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Stationary states of a gas in a radiation field
from a kinetic point of view *)

ANNE Nouri (M

RESUME. — Un théoréme d’existence est démontré pour une solution
stationnaire d’un systéme d’équations cinétiques décrivant 'interaction
d’un faisceau de photons avec un gaz dans un barreau.

ABSTRACT. — An existence theorem is derived for a system of kinetic
equations describing the interaction of a radiation field with a gas in a slab
in a time-independent frame. Solutions with a given energy and profiles of
given indata are found, for Dirac measures as given indata of the photon
distribution function.

Introduction

The study of a gas in a radiation field is a subject of interest in as-
trophysical and laboratory plasmas. So far, the radiative transfer equation
for the photons distribution function has been coupled with fluid equations
for the gas ([2, 5, 9]). However, many astrophysical and laboratory plas-
mas show deviations from local thermodynamic equilibrium. This requires
a kinetic setting. Kinetic models have been derived in [3, 7, 11]. On the
mathematical level, a system of kinetic equations has been studied in [12]
for two-level atoms and monochromatic photons. There, a H-theorem is for-
mally obtained, as well as the states of equilibrium. A theorem of existence
of a solution to this kinetic model has been derived in [10] in the evolutionary
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case. In this paper, the stationary case is addressed. A theorem of existence
of a solution is derived in the slab, for given indata on the boundary. The
photons are emitted in beams perpendicular to the walls.

1. The model and the main result

Let a gas of material particles of mass m endowed with only two internal
energy levels F; and E,, with E; < Es. Denote by A; and A, particles
A at the fundamental level 1 and the excited level 2 respectively, and by
f(z,v) and g(z,v) their distribution functions. A time-independent frame
is considered, with the geometric setting a slab, i.e. the space variable z is
one-dimensional and belongs to [0, 1]. The velocity variable v belongs to IR3.
A radiation field of photons p at a fixed frequency v = AhE interacts with the
gas, h being the Planck constant and AE = Es — E;. Assume that the gas
particles interact elastically among themselves. The interactions between
the gas molecules and the photons are, classically, of three types,

Absorption, A; +p — Ao,
Spontaneous emission, As — Aj + p,
Stimulated emission, Az +p — A; + 2p.

Let I(z,Q) be the distribution function of the photons, ¢ speed of light
and 0 the angle between the x-axis and the photon velocity ¢2. Denote
by I(z,Q) = chvi (z,9) the specific intensity. Let 12, az; and (21 be
the Einstein coeflicients. Then, following [2, 9], the stationary equation for
I(z,Q) is given by

0030% = hv|{ag + B1]) /gdv — ,Blgl/fdv]. (1.1)

Since (12 = B21, the subscripts of the Einstein coefficients can be dropped.
Denote by £ the first component of the velocity vector v. The Boltzmann
equations for the two particle species A; and As can be classically written
as

§——g/(a+ﬂ[ )do — ﬁffIdH
+ / S 00 w)(f'f — ff2)dvad
R3xS2
[ S (f'd. - fa)dv.do, (L2)
R3x 82

where S is a given collision kernel,

f’=f(t,$,’l),), fi:f(tvxvv;)v f*=f(t,x,v*),

V=v—(v—v,ww, vU,=v+ V- v,ww,
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and
dg
= =—g [(a+B)do+3f | Ido
orx
+ / S(v, v, w)(¢'gs — 99 )dvdw
+ [ S0,00)(0lg' -~ fug)dved (1.3)
Denote by

QD) = [ SU'F: - 1w, Qosg)(0) = / S(g'l — ggs)dvadeo,
Qi(f,9)(v) = /S'(f’gi — fg)dvidw, Q2(f, g)(v) = /S’(fig’—f*g)dv*dw.

The physical conditions considered here are

kpT < mc?, AE < c\/s—@:ij—q, (1.4)

where kp is the Boltzmann constant and T the temperature of the gas.
The first inequality implies that the relativistic effects can be neglected.
The velocities of the gas atoms being quite smaller than speed of light, the
collisions kernels S and S’ in the collision operators are assumed to vanish
for v2 + vZ > V, for some given V > 0. Moreover, hard forces interactions
are considered. The collision kernel S is defined by

S, ve,w) = X(U2 + Uf)l'v - v*lﬂb(u)a

with x(s) = 0if s > V, 0 < 8 < 2, (b,b') € (L1(0,2m))2, b(p) > ¢ > 0,
b'(1) = ¢ > 0 a.e. Here, w € S? is represented by the polar angle p (with
polar axis along v — v,) and the azimuthal angle ®. The second inequality
in (1.4) guarantees that the photon momentum is much smaller than the
thermal momentum of the gas, so that any exchange of momentum between
photons and molecules can be neglected. The boundary conditions for the
gas particles are given indata, i.e.

f(O,v) = fO('U)7 g >0, f(l,'l)) = fl(v)a é <0,
9(0,v) = go(v), £>0, g(1,v) =g1(v), £ <0.

The photons are emitted in beams perpendicular to the walls, i.e.
1(0,0) = Ipdg=0, cosd >0, I(1,0) = I10p—r, cosd <0,
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where Iy and I; are non negative constants. Because of this strong light
source, directed along the z-axis, there is much higher intensity in this
direction. It is the reason why it is assumed that the stimulated emission
for |cosf| < e is negligible compared to the stimulated emission in the other
directions. And so, instead of (1.1-3), the distribution functions (f,g,7I)
must satisfy, for some € > 0,

0030% = hv[(a+ BI) /g(v)dv — ﬁI/f(v)dv], |cos| > e, (1.5)
0030% = hl/[a/g(v)dv — BI/f(v)dv], |cosf| < e, (1.6)

of _ _
58:1: = (/ad0+/lcosel>eﬂ1d0)g ,Bf/IdO
+Q(f7f)+Ql(fvg)’ ’ (17)
99 _ _
58:5 = (/ad0+/IcosabeﬁldO)g-i—ﬂf/IdO
+Q(g,9) + Q2(f,9). (1.8)
Given a constant E > 0, solutions (f,g,I) to (1.5-8) are studied, with
/ (V2 + E) f + (v + E2)g)(z,v)dzdv + hv / I(z,0)d0dz = E, (1.9)

f(0,v) =kfo(v), £>0, f(1,v) =kfi(v), £<0, (1.10)
9(0,v) = kgo(v), £ >0, g(1,v) =kg1(v), £ <0, (1.11)
1(0,0) = klgdg—o, cosd >0, I(1,0)=kl16p=r, cost <0, (1.12)

for some constant k£ > 0. The main result of the paper is the following.

THEOREM 1.1.— Let E > 0 be given. Assume that fo, f1, go and g1
are non negative functions satisfying

/; (4 nfol) o + (L+ limgol)go) (1)
-i—/£ 0((1 +|Infi))fi + (1 + |ingi1])g1)(v)dv < o0, (1.13)

/fo(v)dv > 0. (1.14)

Then there are a constant k > 0 and (f,g,1) € (L1((0,1) x {Jv| < V}))? x
L% (0,1; M(0,27)) solutions to (1.5-12) in the sense that for any test func-
tion o in C1([0,1] x IR3), with compact support in some |£| > § with § > 0,
the weak form of (1.7-8) holds, with [ I(x,0)df integrated from (1.5-6)-
(1.12). Moreover, [ £2(f + g)(z,v)dv is independent of z and bounded.
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Here, M, (0,27) denotes the set of non negative bounded measures de-
fined on [0, 27].

Remarks.— The theorem also holds for more general non negative
bounded measures as given indata for the photon distribution function.

Like in [1] for the Boltzmann equation in the slab, a stationary solution
having a given profile on the ingoing boundary is here determined.

For the sake of simplicity, the constants «, # and hv will be taken equal to
1 in the rest of the paper. Moreover, the interparticles collision terms ; and
Q2 will be skipped. The proof of Theorem 1.1 would also hold with them,
with minor adaptations, since the A; and As particles are mechanically
identical.

2. Approximations with bounded integrands
and truncation for small £’es

The first approximations bound the integrands in the collision operators.
Moreover, a supplementary truncation for |£| < r, for some r > 0, allows
the control of the distribution functions inside the slab by their values at
the outgoing boundaries.

Let r € (0,2¢), a € (0,1), and j € IN* be given. Let x" € C*°, 0 < x" <
1 satisfy

X (v,vw) = LI ] >, & > 1, €] >, 6] >,
X" (v, vi,w) = 0 if €] < g or |&] < g or [¢'] < —;— or |&] < %

Let S; be a positive C* function approximating S when

V — Uy 1 V— Vs 1
| | > = and | |<1--,
v —vi]-w' " j v — vy] - w
and such that S;(v,v.,w) =0 if
V— Uy 1 V — Vs 1
|———| < gz or|m/—F—|>1- .
v — 0| w' 25 [v— | w 27

Consider (L!((0,1) x {|Jv] < V}))? x L'(0,1; M(0,27)), endowed with
its strong topology. For j large enough, a closed and convex subset K of
(LL((0,1) x {|Jv| < V}))? x L1 (0,1; M (0,27)) is defined by

K :={(f,9,1);0 < f(z,v) < 3% 0< g(z,v) < 5°,
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/ I(z,0)d6 < j%¢7°, a.a. 2 € (0,1),|v] <V,

/ (v + E)f + (v 4 E2)g)(x, v)dzdv + / I(z,0)d0dx = E}.

Let ¢ be a regular function defined on (0,1). Denote by ¢;(z) = =

For (f,9,I) € K and p € [0,1], let (f,§,) be the solution to

a,;+§§’i:_’_.(/ d0+/ 1d6)— —— [ 140
oz 1+ %l |cosf|>% |cosf|>e 1+ %k

]'é/ f/ ]} f*
YR I S
X FE N Ay YL

al+§—:———~( d9+/ 1d6) + k = /Id9
orx 1+ %l |cosb|>% |cosf|>e€ 1+ %k

l~/ g/ [ s
+ rg. . *, _ -‘/ TS, ,
/X NrdI L 1d ) YT E
J
oI ] g f
cosf— = -dv+I /-————— dv, |cosf| > e,

7 -
cosO—a— -/ : dv — T /-—f—dv, |cos8| € (z,e),

together with the boundary conditions

E(0,v) = Afi(w), €>0, k(1,v)=Afl(v), £<0,
1(0,v) = Mg (v), € >0, I(1,v)=Agl(v), £ <0,
1(0,0) = Mobg—o, cosd >0, I(1,0) = A 8¢—r, cos < 0.

Here,

A=E" 55 ([ (0% + B)f + 0? + E2)@) (v)dv

£>0

+/ (v® + E1)fl + (V% + E2)g))(v)dv) 2,
£<0

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
(2.7)

and fg (resp. f7, gg, g)) are regularizations of fo A j (resp. fi Aj, go A j,
g1 A j) vanishing for || < §. a Ab denotes the minimum of @ and b. There is
existence of a non negative solution to (2.1-7) in (L1 ((0,1) x {|v| < V}))? x
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L1 (0,1; M(0,2r)). Indeed, let (k") and (i") be defined by £° = i® = 0 and

7.n+1 mn pn+1
Ok = l =— ( d0+/ 1d0) — k /Id0
oz 1+ % |cos6|>% |cosf|>¢ 14 £ k

1

A A fs
+/XTSJ' o T T /XTSJ' FA
1+ 5-1+5 1427 1+

ak™t + I3

~ ain-l-l in+1 /;:n
ot 00 o+ [ 1am) e [ 1a
ox 1+ L;_ lcos| >3 [cosd|>e 1+ %
in’ g/ l~n+l G
+/XT5j e | XS -
1+25 148 gy 1+

together with the boundary conditions (2.5-6). The sequences (k”) and (I)
are increasing. Indeed, k! > 0 = k%, I > 0 = {°, and if &* < k"*! and
" < ™1 then k"+! < k™2 and o+ < I"+2 since

fI(y 6)d6+f Ts;
o I8 ‘+ & d
Ex_é 0 1+pk";y .v) v

1 (2,0) = Mi(v)e

1 [® " rq KV f
+- ( df + 1d6) — + | X Sj—-—-", 7 )
€ Jo |cosf|>% |cos|>¢ 1+ L 14+ E]— 1+ —J—*—

fI(z 6)d6+f s, :—%

a(y—x
-1 [" (o) dz
e Y D dy, €>0,
and
I(y.0)do+ [ x"s; _L
a(l{—l) —%Tf f k{(x - %*- dy
k"t (z,v) = A (v)e e R

1t n e KOS
+—/ ( do + 1d0) —+ [ X"Sj——=— + )
|§I z  J|cosb|>% |cosf|>€ 1+ L‘l]— 14+ %— 1+ T‘

f!(z,a)d6+f erjl_-i%

a(y—z) 7
1€1 +€ f 1+pk"(z,v) dz

e 7 dy, £<0,

and analogous expressions for {"+1(z, v). Moreover, (k™) and (") are bounded
in L, uniformly with respect to n. Indeed, for j large enough,

o - - a - . r
Lntl 4 ntl —(knt1! 1 < -3 > -
Z R T £ SR I <P g
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and

%(én-&-l 4 in+1) _

«

1€l

(];n+1 +l~n+1) > _j3’ & < _%’

so that

I~c"+l(x, v) < 54, l~"+1(a:,v) <5t aa ze(0,1), lv| < V. (2.8)

Hence, by Levy’s theorem, (k™) and (I") strongly converge in L! to some
non negative (k,!) solution of (2.1-7). Then I is obtained by integration of
(2.3-4)-(2.7).

There is uniqueness of the solution of (2.1-7) since, if (k?,!) and (k2,12
were two solutions of (2.1-7), let (k,1) = (k* — k2,1* —[?). Then
. 2 !
ok +e2F _ (/ d0+/ ) I —
Oz |cos]> % jeostl>e (14 £2)(1 4 £2)

fs k
~([ 120+ [ s, ST
Jl+=]&)(1+£.]’?_.)(1+£§___)

];,/ f/
+/XTS] Ay 72 *f' 7(29
Qo)1+ &

!
1 2
(1+2-)(1+ 2-)
+/Id9 ,,ic_lk =
(1+2-)(1+ &)
I g, <
+/erj _ 2 (2.10
(1+’i’;—)(1+’%)1+"7‘
k(0,v) =1(0,v) =0, £ >0, k(1,v)=I(1,v)=0, £ <0.

- ol Gs
ad+eZ - _ d0+/ Id0+/xTSv )
Oz cosb|>5 cosf|>e 1+ &

Multiply (2.9) by sgnk, (2.10) by sgnl, add them and integrate, so that
@ [ (ki + ipdadv + [ e+ i, oa
£>0
+ [ Jl0H + I, v)dv <o
£<0

Hence k = [ = 0.
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It follows from

Fa,v) > M ()e ™%, > f, bz, 0) > M), €< -2,
i(x,v) )\go(v)e"T, £ > l~(m, v) = )\g{(v)e_ 2+T4E, &< —g,
that
/((02 + Bk + (v2 + Ey)l)(z,v)dzdv > E. (2.11)

Define the map T on K x [0,1] by T((f,g,1), p) = (u(k, 1, 1), 1), where
u= E(/((v2 +ENk+ (v® + E2)l)(z, v)dzdv + /f(x,G)dde)"l.

The map T is continuous for the strong topology of (L((0,1) x {lv] <
V1)? x L}0,1; M(0,27)) x [0,1]. Indeed, let (fn,gn,In) € K converge to
(f,9,1) in (LL((0,1) x {|v] < V}))? x Li(O 1; M(0,27)) and (p™) converge
to p in [0,1]. Let T((f", g™, I"), p") = (u™(k™, 1", I™), u™) where

u" = E( / (0 + EDE™ + (v? + Eo)™)dadv + / I"dfdz)~!.

Up to a subsequence, (u™) converges to some u, since (u") takes its val-
ues in [0,1]. Then (2 8) holds for k" and " with similar arguments Since

[I™(z,0)d0 < j%e7”, a.a. z € (0,1), the sequences (‘93’; ) and ) are uni-

formly bounded with respect to n. Moreover, (%kv ) and ( 5 —) are solutions
to the system

[I™(z,0)d0 + [ X" S,—,r

gi _a];.—n) + (a + 3k"
Oz Ov (1+ k™ k)2 v
J

i f|cos€l>§ df + f[c030|>6 In(x’ O)do 6l~"
in v
(1+ 22 v

n’ n’ .n n
_ a (X‘V'S) k — f* k a( S) f*f"
& 1+ &y L 20 ek ) B 144

’

9 k' n
+8—(/XTSJ'—,;7J-TI)v
v 1+ e__._ 14 L&

8 9in flcosol>§ dé + jicos¢9|>e "(z,0)do + f X"S; 4’"’

3+

oln
(1+ &;:)2 ) Ov
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[ IM(=,6)d0 k™
T phina Ov
(1+&7)2 oY

o, . n n " a ”
=/5'(XSJ') R z'nfa_ 55) gg
v T+ 2145 1+2-J % 1+

0 "o g
+5’(/XTSJ'—[J'—T)»
v 14+ 8- 14 &

8f’

k™ 0 k"
B 00) =22 ), >0, 21,0y =22

o .9} ol _ .\ og}
50 (0,v) = e (v), € >0, Em (1,v) = )\ 5o (v), £<0.

()£<0

The coefficients of ak: and al: in the left-hand side of this system are
bounded in L*, whereas by [8], the right-hand sides of this system are
bounded in L2((0,1) x {|v| < V}). Hence (‘9’c ) and (a—l—) are bounded
in L2((0,1) x {Jv] < V}). And so, the sequences (k™) and (I"), bounded
in H}, are compact in L!. Up to a subsequence they converge to some k
and [ in L. The passage to the limit in (2.1-2) when n tends to infinity is
straightforward, so that (k, 1) is the solution to (2.1-2) associated to (f,g,I).
By uniqueness of this solution, the whole sequences (k™) and (l") converge
to % and [ in L!. Then (I™) converges in L*(0,1; M (0, 27)) to I solution to
(2.3-4). Indeed, for any continuous function v defined on [0,27] and such
that maxaepo.2x] [Y(0)] < 1,

14+E-

I3 toun [ (—2gm - —Lr)dvxz)dz
/ (2, 0)v(8)d8 = Iow(0)e +

(pex [ (L~ L) dv)(2)dz
Lip(m)e f +J TR i N
/ / / (y e ™ O SR
cosf>e€ 0089 3
7(0) / / |c.,lsel f:(%*f(l—f-ﬁ T’r)dv)(z)dz
4 dydd
+v/co.90<—e |0059| (y7 U) ve y

-t f @ix —Ln—d'v(z)dz
+ / / / ———(y,v)dve dydd
Z<cosf<e 0059 1+ El—i

- @i* dv(z)dz
+/ 7(0)// (W)de “w [l ot

e<cosf<—% |0030|
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Hence,

1
/ sup I/(f” — I)(x,0)¢(8)d6|dz — 0 when n — +oo0,
0 ~v€C([0,27])imaxge [0,27) |7(6)|<1

by the strong convergence in L1(0,1) of ( f P (z,v)dv), (x| —L’r (z,v)dv)

and (p; * [ l—_f?_r z,v)dv). Consequently, ( ") converges to

= E( / (v* + E1)k + (v + Eo)l)dzdv + / Idbdz)™?

when n tends to infinity. Finally, up to a subsequence, (I“) is a Cauchy
sequence in L'(0,1; M(0,27)). And so, (T((f",g", I™), p ™)) converges to
T((f,9,1),p) when n tends to infinity.

The map T is compact in (L')? x L*(0,1; M(0,27)) x [0,1]. Indeed, for
any sequence (f", g™, I") and (u™) bounded in (L')? x LY(0,1; M(0,27))
and [0, 1] respectively, the sequences (k™) and (I™) are compact in L by
similar arguments to the previous proof of the continuity of 7. Moreover,
p" belongs to [0,1]. And so, T((f™, g™, I"),u") is compact in (L!)2
L(0,1; M(0,2m)) x [0,1].

Hence, by the theorem of Schauder, there is a fixed point ((f,g, I ),p) in
K x [0,1] for the map T, which is solution to the system

f+§ = d0+/ 1d6 /Jde
|cosf|>% |cos€|>e )1 + 2 ‘t
f!
+ ’"S * —, (2.12
/X 1+L14 L& f 1+ L (212)

0
ag+€_g:—(/ d9+/ /Id0
ox |cosB|>% |cosf|>e L
rq_9 G g / g
+ S; - - rg, 9 (213
/X Jl+9j—1+g]—." 1_'_? X Jl_l__qjl ( )

oI g f
0039-5;—(1+I)<p2*/1+adv—lga,-*/1+§dv, |cosf| > €, (2.14)

J

or g . f
coseam /1+§dv I<pz*/1+§dv |cos¢9|€( ,€) (2.15)

F(0,0) = Bf(w), €> 0, f(1,0) = B ), €<,
g(Ov ’l)) = Bg(])(v), § >0, g(l,'v) = ﬁg{(v)v é <0,
1(0,0) = BIydg—g, cosd > 0, I(1,0) = BI106=x, cosf <0, (2.16)
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where 8 = Ap < A. By the exponential forms of f, g and I,
(f +9)@v) Salf +9)(Lv), €> 3,
(F+9)@v) <alf +9)0.v), §< —3,
I(z,0) < 1I(1,6), cosf > -72:, I(z,0) < ¢11(0,6), cosb < ——g,

with ¢ only depending on r. Hence,

E= / (¥ + E1)f + (v* + E2)g)(z, v)dzdv + / I(z,0)dzdd

< Cg( §(f+g)(1,v)dv+/ IE1(f + 9)(0,v)dv
] <%
+/6030>'2“ cosfI(1,0)do + /coso<—z ]c030|I(0,0)d0)

< C3IBv

by integrating the sum of (2.12) and (2.13) on (0,1) x {|v| £ V'}, and adding
(2.13) integrated on (0,1) x {|v] < V} to (2.14) and (2.15), respectively
integrated on (0,1) x {|cosf| > ¢} and (0,1) x {|cosf| € (5,¢)}. Hence
B > ¢4, with ¢4 only depending on r.

The passage to the limit when i — +00 can be performed with analogous
arguments to the proof of the compactness of T, since it now holds that
1 T-LLL'dU) and ([ 1z dv) are strongly compact in L'(0,1). The passage to

] J

the limit when o tends to zero can be performed with analogous arguments
to the proof of the continuity of 7', after noticing that up to a subsequence
J Id# strongly converges in L! when a tends to zero. Indeed, an explicit
computation of [I(z,6)df from (2.14-16) expresses it in terms of y —

f T (y,v)dv and y — fT_‘%r(y, v)dv, which are compact in L' by the

averaging lemma. Hence there is a solution (f7, g7, I’) to

. j 5 .
af = ( d0+/ ra -2 I /pda
|cos|> 5 |cosB|>e 1+ %" 1+ *]L
77 il f
+/XTS- . _ — | X"S; —, (217)
L8 1+ 8 1z
J . J 7 )
Qg-:-(/ d0+/ rdg)—2 j+—f—7/pde
Oz |cosf|>% |cosf|>e 1+ %— 1+ bid

P j
/TS g & / s—&_  (218)
1+ﬂ—1+£— +=‘L 1+
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7 ) J ) J
cosOa— =(1 +I’)/ Iy I’/ / —dv, |cosf| > €, (2.19)
ox 1+ & 1+ L

or [ g Sl r

c0505; = / T }Jgdv—-lf/ = ‘]Ljdv, |cosb| € (5,
PO =Ff©), €0, fF1L0)=Ff@), £<0, (221)

9 (0.v) = Fgy(v), €>0, ¢(L,v)=Fgl(v), £<0, (2.22)

Ij(O,G) = [ Iyb9—g, cosd > 0, Ij(1,0) = 3 116p—r, cosd < 0, (2.23)

€), (2.20)

for some 37 € [e4, A]. Moreover, (f7, g7, I7) satisfies

/((v2 +ENf + (v + E2)g?)(z,v)dzdv + /Ij(x, 0)dzdd = E. (2.24)

3. Approximations with a truncation for small £’es.

In this section, the passage to the limit when j tends to infinity is per-
formed in the last system of equations of Section 2. Since 37 belongs to
[c1, A] for all j, where ¢4 and X are independent of j, a subsequence of (89)
converges to some 3 € [¢q, A].

LEMMA 3.1.— The sequences (f7) and (¢7) are weakly compact in L'((0,1)x
{lol <V}).

Adding (2.17) and (2.18) and integrating the sum implies that

/'aﬂ+wumw+/|wﬂ+wmwm<a (3.1)
£>0 £<0

Moreover, integrating (2.18) on (0,1) x {|v| < V}, (2.19) on (0,1) x
{lcosB| > €}, (2.20) on (0,1) x {]cosOl € (5,€)}, and adding the resulting
equations, implies that

| eWad+ [ el 0.0

£>0 £<0

+/ cos0I’(1,6)d6 +/ lcosf|17(0,0)dh < c. (3.2)
c086>0 cosf<0

. j i
Multiply (2.17) by lnl—fz- (2.18) by lnl—fI (2.19) by Intl5, (2.20)
by inl?, add them and integrate. Hence,

/g(ffznff —i+ ?))ln(l + g)(l,v)dv
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- /g(fjlnff - i1+ ﬁ))ln(l + f—.j)(o,fu)dv

/ £(glng — ))ln(1+ —)(1 v)dv
- / E(ging — (1 + —,))ln(l + 7)(0,1;)(1@

+= e(f] )+ (g ) +e(fl, 97, ) +ea(f, 9, 1)

:/ cosO((l—l—Ij)ln(l + ) -~ Pinl’)(1,0)d0

cosf>e

+/ |cosB|((1 + I?)In(1 + IP) — inI?)(0,6)dd
cosf<—e

+/ cosBI (1 — InI?)(1,0)db +/ |cos|I7 (1 — InI?)(0,6)d6
<cosb<e —e<cosf<0
<S¢

v (3.2) and the inequality
1+ 2)n(Q+z)—zinz <2z, z=>1.
Here,
f! L
f_ A fofoy, HEuk
e(f, f) = /X’"B( - Yin ) dxdvdv,dw,

il L Ly L7 L _fe
R B R EE S 2

f
g f (1+I)9(1+j)
)= 141 Sy Y dzdvds,
athon=[ (@i i e
and
ny
g foy, 90+7)
ex(fog ;=/ Iy dadvdd.
I Jretzo THE 1+‘§) IF+5)
Since

%tlnt —i+ %)ln(l + %) >0, j>100, te (100,54,
and the sequences (f7) and (g?) take their values in (0, j4), it holds that
| epmpiaudos [ jelfiing @0
£>0 £<0
+ £g’Ing’ (1,v)dv +/ |€lg” Ing’ (0, v)dv
£>0 £<0

+e(f), f) +e(d’. g') +e(f), ¢ ) + e, 9, ) < c.
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By the exponential form of f7 + ¢/ and the truncation x” for |¢] < £,

(7 +97)(z,v) <e(f7 +¢°)(1,v), €>0,
(F7 +¢)(z,v) < e(f7 + ¢7)(0,v), £<0,

NN

so that

/ (FA(L+ [Inf?]) + ¢ (1 + |Ing’ ) (z, v)dzdv + ea(f7, ¢, ') < c.  (3.3)

Hence, the sequences (f7) and (¢°) are weakly compact in L', and con-
verge, up to subsequences, to some f and g.

LEMMA 3.2.— The sequence (I7) is weakly compact in L*((0,1) x
{|cosb)| < €}). Moreover, ( flcos0|>e I¥(z,0)d8) is uniformly bounded with re-
spect to j.

It follows from the expression of I/ with respect to f7 and ¢’ from (2.20),
(2.23) and the inequality

) . 1 1
J P e
/(f + ¢’ )(z,v)dzdv < E(E1 + Ez)’
that
/ I (z,0)dzdd < c. (3.4)
|cosB|<e

By (1.14) and the exponential form of f7, for some subset W of {v €
IR3; |v| < V'} of positive measure,

I(z,0) < El-Ij(x,O)fj(x,v), veW
5

Hence, for any K > 2,

. K . .
P(2,6) < 297 (2.0) + = (@)
— I (2,0)f(z, v))znﬁ%, vew

The equiintegrability of (I7) on (0,1) x {|cosf| € (%,€)} then follows
from the equiintegrability of (¢7) on (0,1) x {|v| < V}, as well as the bound
from above of e2(f7,g7,I) derived in (3.3). Consequently, (I7) is weakly
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compact in L'((0,1) x {|cosf| < €}). Moreover, by integration of (2.19),
(2.23),

) ] f:f —3—— —L)(z v)dvdz
/ I (z,0)d0 = FIoe e
|cosB|>e€

o
f f:t o 7)(z0)dvdz

ﬁjh
. j s f f )(z v)dvdz
[ o [ T T
0 cos\9>e

+L
1
/
xT

by (2.24).

L Y g? _t z,v)d
dfu)/ e|c0801 fz f(1+L . i].’..)( )dvdz de
cosf<—e

Passage to the limit when j — oo in (2.17-24).

It follows from the weak L' compactness of (/) and (g’) and from

/ E(f1 + ¢7)(xv)dv < ¢

that
: I : gt
(f? /er —dv,dw) and (¢’ /er ~dv,dw)
1+L 14+ &

are weakly compact in L'. Then, it classically follows from the boundedness
of (e(f7, f7)) and (e(g’, ¢%)) that

(/ f dv* ) and (/ 'S ——0 il — g Fdv,.dw)
1+i—1 1421 +9—

are weakly compact in L!. Since (I7) is weakly compact in L'((0,1) x
{lcos| € (5,¢€)}), and (f|¢:030|>e I(x,0)dd) is bounded, the sequences

(g%ln(l + 7)) and (£ In(1 + %)) are weakly compact in L'. And so, the
averaging lemma apphes, which allows to pass to the limit when j tends to
infinity. And so, there is a family (f",g",I", k) of solutions to

o ([ we]  rew-r [ro
Oz |cosb|>% |cosB|>e
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+ / X SUT T = 7T ) dvedu,

99 _ —(/ d9+/ ITdO)g’Jrf’"/I’”d&
oz |cos|>% |cosB|>e

+ / X"S(9" g% — g7 %) dvsdw,

-
cost B (I1+I")G" —I"F", |cosf| > e,
cosOaw =G"—I"F", |cosb| e ( ,€)s

fr(Ov U) = kaO(U)’ g > 07 fr(l’v) = ’r‘fl(v)v 5 < 07
gT(O, 'U) = krg(](’U), £>0, gr(l,v) = k'rgl(v)v £ <0,
I"(0,0) = kpIodo—o, cosd >0, I"(1,0) =k, I,69—r, cosh < 0,

/ (v + B0 f™ + (v® + E)g")dadv + / I"dédx = F
Here, F(z) = [ f(z,v)dv and G(z) = [ g(z,v)dv

4. Removal of the truncation for small £’es

(3.5)

This section is devoted to the passage to the limit when r tends to zero

in the previous system (3.5-12). First,
f(z,v) 2 ckefo(v), €>1, f(z,v) > ckofi(v), € < —1,
where c is a constant independent of r. Hence

E > /(v2 + E1)fTdzdv > ck

so that sup,.,. kr = ko < +00. Let us prove that

e(f", f7) < ckr, e(g",g") < ck,

where

e(f, f) ’_/ / S(f'fi— ffoin flff:‘da:dvdv*dw

Denote by f7 := Lr and §" := 9— They satisfy

§8f =( / dé + / Ide)g" — fr / I7dog
Oz |cosb|>% |cosf|>e€
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" / S 71— ) dvedw

9" _ / do+ / rdog + fr / Irrde
ox |cos8|>% |cosf|>e€

+kr / X"S(5" g% — §"g%)dvsdw,

i sOaIT
ke 0% b

=(1+1I")G" —I"F", |cosb| >,
1 oI - ~
o o G"—I"F", |cosb| € (g,e),

F1(0,0) = fov), €>0, F(1,v) = fi(v), £<0,
§'(0,v) = go(v), £>0, §'(L,v) =g1(v), £<0,

I7(0,0) = k,Iobp=0, cosd >0, I7(1,0)=k,I16p=r, cost <O.

(4.1)

(4.2)
(4.3)

(4.4)

Multiply (4.1) by Inf7, (4.2) by Ing", (4.3) by ln-HI_%, and (4.4) by InI",

integrate and use that

/f(fr +3")(1,v)dv — /&(fr +§")(0,v)dv = 0.

Hence,
/Ef’"lnf’(l,v)dv - /&frlnfr(O, v)dv
/égrln (1,v)dv — /§grlng (0,v)dv
+—1- / cos@(I"InI" — (1 +I")in(1 +17))(1,6)d
ky |cosf|>e
+—1— cosO(I"InI" — I")(1,6)d0
ky |cosB|<e
_L cosf(I"InI" — (1 + I")In(1 + I7))(0,8)d6
ky |cosB|>¢€
_L cosf(I"InI" — I7)(0,6)do
kr |cosB|<e
= —kee(f", f7) — kre(@,§") —ea(f7, G, I") — e2(f7,3", 1),
where
= N - (1+1D)g
aGan=[ (@+ng-1m,
|cosf|>e€ If
o~ N
exfaD) = [ G- IfinL.
|cosfle(5,€) If
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From

€4 (1, v)dv + /£ _Iela"(0.0)de

+/ cosfI"(1,0)d6o +/ |cosB|I"(0,6)do < ck,,
cos6>0 cos0<0

(I+2)in(l+2z) —zlnz <22, z>1,

£>0

and the bounded domains of integration, it holds that
kre(f7, f7) + kee(§", §7) + er(f7, 5, I7) + ex(F7, 57, I7)
< / eI, v)dv + / e I(0, v)dv
£>0,f7<1 £<0,fr<1

+ / €57 |ing"| (1, v)dv + / €157 Ing"|(0, v)do + ¢
£>0,57<1 £<0,g7<1

)

Hence,
(e )+ elg’,g7) + (7,5 T7) 4 ol .37 T

= ke(e(f", f7) +e(@.8") + e1(f7, 37, I") + ea(F7, 57, ") < c.
And so,

e(f", f") <ckr, e(g",g") < cki.

Moreover,

/ (™ + ") (L v)dv - / E(f7 +7)(0,v)dv = 0,

so that

£>0

£ +97)(1v)dv + /E I+ g0 o)

ke / €102 + g1)(v)dv + / £(fo + 60) ()db) < chy.
£<0 £>0

Then,
/ E(f7 + ) (@, v)dv = / E(f7 + g7) (1, v)dv
—k, / E(f1 + g1)(v)dv + / E(f" + g1, v)dv
£<0 £>0
< cky + V/ EfT+97)(1,v)dv < ck,, z€(0,1).
£>0
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Hence,

/ 7 (z,v)dzdv < 100ck,. (4.6)
[£1> 15

Then,

f'r(w’ U*) > Ckr, 1< |§*l < 10.

Then, for v such that |¢| < 75 and v, such that €€, < 0and 1 < & <

there is a set of w € S? of measure (say ) 100 , depending on z, v, v, such
that |¢'| > ¢ and |€,| > c. Hence, for L > 2,
T L, Ux T T
bO)f (@,0) < of (@) ) < (€24 €)@ @nd)
SR

b(a)‘v_v*lﬂ(frfr fr fT )l f'r fr )

le

Hence,
c
T < _
/§l< . f(z,v)dzdv < cLk, + T

Together with (4.6) it implies that

/fr(ac,v)da;dv < cLk, + (4.7)

c
InL’
Analogously,

/gr(x, v)drdv < cLk, + (4.8)

c
InL’
Since

o o L
/ I (2, 0)d6ds = ky(IpeJo @ ~FIO% | o), (6-F))d)

+ / / G (y)e™ o @ =P g g, 46
cosf>e

cosf

— 1l FT(z)dz do
+ / / Gy = Iy dydr—
cosf€(0,e) JO ( cost

1 T—FT" z de
+/ G (y)e™ do €O g,
cosf<—eJx |CO 9'

1 x
Lo |7 F7(2)dz do
+ / / G"(y)e*° fv dydzx ,
cosf€(—e,0) Jx |COSO|
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and
E= / (v? + E1) frdadv + / (v? + Ey)g"dzdv + / I"dzd,
it follows that

E<cLk + > + / I" dwd. (4.9)
lnL |cos8|€(% ,€)

Assume that lim, ok, = 0. Choose L = |Ink,|. Then, by (4.7-8),

1 1
lim | F"(y)dy = lim/ G"(y)dy = 0. (4.10)
r—0 Jq r—0 Jg

Since
cosOI; =G" —I"F", |cosf| € (g,e),
17(0,6) = 0, cosb € ( €), I"(1,0) =0, cosf € (—e,—g),
it holds that
|cosf|I" (z,0) < /O 1 G"(y)dy, |cosd] € (g, ).
By (4.10),
lim I"(2,0) =0, aa z€(0,1), |cosh|e (-;—,e). (4.11)
Moreover, it follows from (4.5) that for a.a. z € (0, 1), there is a subset

W(z) of {v € R v| < V,|¢| > 1} with measure at least half the measure
of {v € R3|v| <V, |¢| > 1}, such that

9" (z,v) <ciky, z€(0,1), veW(x).

Then, by the exponential form of f7,
fr(z,v) 2 coky, z€(0,1), veW(x).

And so, for a.a. z € (0,1) and |cosb| € (§,¢),

I"(x,0) < coI"(z,0) ( ”), v e W),

9" (z, v)

<e(2 rkr’ o 2(-"(32 0)f(z,v) - g’(w,v))ln ), veW(z),

C
< 62(261 + 77—;3'2')
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Together with (4.11) and the Lebesgue theorem, it implies that

lim I"(z,0)dzdf = 0.

70 J|cosB|€(5€)

This contradicts (4.9), when taking L = |ink,|. Hence lim,_kr > 0.
We may now choose r; > 0 and k; > 0 so that

k1 <kp<ko, 0<r<rr.

LEMMA 4.1.— For § > 0, the families (f")r<r, and (9" )r<r, are weakly
compact in L1((0,1) x {v € R3;|v| < V,|¢| > 6}).

First,

sup f(z,v)dv £ —62-, sup / g (z,v)dv < _c_2
2€(0,1) Jj¢|>6 07 se(o,1) Jigzs Y

Then,

/ (fTinf" + g"lng")dzdv =
1€1>8

0
/ 3 (fTinf" + g"Ilng")(1 + s&, v)dsdv
£>6

Yo
+/§<—6 K‘é (fTinf" + g"Ing")(s&, v)dsdv

<ol [ e+ v)dy+ /§

£>6

s €™ + g7)(0, v)dv)

<L -

+e( [ E(fTinfm + g"Ing™)(1,v)dv + / [EI(fTinf" + g"lng")(0,v)dv)
£>6 £<—é
<e

Denote by x? = x™, f/ := f7 and ¢ := g9, where (r;) is a se-
quence tending to 0. By Lemma 4.1, there are subsequences, still denoted
by (f9), (¢9) and (k9), with limj_,4e0 f7 = f, limj4yoo g’ = g in weak
L1((0,1) x {|Jv] < V€| = &}) for all 6 > 0 and lim;_, o k7 = k. Let ¢
be a test function vanishing on |¢| > 4, for some § > 0. In order to prove
that ([ I(z,0) f (z,v)¢(z,v)dbdzdv), ([ I (z,0)9’(z,v)p(z,v)dfdzdv),
1 Q;t(fj,fj)(p(x, v)dzdv) and ([ Q;-t(gj,gj)cp(a:,v)dxdv) have the respec-
tive limits [ I(x,8)f(z,v)¢(z,v)d0dzdv, [I(z,0)g(z,v)p(z,v)dbdzdv,
[ Q%(f, f¢(z,v)drdv and [ Q*(g, 9)¢(z,v)dzdv when j tends to infinity,
we first prove the two following lemmas, with similar arguments to some
proven in [1].
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LEMMA 4.2
lim sup / (f! + ¢%)(z,v)dzdv = 0.
P70 5c(0.1)iISI<pi> L JSx{lvl<V}

It follows from the bound from above of [ £2(f7 + ¢7)(z, v)dv that

/ (1 + ¢7)(z, v)dv < cr0”.
|g]>1

If the lemma does not hold, then there are n > 0 and a subsequence of
(say) (f7), still denoted by (f7), such that for each j there is a subset S; of

(0,1) with ISJl < %?‘)75 and
/ fi(z,v)dzdv > .
Six{lv|<V}

Hence,

/ f(z,v)dzdv > .
S, x{Jvl<Vir;<lél<t) 2

Here, at least half the integral comes from the set of (z,v) with f7(z,v) >
c1052. Let Vi = {v, € R3|v,| < V,1< |6«] < 2}. By the exponential form
of f7,

F(z,v0) > c11, vs € Vi (4.12)

Then, from the geometry of the velocities involved, and from
/ Fi(z,v")dv' < er2,
lg']>1

given v such that [v] <V, r; < ¢ < % and f7(z,v) > c1052, it holds for
¥, in a subset of V, of measure '%l and for w € 52 in a subset of measure

S3|
51 that

|§,| 2 ) Ig;' 2 ’ f](wv 'U/) < €13, f](xvvi) < C13.

] =
IS

It follows that, for some constants c14 and c;5 independent of such v,
v« € V4, w and for j large,
c1af?(z,0) < f2(,0) F (z,0.) — f(2,0) f (2, ),
- F(=z,0)f (z,0.)

) S Fila, o) Pz 0l)
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And so, using the entropy dissipation estimate,

/ F(z,v)dadv < 28 < 1,
8 x{|vl<V,r;<lel<d} Inj 4

for j large enough. The lemma follows by contradiction.

LEMMA 4.3.— Given p > 0, there is jo such that for j > jo and out-
side a j-dependent set in z of measure less than p, (f|§|<1, fi(z,v)dv) and

( fl&l <1 9 (z,v)dv) tend to 0 when i tends to infinity, uniformly with respect
tox and j.

Let us prove Lemma 4.3 for (Ji; 1 fi(z,v)dv). Given 0 < n < 1 and z,
j, either

/ f(z,v)dv < n* <,
lgl<}
or

/l§|<1 i (z,v)dv > n*.

In the latter case,

/ 4 ,. f(z,v)dv > CR
lEl<$,59 (@)> 55

For each (z,v) such that [{] < 1 and f7(z,v) > g‘%, take v, in
Vi := {v. € R3;|v.| < V,1 < |&| < 2}, so that by (4.8),

fj(;c,'u*) >c11, Uk € Vi

Given v, it holds for v, in a subset of V. of measure L‘;Ll and for w € §2

. S?
in a subset of measure %, that

I£I| > 17 |£:<| > 17 fj(a:?v,) < C17, fj(IE,’U;) < C17-

It follows that, for some constants c;s and c¢19 independent of such v,
vy € Vi, w and for j large,

fj(:L‘, U) < clej(x7 ’U)fj(.’L‘, U*)

C ; i j N pj ’ fj(.’l,',’l})fj(il,', ’U*)
< %B(f’(mv v)f(z,vi) — f(z,v )f](x’v*))fj(x, N o)
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Since there is a constant cao > 0 such that, uniformly with respect to j,
the integral

f (2, 0) 7 (2, v
fiz,v) Iz, v))

is bounded by c2o outside a j-dependent set S; in x, of measure p, it follows
that for € S;?,

/S(fj (z,v) f(z,vs) — fi(2,0") f7 (2, 0))In dvdv,dw

/lgl . fi(z,v)dv < 1lg 0 i< 27,
<d

for ¢ large enough.

LEMMA 4.4.— Let ¢ be a test function vanishing on |€| < &, for some

6 > 0. Then ([ I’(z,0)f?(z,v)p(z,v)ddzdv) and ([ I(z,0)¢’ (z,v)p(z,v)

dfdzxdv) respectively converge to [ I(z,0)f(x,v)p(z,v)dbdzdv and [ I(z,6)
9(z,v)p(z,v)d0drdv when j tends to infinity, where I is the solution to

I
0059% (14+I)G — IF, |cosb| > ¢, 0039(—;—:; =G —IF, |cosf| < e,

1(0,0) = klpdg—o, cos® >0, I(1,0) =kl 09—, cosb < 0.

Let us prove the first part of the lemma. By the expressions of [ ¥ (z,6)do
and [ I(z,6)df derived in (4.1),

/Ij(x, 0)f (z,v)p(x, v)dodzdy — /I(w, 0) f(z,v)p(z, v)dbdzdv
splits into the sum of
_ k)ID/fjvej;w(Gj—Fj)(z)dz’ (K — k)l /fjgoef:(Gj—Fj)(z)dz,
which tend to zero when j tends to infinity, by (3.12), and
Xy, =kl /(fjefo’(cf_pf)(z)dz _ fefo’(c—p)(z)dz)(pdxdu

Xoj = kI / ( fjef: (G =F7)()dz _ fef:(G_F)(z)dz)cpdxdv,

g z de
Xas j J (o5 J, (G =F)(z)d
% /f /c030>e/ ¢ (y)e COSO)dwdv

/ Fol / / Gly)em® I, @@y 40 3
cosf>¢ 0030
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i Lo L ["(Gi-FI do
= J ( Y] cos6 fy (G7~F7)(z)dz
/f (p(/cosl9< eJzx (y)e dy |8089| )d.’IId’U

! 1 * - z)az
—/fv(/ G(y)e=* J;@-P@ad dy———do ydzdv,
cosf<—eJz |6030|

and
j . = IFj(z)dz dé
et fJQO / / G] y ecosﬂ fy dy dxdv
/ ( cosf€e(—¢,0) Jx ( ) |6080|)
1 z
e[ [ ewe L Oy L aaas
cosfE(—e,0) Jx |COS€|
Then,
Xyl <kl (£ = el ©D O doan
/ / (G7 — G)(2)dz| + I/ —F)( z)dzl)dx,
since

| [Uoevml < 5, aaze0.

The first term in the right-hand side tends to zero when j tends to
infinity, since (f7 — f)¢ converges weakly to zero in L! and [ (G — F)(2)dz
is a bounded function. The second term in the right-hand side tends to zero
when j tends to infinity. Indeed, let > 0 be given. Since f € L! and by
Lemma 4.2, there is py > 0 such that for every j > p—lo, for any subset S of

(0,1) with |S| < po,

/ (f7 + f)(z,w)dzdw < 7.
Sx{|v|gV}

By Lemma 4.3 applied to po, for j large enough, there are X; C (0,1)
with | X$| < pp and ig € IN* such that

1
/ / (7 + Fz,w)dzdw < n, z€X;.
0 Jigl<
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Then, for a.a. z € (0,1), by the weak L' convergence of (f7) to f on
(0,1) x {Jv] <V, |¢] > %}, there is jo(z) such that

/ / (z,w)dzdw| <n, 7> jo(z).
l>—

and so, for a.a. z € (0,1)

I/ / Mz, w)dzdw| < 3n, j > jo(x).

Hence, for almost all z € (0, 1),

T
lim /(Fj—F)(z)dz:O.
j—+oo Jg

And so, the second term in the right-hand side tends to zero, by applying
the theorem of the dominated convergence. All other terms, i.e. Xg ;, ..., X6 ;
can be treated analogously.

LEMMA 4.5.— Let ¢ be a test function vanishing on |§| < 4, for some
5 > 0. Then, ([ Q*(f7, f)p(z,v)dzdv) and ([ Q* (g7, ¢%)p(z,v)dzdv) Te-
spectively tend to [ Q=(f, f)e(z,v)dzdv and [ Q*(g, g)¢(z,v)dzdv when j
tends to infinity.

Split ¢ into its positive and negative parts respectively, so that ¢ can be
considered as non negative in the rest of the proof. Let us first prove that

Jim [ Q (7, el o)dado = [ @7(f. Ppla,v)dadv.

Let v > 0 be given. By the weak L! compactness of (Q~(f7, f/)¢) and
the integrability of Q@ (f, )y, there is a number n > 0 and jo € IV, such
that for any subset A of (0,1) x {|v| < V} with |[A] <,

| / Q~ (7, f)pdadv| <7, > jo, and | / Q(f. fpdude] <. (4.13)
A A

By Lemma 4.3, there is j; > jo such that for j > j; and outside a
j-dependent set S} in z of measure less than %, (f1§|< u f7(z,v)dv) tends
to zero when pu tends to zero, uniformly with respect to z and j. Moreover,

/ S(f¢) (z v)dvdw < e / (Fig)(@v)dv
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is bounded from above by a constant cgs outside of a set S? in z of mea-
sure less than =L, by the averaging lemma and Egoroff’s theorem. Then,
J Sf(z,vi)dvidw, which is smaller than oo [ f (2, v«)dv,, is bounded from
above by a constant cs3 outside of a set Sg' in z of measure less than qu-.

Denote by
S;:= 8} US7US2. By (4.10),

/ (@ (F9. 9) + Q(f. ))pdadv < 27, § > jo.

S x{lv|<V}

Then,
| / (@ (F. ) — Q~(f, ) pddv]
Sex{lvl<V}
< |/Sc(fj — Ne(z, v)(/ Sf(z, vi)dvedw)dzdu|
+ / ([ = Dew [ S(e)e v)dododv. s
s Jiel<u

+ /S;( -/|§,|>u(fj — )z, v)( / S(f7¢)(x, v)dvdw)dv, )da).

By the weak L! compactness of (f7¢) and the boundedness of
J S5f(x,v.)dvedw on S5 x {|v| < V}, the first term in the right-hand side
tends to zero when j tends to infinity. Choose then 1 small enough so that

| / X /| G CE / () (@, v)dvdw)du,)da],
which is smaller than

J
023‘/;/|‘|<“(f + )z, vi)dvadz,

be smaller than € for j bigger than some js > j;. For such a p,

( fl§~|>u( f7 — f)(z,v.)dv,) strongly converges to zero in L!((0,1)). Since
(f S(f7¢)(x,v)dvdw) is bounded by ca2 on S5 x {|v.| < V}, the third term in
the right-hand side tends to zero when j tends to infinity. This ends the proof

of the convergence of ([ Q™ (f7, f¥)¢(z,v)dzdv) to [ Q™ (f, f)e(z,v)drdv
when j tends to infinity. Let us finally prove that

Jim [ QA (e videds = [ Q7(F, Pl v)dad.
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Let p > 0 and g > 0, s > 0 be given. As a consequence of the proof of
Lemma 4.3, for some jo there is a sequence of subsets (X ,) of (0,1) such
that |X;,| < p and (f|§|<u fI(z,v)dv) (resp. (flé*|<m Fi(z,v)Sx (z,v")
dv.dw)) converges to 0 with u (resp. . ), uniformly with respect toz € X $ o0
Jj=joand jv| <V.For K > 2,

/ QY (2, f)p(z,v)dzdv
Xj,p

<K [ @ ot vyduiv+ l—}

cK/ iz, v.)dvdr + — (4.14)

In K

which by Lemma 4.2 tends to 0 when K — +o0, then p — 0, uniformly with
respect to j > 2 1 By the averaging lemma and Egoroft’s theorem, there is
for any u* >0 a subset Y, C (0,1) of measure smaller than p, such that
fl&»=|>u I(z,v.)Sx? p(x,v")dv,.dw converges to f{ >, (@ 0:)Sp(2,v")dv,dw
when j — 400, uniformly with respect to = € Y, , and is bounded. Split
fxc QY (f7, f9)p(z, v)drdv into

/ Q1 (f, e(z, v)dzdv

X5,

= [ Fa) / £, 02)Sx (0 o) dode
X3 [€x [<pin

+/ fj(w»v)(XX; (z) Az, v)Sx p(z, v )dvydw)dvde
Yi "

[€x |2 1s

+/ F(z,v)( I (z,v.)8% p(2,v")dv.dw)dvdz.
Y..nXg TR

By Lemma 4.3, the first term in the right-hand side tends to zero when
s« — 0, uniformly with respect to j and p. For u, fixed, the second term in
the right-hand side tends to fyc (z, v)(flf . £ (@ 0:)80(2,v")dvedw)dvda

when j — 400 and p — 0. The third term in the right-hand side is bounded
by ¢ fY,, f?(z,v)dvdz, which tends to 0 when p — 0, uniformly with respect
to j by Lemma 4.2. Hence,

lim / QF (7, f9)p(z, v)dadv = / Q*(f, Po(e, v)dadv,
j—o0

by letting first u, — 0, then j — oo and p — 0. This ends the proof of
Lemma 4.5.
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