence we will obtain a neighborhood of
N4 U N_ which becomes thiner and thiner when we reach the boundary of
each connex component of Y. So we finally get the following theorem:

THEOREM 7.3. — If m > maz(n — 1, "—2_—1 +4), and
(i) The functions F, ., ¢_ are defined on R*™! in y.

(ii) F : (0,t,x,y) — F(0,t,x',y) satisfies that for any 0 < a < 1,
0<b< 1,
0< v+ |y <m+1, D¢D2DJDEF is continuous in all its
variables

(iii) @+, p— are of class H™V5, and ¢4, satisfy the corner condition:
©+(0,y) = ¢_(0,y).

then there exists a unique C°-solution ¢ for the problem (1.1) in one-sided
future neighborhood of the initial data hypersurfaces Ny and N_ .
Moreover, for oalll = 2, if m > maz(n — 1, 1’-;—1- + 4 +1), and if for any
0<a<!i-1,0<b<1-1,0<v+|ul<m+1, D¢DYLDJDEF is
continuous in all its variables, then ¢ is in C'.

8. Case RIt!

We consider the same problem as (1.1) with n = 1, namely

op(z, t) = F(‘P(x’ t),, t)
elv, = ex (8.1)
Plv. = ¢p-

where Ni={t+z=0,t2>
t>

N_={t-z=0,
2 82
0=—3z t o7



Local existence of a solution of a semi-linear wave equation

We proceed similarly as we have done for the case R**!. Indeed, we first
change variable (¢, z) to (u,v), then we deal with a new equation in @, and
we approximate spectrally ¢ by @.. But in order to estimate || @e(u) |74, x
we work with the norm H?2([0,2R]) = W?2([0,2R]). The estimations are
similar but considerably simpler and we need weaker assumptions on the
functions F, ¢4, p_. We obtain the following theorem.

THEOREM 8.1. — For all | > 2, if F is of class C'™1 , o4, ¢_ are of
class C', and o, @_ satisfy the corner condition:

P+ (O’ y) =p- (0’ y),'

then for all real R > 0 , there exist some reals R' > 0 and R” > 0 such
that there ezists a unique solution ¢ for the problem (8.1) in the domain
Q={0<t-z<R 0<t+s<R}YHO<t+z<R 0<t—z <R}
and this solution is in C*(Q).

A. Appendix
1. H,, 1 Hilbert space.

We set for any £, g in Hnm ([0, 2R] x T*"1),

2R
o= ¥ / (DD £)(D2DY g)dv &y
0K axk 0 Tt
O|vIEm

(-, .) is a symmetric and positive definite real valued bilinear form. We show
that H,, x is complete for the associated norm || f ||= (f, f)%.

Indeed, let (u,) be a Cauchy sequence in H,, ([0, 2R] x T™"'), namely
for all 0 < a < k, for all 0 <| v |< m, (DgDyu,) is a Cauchy sequence
in L2([0;2R] x T"~1). As L?([0;2R] x T""!) is a complete space, we know
that for any 0 < @ < k, any 0 <| v |< m, (DgDyu,) converges to a
L2-function g, . It remains to state that g,, = D7 Dyu. We recall that
(D& D¥uy) converges to (DgDyu) in D'([0;2R] x T*~') (we denote by D’
the set of real-valued linear function defined on D the set of smooth compact-
supported functions). On another hand, for any ¢ in D([0;2R] x T"~1), by
the Cauchy-Schwarz inequality it is clear that

sy pos (P25 = 026

<l Dy Dyun = gav llL2(os2r)xT»-1) | @ Il z2(j0;2R xTm-1) -
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So (DgD¥uy,) converges to gs, in D'([0;2R] x T"~'). By the uniqueness of
the limit in D’([0; 2R] x T*~!), we can say that ga, = DgDyu. The sequence
(un) converges to u in Hpy k, 50 Hom i is a complete space.

2. Proof of lemma 2.1.

We keep the notations introduced in section ”Spaces H,, ;”. Our goal
here is to prove the equivalence of the H,, y-norm defined above and the
following one:

= (Y | <Warf > P+ |aol) (1 + [al)*™)2.
AL
‘We first show that
a 2 .
1 B= Y (D1 <varf > B(H) ™ (5) ool (A1)

0<axXk oa€Zn

0K j<m

(N.B.: in this paragraph, for more convenient we set by convention 0 =1,
it avoids to distinguish the cases a =0, j =0 ...)

It suffices for that to show that
a T\ 2a 27T 27 al—27

DI DEDYf lze= Y | <% f > P(5) ™ (5) " loo (@™

Ivl=i a€Zn
But we know that

f@,9) =Y <t f > valv,y).
a€Z™

So by differentiating in v and y;, we have for any Iy, ...,/; in {1,...,n -1}

DDy f(oyg) = 3 <thar > (i) (i) (o) -, a0, )-

a€Zr
Hence
” DaDll l’f( 2a 2T 2j a 2
v,Y) ||L2— Z i<¢aaf>| ( ) (T) |(eo) -0
a€Z"
Then we notice that )
Z laol*®loy, [2.log; 2 = |l Z lou, 2|0y, |2

ll,...,lje{l,...,n—l} ll,...,lje{l,...,n—l}

= lao/*(laal?* + - + ltn-1[?)’

= |oo[**[al¥.

Thus we get (A.1).
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Now to obtain the equivalence of the norms it remains to find two
constants K and K’ such that

K(1+ |ao)* (1 + [a)*"
< Z (§)2a(277)2,]'a [P*la? < K'(1+ lovo )% (1 + i@))?™.

0<axk
0K j<m

Lot € = maxtt, ()%, (51" (8)°, ()™ (2" ()% () ()"
(R)2k(2,,) (% ) (2%)2171) Therefore
+ (B ol + o+ ()™ (52) ™™ o 2"

< K'(1+ |aof? + ... + |oo[**[a]2™)
2k 2m
<K'Y Cilaol' Y Chulal
1=0 h=0
S K'(1 4 |ao])*(1 + [a])™.
Thus we can write
1 F Beme < K3 1< o £ > 1+ faol)?(1 + [a])>™.
a€Zn
We denote
n T 2k T 2 T 2m T s Uy
K = min(l, (%) ék(ﬁ 2 5™ (3R(E @™
T Jis T\ <M
(B)*(®)% @™ (&)™,
So
K1+ |aof® + ... + |ao*[a]*™)

2
< 1+( ) |a 12+ +(R)2k( 71—)2771' 0I2k|a'2m

By induction, we can calculate c; such that

a1+ o) < 14 ]aol?+ ... + |ag|*
em(l+ @)™ < 1+[@?+.. + @

(take ¢; = §,c;41 = & ). Furthermore,

cr(L+ o) (L + @] + ... + [@*™)
cx(1+ laol)Fem (1 + [a)*™

1+ ool + ... + o[ [@*™)

< (
< T+ |ao) + ... + oo [a*™).
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We deduce from this that,

Rerem S 1< Yarf > PO+ lao)* U+ @P™ < 1 F By -
(YAl

Remark. — As it is done in the classical Sobolev spaces, we extend the spaces
Hm,k to m, k positive reals by the definition below:

Hom x([0;2R] x T™71)
={f € L*([0:2R] X T"™%; D | < %ar f > [F(1 + o)) (1 + [@])*™ < o0}

aeZn

3. Proof of lemma 2.2.

We begin by establishing the following embedding.

n=1
2

We recall that
f= fa2R =325 gilcov E+EYHF)
a€Znr
where f, =< ¥,, f >. Therefore
—ip-nzl
If lze< QR)T2TTT 3 |fol
a€Zr
By the Cauchy-Schwarz inequality, we get
1
« = 1 k(1 + &)™ x
S el = 3 (el lao G+ ) X )

a€Zn™ a€Zn

< VNS T

aEZ™

But we know that

2 1+ |a0|)2k(1 + [a)*

a€EZ™

1
= dx dn—ly
/ac&R /yeRn—l 1+ |2)?*(1 + |y])>™

1 1
= ————dw/ . E— T
/aceR (14 [z))2* ™ Jyern-1 (1+ [y])?™
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These both integrals are convergent if 2k > 1 and 2m > n—11i.e k > -;— and
m > "T'l At last, by using the equivalence of the norms above, we obtain

I fllee< el £ lirmak -

Now we show that

n=1
il M2z then M, x([0;2R] x T™1) C CO([0; 2R] x T™—1).
k>§ ’

Let f in My, i, for every n in N*, we set f, = J1f (J has been defined
in section ”Spectral approximation of ¢”). It is clear that f, are in H,, ,
and that

| fallzee< el fr ll#mok - (A.2)

Then by the theorem of Plancherel we have || J1v — v ||z2— 0, if we apply
this to v = f, ...,DﬁD;"f, we get

” f—rn ”'Hm,l’c_> 0.

The sequence (f,) converges to f in H,, x, hence (f,,) is a Cauchy sequence
in Hym k, and in L by (A.2). Moreover the functions f,, are continuous, so
(f») is a Cauchy sequence in C°([0;2R] x T"~1). As this space is complete
it implies that (f,) converges to g in C°([0;2R] x T*1).

It remains to show that f = g almost everywhere. (f,,) converges to g in
L2, indeed

1y 1
| fn = 9 llz2o2r)xT=-1)< @R X T 17 || fr = g || 2o ((0;2R]xT2-1)— 0.

But (f,) converges to f in M, in particular (f,) converges to f in L2
by the uniqueness of the limit in L2, we can write that f = g almost every-
where.

For the class C', it suffices to apply the result above to % 7 %Z frees DLD; f-
4. Proof of lemma 2.3.

We want to show that if k¥ < k' then the embedding Hpm x+ < Hm i is
compact. We deal with the equivalent norm 1 f [ defined above in paragraph
2 and we will denote it also || f [[xmk- As (1+ @0)?* < (1 4+ a)?* it is
clear that || ... ||[m&<|| -+ [|Hmk- Set ¢ : Hpy it — Hm i, ¢ is a compact
operator if it changes a bounded set in a relatively compact set. Let (f,) a
bounded sequence of Hy, /. We have seen that H, x is reflexive so we can
extract a subsequence (f,/) of (f,) which weakly converges to f in H,, &,
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and || f |ln,, ., <Uminf || for |2, ,, < M. We consider || for — f ”%tm,k and
cut the sum on o € Z™ in two parts, namely I and I, as it follows

I for = f I3, = I+1I
with

I = Y | <tafu — > P+ |oo])* 1+ [a)>™

JalgA
(1+ Py )2k’ _
I o= 5 | < b= > P
la|>A

The function f —< 14, f > is a continuous linear form on H,, /, hence

< Yoy frr >2< Yo, f > 1. < Yqu, fnr—f >— 0.1t implies that for alle; > 0

there exists 7 > 0 such that for all n’ > 5, Z | < Yoy fr — F> 2 < €2
|laj<A

So

I < 6%(1+A)2k+2m.

We treat now the second term II. We notice that

1 2
< VRG] I for = f 15,

1 2
< g U B + 15 Nt )
4M?
< —
1+ A2

11

62

Therefore for all € > 0, we choose A tall enough to get (—I;Ai)l‘zi’(—i—,_—k; < 5.
g

Then we set 1 = N e =Tt So there exists  in N such that for all

n' 2,
4M?
2 2 2k+2:
e R oy
&.2 52 9
< S+2 -2
s tg=°¢

We obtain that (f,/) converges to f in H,, k. It means that i(f,) is a
compact set a fortiori a relatively compact set.

We proceed similarly for the compact embedding Hpr k — Hm k if m <
m'.
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Local existence of a solution of a semi-linear wave equation

5. Proof of lemma 2.4.

Here we suppose that f € Hy, N Hm i with k < k', Let v € [0;1], it is
clear that Hy k' C Hpn yk+(1-)k'> 50 L is in Hop k4 (1—~)k- We know that

Il f ||§imﬂk+(1_7)k,= Z | < o, [ > |2(1 + |a0|)27k+(1—7)k 1+ |a|)2m‘

aEZ™
If we set,
9@) = (| < ¥af>[F(1+|ao) (@ +[a])>™)”
ha) = (| <vaf > +]ao)? (1+][a)>m) "

we can write that

1F Bt e = 2 9(@h(@)

a€Z™

Then by using Holder inequality, we get

3 gle)r@ < (Y lg@)7)( Y Ih@)=)’

N/l aEZ™ a€Zn
As
(30 1<t > PO+ oo 0+ 1™ =1 £ B2,
a€Zn
(3 1< ¥ar f > P+ lao) (L +1a)™) 7" =1 £ 115
aEcZr

we finally obtain,

2(1—
1F 1 v <UF BT

We proceed similarly for the case f € Hy, kN Hm x With m < m/, hence we
can say that for all v in [0;1] ,

Fisin Hymeoyymek 804 | £ oy SIEF e L F 1520 -
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B. Appendix
1. Proof of the lemma 6.2:
We notice that
v
I /0 f(s,9)ds |ln,, , (fo;R)xT»-1)

o [
= X 15D [ feds lagomere
0<axk 0
0lviIS m

- | D /0 £(5,9)ds |z (our Tns)

oglvlsm!

+ Z | Dy f(v,y) |lL2(0;R)xT"-1) -

oglr|gm’

If Dy f is in C°([0; R] x T™!) then
Dy [ fs.)ds = [ Dyt s
and by the inequality of Cauchy-Schwarz
[ Dire sl < oF I Dy 000) laaqoun < RE I D41(00) laogomy -

Thus

R v
[ [ows [ st aiy
0 n—1 0
. R
RE/ / |D;f(v,y)[2dv d" 1y
-1 Jo

2 v
Rz ” Dyf(v, y) ”%2([0;R]><Tn_1) :

v
| D /0 f(s,9)ds |2

N

Finally we obtain

v 3
I /0 f(s:9)ds |ln,, oirixTa-1) < (B2 +1) || £(5,9) llne,,. o(10sR]xTm1) -

O
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Local existence of a solution of a semi-linear wave equation

2. Proof of the lemma 77:

By definition

u+h 5 u+h
[ o= X 5D [ fe)e s
“ 0<ax1 “
0| vISu

And if D3 Dy f is continuous in all its variables, we have

u+h u+h
| D2 / f(o)do |2 = | / DED f(o)do |2
u u

R u+h
= / / | / DD f(o)do|*dv d™ 1y
0 Tr-1 u
R u+h u+h
= [ [ ([ ot [ pepysopandu .
n- u u

We can commute the integration in ¢ and (v,y) by using the theorem of
Fubini, hence

u+h
|| / DED! f(o)do |25

B /um< /OR L. ososren " DDy (a0 vy don

Then by the inequality of Cauchy-Schwarz used on the integration in (v, y),
we get

u+h
u / DEDY £(0)do |2 ompmny
u

u+h u+h
< [ (I DDy £(o) ll2osrix-nll [ DaDy f(v)d llL2(j0; R xTr-1)) do-

The second factor under the integral in ¢ is independent of o, so we can get
it out, thus

u+h
A R—
u
u+h u+h
<|l Dy Dy f(7)d Il z2(jo;r)xT-1) (Il D3 Dy f(@) |lz2(p0;R)xT-1)) doO-
u u

Then if || f;+h DDy f(o)do ||L2(jo;rjxT~1) Vanishes, the inequality we
want to show is trivial. Else we can divide by this positive quantity and so
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obtain

u+h
| DD / £(0)d0 1|2 gosryx T
u

u+h
< [0 D031 @) gz omsromsy) o
u

To conclude it suffices to add this inequality onevery0 < a < 1, 0 <| v |< p.

(1]

(2]

(3]

[4]

(5]

(6]

(7]

Bibliography

CAGNAC (F.). — Probléme de Cauchy sur un conoide caractéristigue pour des
Equations quasi-linéaires, Annali di Matematica Pura ed Applicata (IV), vol.
OXXIX, 13-41 (1980).

CAGNAC (F.) et DOssA (M.). — Probléme de Cauchy sur un conoide caractéristique.
Applications & certains systémes non linéaires d’origine physique. (The charac-
teristic Cauchy problem on a conoid. Applications to certain nonlinear systems
of physical origin)., Flato, M. (ed.) et al., Physics on manifolds. Proceedings of
the international colloquium analysis, manifols and physics in honour of Yvonne
Choquet-Bruhat, Paris, France, June 3-5, 1992. Dordrecht: Kluwer Academic Pub-
lishers. Math. Phys. Stud. 15, 35-47 (1994).

CoURANT (R.) and HILBERT (D.). — Methods of mathematical physics, vol. II New
York: Interscience (1962).

FRIEDRICH (H.). — On the regular and the asymptotic characteristic initial value
problem for Einstein’s vacuum field equations, Proc. Roy. Soc. London A 375, 169-
184 (1981).

MULLER ZUM HAGEN (H.) and SEIFERT (H.J.). — On Characteristic Initial- Value
and Mized Problems, General Relativity and Gravitation, Vol.8, No. 4, 259-301
(1977).

RENDALL (A.D.). — Reduction of the characteristic initial value problem to the
Cauchy probem and its applications to the Einstein equations, Proc. Roy. Soc.
London A 427, 221-239 (1990).

TAYLOR (M.E.). — Partial Differential Equations III: Nonlinear Equations, Ap-
plied Mathematical Sciences 117, New York, NY: Springer-Verlag, pp. 7-11 (1996).

-102 -



