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Exact Controllability of the Wave Equation
with Neumann Boundary Condition and
Time-Dependent Coefficients(*)
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RESUME. — On considére la contrélabilité exacte frontiére de 'équation

%(a(t)g—Z) - Z% (ﬁ(t)a(z);—yj) =0 dansQx ]0,T],
Jj=1

lorsque le contréle est de type Neumann et €2 est un ouvert borné connexe
de R™. On utilise la méthode HUM (Hilbert Uniqueness Method) de J.-L.
Lions.
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ABSTRACT.— In this paper we study the exact boundary controllabil-
ity for the equation

3 B\ < 0 AN
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when the control action is of Neumann type and  is a bounded domain
in R™. The result is obtained by applying HUM (Hilbert Uniqueness
Method) due to J.-L. Lions
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1. Introduction

Let Q be a bounded domain in R™ with C? bondary T, and let Q be
the finite cylinder Q x ]0, T'[ with lateral boundary £ =T x ]0, T[. We
consider the following system with inhomogenous boundary conditions

(c)y) +Aty=0 Q@
8—8% =v onX (1.1)

y(0) =¢° and ¢/(0) =3 inQ,
where

= -3 O (atra(e) 2
0=-2 5 (srate1-) (12

The problem of the exact controllability for the system (1.1) is formulated
as follows.

PROBLEM 1.1.— Given T > 0 large enough, it is possible, for each pair
of initial data {y°,y'} defined in a suitable space, to find a control v such
that solution y = y(x,t) of (1.1) satisfies the condition

y(T) = y’(T) =0.

Let us note that when a(t) = 8(t) = a(z) = 1, Problem 1.1 was studied
by J.-L. Lions [12] by using HUM and also by I. Lasiecka and R. Triggiani
[10] by using the ontoness approach. Many other authors studied the exact
controllability of distributed systems with time-dependent or z-dependent
coefficients. Among them, we can cite J. Lagnese [8] who firstly worked
in boundary controllability of distributed systems with time dependent
coefficients and C. Bardos, G. Lebeau and J. Rauch [2] whose work treats to
the geometric optics approach in the case of space dependent coefficients. In
this direction, we can also cite, V. Komornik [11] who presents an elementary
and constructive method to obtain the optimal estimates needed in HUM
(Hilbert Uniqueness Method) for the exact controllability of some linear
evolution systems, R. Fuentes [7], L. A. Medeiros [14], M. Milla Miranda
[15], M. Milla Miranda and L. A. Medeiros [16], J. A. Soriano [17], among
others.
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In this work we prove that system (1.1) is exactly controllable by making
use of HUM, c.f. J.-L. Lions [12]. For this end, we employ the multiplier
technique to obtain the inverse inequality. When the coefficients depend on
time, after making appropriated hypothesis on them, the inverse inequality
still remains true; but since standard arguments are not applicable, the
regularity of backward problem requires a new proof which is the main task
of this work (Theorem 5.1).

In fact, the goal of this work is to show that HUM can be applied to
the case of time-dependent coefficients with Neumann boundary condition.
In order to simplify the computations, we consider the simple operators
defined by (1.2). Howover, with appropriated changes, we can extend our
results to those ones given by

) a
j=1""7 J
with a(z,t) > €0 > 0 in © x (0,0). Now, when we consider the matricial
operators
“~ 9 0
Alt) = - Z (E a,',j(:c, t)—ax—

i, j=1 d

the usual arguments cannot be applied even if i = j and a; j(z,t) = a;(z)
(Remark 1, Sect. 4).

Our paper is divided on sixth chapters. In Section 2, we give notations
and state the principal result. In Section 3, we consider the homogeneous
problem and in Section 4 we establish the inverse inequality. In Section 5,
we study the backward problem and in the last section (Sect. 6) we apply
HUM.

2. Notations and Main Result

Let 20 € R™, v(z) the unit exterior normal vector at z €T, m(z) =
z—29 z € R™ and

R() = max {|m(z)] 2 € 3}
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In what follows the symbol “-” denotes the inner product in R™. Let us

define
I(z% = {z € T | m(z) - v(z) > 0}

T.(2%) = {z €T | m(z) - ¥(z) < 0} = T\ T(z")
2(z%) =T(=% x 10, T[ and T.(2) = Tu(2% x ]0, T[ = £\ £(z7).

Let us introduce some notations that will be used throughout this work.
We are going to denote (-, -) and | - | the inner-product and the norm of
L2%(Q) respectively. The norm in H*(Q) will be denoted by || - ||.

Let A be the operator defined by the triple {H(Q), L%(Q),a(u,v)}
where

a(u,v) = Z/a( )gu S:J z, Yu,veHY(Q)

and 5
D(A):{ueHz(Q) I év—’;=00nr} .

We recall that the Spectral Theorem for self-adjoint operators guatantees
the existence of a complete orthonormal system (w, ) of L2(Q) given by the
eigenfunctions of A. If (A,) are the corresponding eigenvalues of A, then
Ay — 400 as v — +00. Besides,

v=1

400
D(4) = {u € L*}(Q) | 2 /\3|(u,w,,)|2 < +oo}

and

+o00
Au= Z M(u,wp)wy, Yu€D(A).

v=1

Considering in D(A) the norm given by the graph, that is,

1/2
"“”D(A) = (I“I + | Au )

it turns that (w,) is a complete system in D(A). In fact, it is known that
(wy) is also a complete system in H'(2). Now, since A is positive, given
6 > 0 one has

400
D(A%) = {u € L2(9)| 37 A2 (u,wn)|? < +oo}

v=1
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and

+00
Au=3"Mww)w, YueDAd).

v=1

In D(A‘S) we consider the natural topology given by the norm

1/2
lull pasy = (|“|2 + |A6”|2) ~

We observe that such operators are also self-adjoint, that is,
(A%u,v) = (u, A%v), Vu, ve D(AY),

D(AY?) = HY(Q) and D(A®) = L?(Q). We note that A(t) = A(t)A. Here,
we are using the same symbol for both operators to simplify the notation.

We make the following hypotheses :
(H1) &, B € W2(0,00), o, B € LY(0, 0),
a(t)>ap>0 and Bt)>F >0, V>0

and a € C1(Q) with a(z) > a0 >0,V z € O;
(H2) ifn > 1,
1Vl co@y < a0(RE=") 5

(H3) if n =1,

J0<v<1 such that ||Va||co(§) < yao(R(z%) ™"

Now we are in position to state our main result. Consider the system,

(a@®)y)' + A@t)y =0 in Q

Ovy v; on X.(z°)
y(0) = y% and y'(0) =y in Q.
We have the following result.
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THEOREM 2.1.— Suppose that assumptions (HI1)-(H3) are satisfied.
Then there exists a time Ty > 0 such that for T > Ty and initial data
{4, 41} € L3(Q) x (HY(Q))', there exists a control

we (#(072216)) mi wer? (0.1 (5 69))

such that the ultra-weak solution (the solution of (2.1) is defined by the
transposition method, see [13]) y = y(z,t) of (2.1) satisfies

y(T) = y’(T) =0.

3. The Homogeneous Problem

In this section we present a standard result and a new one about the
solutions of the following homogeneous system

(a®)d) + A0 =f inQ
8—0 =0 onY (3.1)
vy
6(0) = 8° and ¢'(0) = 6* in Q.
We have the following results.

THEOREM 3.1.— Suppose that assumption (H1) holds. Then, given
k€ {0,1,2} and

{6°,6, £} € D(AK+D/2y x D(A*/2) x L1(0,T; D(4*/?))
problem (3.1) possesses a unique solution 6 : Q — R such that,
6€C°(10,T]; DAXD/H) nct ([0, T]; D(4F?)).
Moreover, the linear map
D(AK+D/2y 5 D(A*?) x L}(0,T; D(A*/?)) —
— C°([0, T]; D(AK*+H1/2)) x C1([0, T]; D(4*/?))
{6°,6%, f} — {6,6'}

18 continuous.
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Theorem 3.1 can be proved in a standard way by applying the Faedo-
Galerkin method and using the spectral considerations given in Section 2.

Next we consider the homogeneous problem

(a()8)' + A®)0=f inQ

8_81/0— = on ¥ (3.2)
A

6(0) =6'(0) =0 in Q
which will be used in the study of the regularity of the solution of (2.1).

THEOREM 3.2.— Given f € D(0,T; D(A)), the unique solution of
problem (3.2) satisfies for every t € [0, T]

|a1/241/2/ (1) — o~1/2 41/2 F®)| 12 @) + 4600)] r2@) S OIS s (0,7 D(A))
and

|o2/20'(t) - a~2/2 )] 2y + [4Y26(0)| 20y < C|If 22 0.7 23 (s
where C = C(T).

Proof.— Since 80 =61 =0 and f' € D(0,T; D(A)), from Theorem 3.1
the above problem has a unique solution # such that

6. € C°([0, T]; D(4*%) nC([0, T]; D(4)). (3.3)
Besides, this solution satisfies the identity
1 /
5 {4200 + B(t)|46(t)|*} =
1 t / 1 t /
= —2—/0 B (s)|A0(3)|2 ds — 5/0 o (s),AO’(s)|2ds + (3.4)
t
+ / (AY25'(s), AV%6'(5)) ds .
0
From (3.3) we get A9 € C°([0, T]; D(A1/2)) and therefore

(a8') € L*(0,T; D(AV/?)).
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This togheter with assumption (H1) implies that
3 (@ 4221(s), a(s)42/20(s)) =
(az((?) A2 f(s), a(s)A1/20'(s))

+ (a7 Y(9)AM2f(s), a(s)AM?0(s)) +
+ (a7} ()42 5(s), 42 ((a(5)6(5))') ) -

Integrating this equality and noting that f(0) = 0 we have

[ @20, #20(9) a5 =
= (a1(1)AY2£(t), a(t)AY20' (1)) +

+ ]0 (@/(s)a ()42 (s), A/7(s)) ds +

-/ (042 1(6), 412((a(0)8 (5))) ) ds

Replacing (aﬁ' )' by f' — BAf in the last integral we obtain

t
| @2 re), a0 ) s =

= (AY2(t), A% (1)) + / t (/(s)a1(s) AV % f(s), A/?0'(5)) ds +
0

t
- [ @410, A7) s+

+ [ (a7 A2 1(s), B(5) A2 (48(s))) ds. (3.5)
0
Now integrating by part and noting that f(0) = 0,
/ t(a'l(s)A1/2 f(s), AY*f'(s)) ds =
(3.6)

(a72()AY25(t), AV f(t)) +

v -; [ @ @a 04 721(6), 41725(9) .

MU—‘
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Replacing (3.6) in (3.5) we have
/t(A1/2fI(S), A1/2gl(s)) ds =
0
= (AY2f1), A%/ (1)) + / t(a'(s)a‘l(s)A1/2 f(s), AV (s)) ds +
0
- 3T, 424 +
1 t,s =200\ AL/2¢(5) 41/2
5 | @262 1(s), 4/25(e)) ds +
+ [ (a7 42 1(6), 8502 (A0(5) ) . (3.7)
0
From (3.4) and (3.7) it follows that
% |a/20)A128'(t), o~ V2(2) A2 (1) 2 + %ﬂ(t)|Ae(t)|2 =
t t
= %/0 ﬂ'(s)lfw(s)lzds - %/0 o/(s)|Al/26"(.«3)|2 ds +
+ /t(a'(s)a—l(s)Al/2f(s), Al/zﬁ'(s)) ds +
0
— %/t(a'(s)a‘z(s)Alnf(s) , Al/zf(s)) ds +
0
+/0t (a_l(s)A1/2f(s), ﬁ(s)Al/2 (AB(S))) ds.

Defining al/2¢' — o=1/2f = ¢ and replacing 6’ by a~1/2¢ + o~1f in the
above expression we obtain

3 14260 + 1 5t)| asco)]? =
t t
= %/c; ﬁ'(s)lAG(s)'zds— %/0 a'(s)a"1|A1/2go(s)l2 ds + (3.8)

t
+ / a~1(s)B(s) (Af(s), Ab(s)) ds.
0
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From hypotheses (H1), (H2) and (3.8) there exists a constant C' > 0
independent of f and 6 such that

% |42t |* + %lA&(t)|2 <
< C{/(Jt|A0(s)|2ds+ %/Ot|A1/2<p(s)|2ds+
i 8 s 1/2 8 S
+ [145(6)] (j4000)] +[42p(5)]) }

Applying Gronwall’s inequality twice (first we consider the Gronwall in-
equality (1/2)g2(t) < fg m(s)g(s)ds where g(t) = |A1/2<p(t)|+|A(0)| and
m(t) = 2C(g(t) + |Af(2)|) and after the usual one), we get

|41 2p(t)| + |48(8)| < C|fllaor; p(ayy> V€0 TT-

In a similar way we also infer that

le@)| +[48)| < Clfll s o,r; 20y > VEELOTT

Using the definition on ¢ we obtain the desired inequalities. O

4. The Inverse Inequality

In this section we construct a special T time depending on 7, R(29), on
the functions a(t), B(t), a(t) and also on the geometry of .

Taking into account the regularity of I', we can defineon T a unit exterior
normal vector field v(z) on class C. In the same way we can define a family
of (n — 1) tangent vector field {rl(z), ..., 7~1(z)} of class C! such that
the family {v(z), (), ..., 77~1(z)} defines an orthonormal basis for R™,
for each z € I'. If ¢ : § — R is a regular function, we have

oy 0y ;0 P
by = iny T2 gE RTI=hem (4D
where 3 9
Op _ ) 99 _ Lk
5, = verv ad FEp=ve T
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Defining

n—1 dp
ai(p) =Y ng;j; (42)
k=1

we obtain from (4.1) and (4.2)

8 _ 0 .-
5_1:;_”]5—1/-+6J¢ onl', j=1,...,n. (4.3)

We observe that when 8¢/0v4 = 0 on I' then d¢/0v = 0 since

9p 0y
v a(:c)gg onI' and a(z)>ap>0.

Then, defining V,9 = (619, ..., 6np), we obtain from (4.3)

Vep=V¢ onT (4.4)
and consequently
2 2 = 2
|V<p| = |Va§o| = EIU?S"I onT. (4.5)
j=1

Remark 1.— At this point we observe that when A is a matricial
operator that is, when it is given by

Alt) = - En 8——6' (a,-j(a:, t)a—a )
ig=1 00 "
then we have
oy -

Oy
a‘a = i’;:;l az](z:t)a_xj Vi

and therefore if 9y/0r4 = 0 we do not have necessarely that dy/dv = 0 and
consequently we cannot use the identity
|Vy|2 = lvayl2 on Xg

even if ¢ = j and a;;(z,t) = a;(z). As this identity plays an essential role
to prove the inverse inequality, this case requires another treatment which
will not be considered in this work.
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If ¢ € H?(Q) we can define in a natural way a continuous linear operator
o} HY(Q) — HYA(T) (4.6)

such that
ajl-go =g onl,VpeC¥Q). (4.7

In addition, we can also define a continuous linear operator
% : H'(I'o) — L*(To) (4.8)
where I'g is a nonempty open subset of I' (sometimes the whole I') such that
o3¢lr, = (059)|p, onTo, Ve eC}Q). (4.9)
Thus, from (4.7), (4.9) and by density arguments it results that

(6ju)|p, = oFuly, onTo, Vue H¥Q). (4.10)

Considering the above equality we are able to define the tangential
gradient

Vou= (o)l -, (ehwlr,)

= ("%“‘Fo’ ce a’%u|ro) , VueH3Q).

Dropping the index “2” in (4.8) to simplify the notation, we define the
adjoint operator
* /
o} : L}(To) — (H'(To))

<°’;¢ L) = (‘/”UJ"P)LZ(rO) , VeeHY(To) (4.11)
and from (4.8) and (4.11) we obtain the continuous linear operator
~Ar, : HY(To) — (HY(T0))’

n
pr— —Ap,p =y (0] 00j)p
j=1

where “o” denotes composition.
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Hence, for all ¢, ¥ € H!(T),
(~Arye, ¥) = /P Voo Voudl. (4.12)
[}

In particular
(—-Apogo,<p>=/l; |Vop|?dr. (4.13)
0

THEOREM 4.1.— Let 6 be the weak solution (it means that the initial
data {6°,61} € HY(Q) x L*(Q)) of the Problem (8.1). Then, if f =0,
" E(0) < B(t) < e®E(0), V0,

where

+o00
Co=max(ag’, 85} [ (|a'(0)] +|¢')) at.
and

E(t) = % ( /Q a()|6'(z, )| dz + /Q ﬂ(t)a(:c)IVH(:v,t)lzd:c> L (414)

Proof.— We consider first that {6°,6} € D(4) x H(Q)). Then, from
Theorem 3.1, there exists a unique solution 6 in the class

6 € C°([0,T1; D(A) nCL([0, T]; HY(Q)).
Multiplying (3.1), by 6’(t) we obtain

14

a'(t)lel(t)l2+a(t)2 = 1822 +ﬂ(t)% j_tlal/z(x)w(t)lz —0.

Integrating this expression from 0 to ¢ and then integrating by parts we get
Lo a2 1/2 2
5 (YOO +80)]a" @) Vo)) =
1
= (a(0)]6** + B(0)]a*/*(2)v6°") +
Lt a2 Lt 1) 2
_5/0 o'(s)|6'(s)|" ds + 5/0 B'(s)|a*/2(z)V6(s)|* ds.
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Taking into account (4.14) we can rewrite the above expression as follows
1 ! R
0_<_E(t)=E(0)—§ o'(s)|6 (s)|"ds +
0
1t 1/2 2
+3 B'(s)|a (2)V8(s)|" ds.
0
On the other hand, differentiating E(t) we have

E(t) = _% o/(0)]6' 1) + %ﬂ'(t)|a1/2(x)V0(t)|2 .

" p] < maxteg 557 (0] + 190
x (a@)e' @) + ﬁ(t)|a1/2(x)ve(t)|2) .
So
|E'(t)| < GR)E(?)
where

G(t) = max{eg ™, 55} (Jo' )| + [8'(®)]) -
The above inequality gives,
—~G()E(t) < E'(t) < G)E(?) - (4.15)
Now, considering
+00
Co= / G(s)ds
0
it follows from (4.15) that
e~COE(0) < E(t) < ePE(0), Vt>0.

Finally, considering
{6°,6'} € HY(Q) x L*(Q)

we obtain the desired result by using density arguments. O
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THEOREM 4.2. — Let ¢ _(Qk)1<k<n be a vector field such that ¢ €
(CY(R))"™. Then each weak solution ¢ of Problem (3.1) satifies

% L%”k (Of(t)|¢’(t)l2 *ﬁ(t)a(x)lva¢(t)|2) dg =
= (a0, 4 8¢(t))l . / o025 a4

-5 [ P0a() g2 (Vo de st [ t)a(e)ge gt 2 dzar s

/ ﬁ(t)aa(”) ax|V[* do dt - / qu——dxdt

Proof. — First we prove the identity for the strong (it means that the
initial data {y°,y'} € D(A4) x H!(R2)) solutions of (3.1) and then the result
follows by a density arguments. So, let us suppose that

¢ € C°([0, T]; D(4)) nC* ([0, T]; HL(Q)).

By multiplying the first equation of (3.1) by 9x94/0z and integrating
over @,

| (o0 i dzat - L 805 (a)5e ) 22 dwat =

(4.16)
/ qu — d.’z: dt.
Integrating by parts the left side of equality (4.16) we get
0¢
n' Yo _
/Q(a(t)tﬁ ) ¢k 52y dzdt =
(4.17)

_ NN 8¢’
= («0s©, 63| - [ atine'sl azar
On the other hand, since
/
/ a(t)qkqs’—i de dt = / a(t)qka (¢')2d dt
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we have from (4.17) that

n’ 9
4(a(t)¢) qka—j; de dt =

, (4.18)
= (e, kag*(t)ﬂ -3 [ atnE @) azer
We also have
5 / a(t)qk ) dedt =
(4.19)

= (t)aq’° |6'|* dz dt + /a(t)qk|¢'|2ukd2.

Thus, combining (4.19) and (4.18) we obtain

/;)(a(t)qﬁ')'qu}dxdt:
= (a(t)¢ ®), g a¢())l / (t)a% |6'|? dz dt + (4.20)

1
-3 o:(t)qk|¢'|21/;c dx.
z

Now, evaluating the right side of (4.16) we have from Green identity

- [ 8015 (a1 ) e gm ot =

/ﬂ(t) o(= )a¢ %%d dt — /ﬂ(t)a%“—qk|v¢|2dxdt+

T

- / B(t)a(z )aqk |Vo|*dedt + = / B(t)a(z)qrvi|V|* de dt .

(4.21)
Combining (4.16), (4.20), (4.21) and (4.5) we obtain the desired identity. O
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The Tg time which Theorem 2.1 is defined by
To = T(z°, o, 8, a)
=2 ma,x{agl, Bglagl} eCo R(:co)"a”Lw(oyT) X
-1 0 -1 .
X (1 - ||Va“co(§)a0 R(x )) ifn>1

= 2max{a51, ﬁ&laal} CC(’R(“O)"‘V”Lw(o,T) X

o
and uniquely depends on n, R(z%), a(t), B(t), a(t) and on the geometry
of Q.

-1

Oa aEIR(xO)) ifn=1

oz

oo @)

THEOREM 4.3. — Suppose that hypotheses (H1), (H2) and (H3) hold and
that T > Tp. Then for each weak solution ¢ of (3.1) with f = 0 there erists
C > 0 such that:

(i) ifn>1 then
16"z o) + 16 22y <
C . "2 _ V,4[%) dT
<o [mv(al¢' - 80a(2)|Tosf") dz+

+/Fm.u(|¢(0)|2+|¢(T)|2) dI‘} ;

(i) if n =1 then
”4’0"1%11(9) +16' 220y <

SC{/: ma(8)|¢'|? 4T + /Fm(|¢(0)|2+|¢(T)|2) dr}.

Proof . — By using the identity given in Theorem 4.2 with ¢(z) = m(z) =

z — 20, we get after some calculations
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. /2 m-v(a(®)]6'? - 8(t)a(z)|Vo8[") 4= =
= (a(t)¢'(t), m-w(t))\f + -;3 /Q a(t)|¢'|2dx dt +

(4.22)
-2 fQ B(t)a(z)|Vo|* de dt +
+ /Q B(t)a(x)|Vo[? de dt — % /Q B(t)(Va - m)| Vo[> dz dt
On the other hand,
2 /Q (at)|#? - Bt)a(z)|V4[") dedt =
=25 [ (cle P - saval) dzae )

T
2
+ /0 E(t)dt /Q B(t)a(z)| V| dz dt.
Multiplying the first equation of (3.1) by ¢ and integrating on ¢ we have
QM¢W(WD|—/ o(t)|¢'[ - Bt)]a/2(2) Vo) at.  (4.24)
Replacing (4.24) in (4.23) it follows that
g /Q (a(t)|¢'|2 -~ ﬁ(t)a(z)|V¢|2) dedt =

) ‘: + (4.25)

T
2
+/0 E(t)dt—/Qﬂ(t)a(z)|V¢| dz dt.

Now, substituting (4.25) in (4.22) we obtain

L[ mov (sl - 80a@50f) 03 =

= (ste), 5=

T
)|+
0

T
2
+/0 E(t)dt—/Qﬁ(t)(Va~m)|V¢| dzdt.

= (a(t)¢’(t) , (4.26)
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Since R(z°) = max{||m(z)|| ; = € Q}, from hypothesis (H1) we have

T
% /Q BE)(Va-m)|Ve[* dz dt < || Valgo g R(z%)ag" /0 E(t)dt. (4.27)

From (4.26) and (4.27) we get
T
)l
0

(e, m- 7o)
T
+ (1 - ”Va"co(ﬁ)aalR(xo)) /0 Et)dt <

<3 / m-v (a®)]¢']? - At)a(z)| Vo4[7) dB

and from hypothesis (H2) and Theorem 4.1 we obtain
T
(atwe®, )| +
0

+ (1= | Va] o  RE)) e EQ) < (428)

<! / m v (a(0)|* - B(D)a(z)| Vo4[?) 4z

Next, we estimate the expression

2(t) = ("‘(t)¢'(t), m - Ve(t) + -
From hypothesis (H1) and Theorem 4.1, we get,

n?—
[#0)] < llell Lo, {max{aa‘,ﬁo‘laal} e®R(2") - ¢ R(IJ) 6@ +

n-1
+ W/Fm-uw(t)ﬁdr},

), Vtel[0,T].

(4.29)
and from (4.29) we obtain
T
(as'®, )| | <
0
< el o) {2max{aa‘,ﬂalaal} eCoR(z°) +
(4.30)

- R( 0) = (6O + (D)) +

4R(ac°) ] |¢(0)| +|¢(T)|) }
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From the above inequality we get
(1~ el ) o7
- 2max{aj’, By ag'} % R(z°) “a”Lw(o,T)) E0)+

BR(IO) " &|| oo o,1) (|¢(0)| +[o(T)] )

, n—1 T
< (ad'®, m Vet + L5 e0)| +

0

(1 - ||Va||c (ﬁ)R(zo)aal) eSO E(0)T +

~1
+ g el [ v (18O +16@F) ar
which together (4.28) implies that
((1 - "Va"co(—ﬁ)R(axo)aEI) e~ T +
-2 max{aal, ﬂglaal} eCo R(:co)"a”Lw(o’T)) E0)+
-1
;’R( 55 o) (6O + (DI) <
1
<3 [mv (el - Ba@)|Tosl') T+
-1
+ g el [ v (18OF +16DF) ar
This gives (i).

To prove (ii), we consider the identity
% /Q (a(6'? - B@)a(@)| V6[") dodt =
=2 / (e@|4* + 8@)a(@)| Ve[") dwdi+
+ —2— /Q (att)le'| - B(t)a(x)|Vo*) dedt +
+(1-7) /Q B(t)a(z)|Vo[* de dt .
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Then, it follows from (4.22) and (4.31) that

(at)g'@®), m-Vat)| + % /Q (a(t)|¢'|2 + ﬁ(t)a(m)|V¢|2) dz dt +

151 [ (ot0l6 Paoate)ivel) deecs

+(1—7)Lﬂ(t)a(z)lv¢|2dxdt+

1 2 _
- 2/qﬂ(t)Vaom|V¢| dzdt =

- %/Ea(t)m|¢'|2d2.

From (H3) we have that 0 < 7 < 1 and therefore,

(a(t)d”(t), m - V¢(t)) §+ %L (a(t)|¢’|2 + ﬁ(t)a(l')Idelz) dzdi +
+ I‘TV /Q (a®)|¢' - Bt)a(2)|V4[*) deat +
- '21‘/Qﬂ(t)Va -m|Vg|*dzdt <

< 1/ a(t)mld:'|2 dT.
2Js
(4.32)
Then, by making use of the same arguments of (4.27) and (4.28), from (4.32)
we obtain
T

(a(t)¢'(t), m-Vé(t) + -1%7- ¢(t)) L +
+ (7 - ”V“"co(ﬁ)R(%‘o)aEl) e~ TE(0) <
< %/}:a(t)mlqﬁ'Iz dz.
Defining .
0= («e0, m-ve)+ 5 Lo0)]|

from hypothesis (H2) and using similar arguments to the case n > 1, we
obtain (ii). O
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THEOREM 4.4 (Inverse Inequality). — Suppose that (H1)-(H3) hold and
let T > Ty. Then for each strong solution ¢ of (3.1) with f = 0 there ezists
C > 0 such that:
(i) ifn>1

16°zs oy + 16 220 <

<{ [y (4416 0 [ [5osP )

(i) ifn=1

1600y + 16! oy < © [, (1o +167) e

Proof. — We are going to prove the case (i) since (ii) is analougous.
Dropping the terms which give negative contributions in Theorem 4.3 one
has

16°0 3 @y + 1912y <
<C / 292 d2+/ V6|2 dT +
- 1{ £(20) (|¢| +|¢|) z.(xO)I d (4.33)

+/1:(x0) (I¢(O)|2 + |¢/(T)|2> dr} .

On the other hand, there exists a constant C > 0 such that

~/1"(x°) (6@ +[¢'@|*) 4z < C2./2(z0) (1o +167) az.  (439)

Indeed, since ¢ is a regular solution of (3.1), then
¢ € C°([0, T]; D(4)) NC((0, T); H(D))
and therefore
$|g € CO(10, T]; B¥3(T)) and ¢'|; €CO((0, T1; HY2(T)) . (4.35)
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pefining h(t) = |(t)|2 vielo,T
= 19Olza(roy, VEEI0, T]

we have

K1) =2(6(t), ¢'()) T a0y VEELO,T]

and from (4.35) it follows that k, h’ € L2(0,T) and hence h € C°([0, T']).
Let to € [0, T'] be a minimizer of k. Thus

h(t) — h(to) = /to K'(s)ds

and consequently

T T
h(t) < h(to) + /0 16(6) 22(p(eo ds + /0 [6(5) aqpgaoy ds- (436)

But, since tg is a minimizer, we have

T
/ h(£)dt > h(to)T
0

and then T
hto) < - / h(t) dt. (4.37)
To Jo

Thus, from (4.36) and (4.37) we obtain

T T

Vt € [0, T], which proves (4.34). Combining (4.33) and (4.34) we get the
desired result. O

5. The Backward Problem

Let T' > Ty where Tp is defined in the previous section, and consider the
following homogeneous problem:

(a®)¢)' +At)p=0  inQ
Y . o
$(0) = ¢ and ¢'(0) = ¢ on ©,
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According to the inverse inequality given in Theorem 4.4, the expression

1/2
0 ) — 21412 4 ,6|2dT 2
146° ¢}, {/E(xo) (16 +1¢'") z+/2‘(xo)|v ¢| } (5.2)

defines a norm in D(A) x H}(Q).
So, we are able to define the Hilbert space

11l

F = D(A) x HY{(Q) (5.3)
equipped with the topology
146, 6"} = Jim [ {40, 60} (5.4)

V=00

where ({¢9’¢11/})ueN is any Cauchy sequence in (D(A) x HY(Q), || . ||*)
defined by the equivalence relation

{69,63} ~ (¥, v} &= lim [{6) - v, 6 - v} = 0.
For every {62,641} € D(A) x H'(Q) we have

1% 6"}, < Cfl{6° 6" M p(ay ()

146° 6"l @y xz2 @y < C2ll{6% ¢,
Now, since D(A) x H'(f) in dense in F, we have
D(4) x H(Q) & F — HY(Q) x L*(Q), (5.5)

where the inclusion are continuous and dense.

We can observe that by the construction of F,
{¢°,¢'} e F = / (|¢|2 + |¢’|2) d2+/ V9| dE < o0,
2(z0) Z(z0)
which means that if {¢°, ¢!} € F then

8|5 (e0)s ¢'l5(e0) € L2 (5(z%) and v,,¢|2,($0)e(L2(2,,(x°)))"
(5.6)
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and
b5, 0y € I (O;TB HI(F*(wO))) : (5.7)

The proof of the above regularities are given in the appendix.

We then consider the backward problem

(a(®)¥)' + At)y =0 in Q
gl - LY ) on (z0)
o _[s (<6+ 5@ 69
4 | B Ar, 08 on T.(z°)
Y(T) =4'(T)=0 on Q,

where ¢ is the unique solution of Problem (5.1) with initial data {¢°, ¢1} €
F.

We observe that the operator 3/t is well defined on £(z°) taking into
account (5.6) and considering its meaning: ¥ w € H? (0, T; L? (I‘(xo)))

9
<a7 @), “’> / =
(H'(0,T;L3(I'(2°))))" , H(0,T; L(T'(2°)))

T
= —/ / ¢'w' dl dt .
0 JI(z%)

It is important to note this operator is not taken in the distributional sense.

On the other hand from (5.7) we obtain

(5.9)

Ar,(z0)6 € L? (O,T; (HI(E*(zO))),) . (5.10)

Let ¥ be the solution of (5.8) defined by the transposition method, which
will be precised later. Let {¢%, ¢!} € F, f € L1(0,T; H(Q)) and let
6 : @ — R be the unique solution of

(a(t)d') + A@t)0 = f in Q
5%”; —0. on T (5.11)

6(0) = 6° and #'(0) = 61 on Q.
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Multiplying (5.11) by % and integrating by parts, we obtain formally

'/szl)dzdt:

= [ 2@ OO d + [ a@e0 @z + JRECk
(5.12)
Replacing 8% /dv 4 by its value given in (5.8) we get from (4.12) and (5.9)

/ﬁ(t)aiedz:-/ (¢0+¢'0’)d2—/ Vod - Vo0dE.
= Ovyg (20) T (20)

Observing this expression we define the functionnal
L(#%, 6, f) = - / (66 + ¢'6")dT — / Vod Vo0dX  (5.13)
Z(z0) Zu(20)
Thus, from (5.12) and (5.13) we obtain formally that

/Q o dz dt + /Q a(0)¢(0)(0) dz — /Q a(0)6(0)¥(0) d =

= L(6°,6%, f).

(5.14)

Considering Theorem 3.1 and the construction of F', we have that the
functional given by (5.13) is continuous, that is,

LeF x (1Mo T; H(@))" (5.15)

Indeed, firt of all we note that the solution 8 of (5.11) verifies 6 = 6, +62,
where 81 and 5 are, respectively, the solutions of the following problems:

(a(t)8)) + A(t)61 =0 inQ
-g% =0 on X
A

61(0) = 6° and 64(0) =6' in Q.

and
(a(t)8h)' + A(t)b2 =f inQ
802
BVA =0 on X
82(0) = 65(0) =0 in Q.
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Besides, from (5.13) we can write for all {¢°, ¢!} € D(4) x H(Q) and
1=1,2

L(#%, 6, f) =

2
= : '6; 4 Ug‘id
> (fz(x(,)("“’z+¢"*)dz+/z*(,0)v 6V 2)

=1

(5.16)

and therefore from (5.2) and (5.16) we obtain

(6%, 6", F)| <
2

0 41 12 19.12
<Ci{s ,¢}||FZ(]W) (lo6:l” + |86 %) a= +

i=1
1/2
+/ |va¢v09i[2dz) :
Z.(29)

From (5.17) and Theorem 3.1 we have

(5.17)

1/2
126,64, 1) < Ca (&% e HE + 11 s o7 mrgy) - (B18)

By density arguments we conclude that inequality (5.18) is valid for all
{4°, 61}, {6°,61} € F which proves (5.15).

It follows that there exists a unique triple {p°, p, %} such that
{a0), a0} € F,  wer=(0,T; (H(@))

and verifies

T
/(; <¢(t) ’ f(t)>(H1(Q))I,H1(Q) + <{—a(0)p1, a(o)/’o} ) {6.0, 61}> =

F',F
=- (/ (68 + ¢'¢’) dT +/ Voo Voo dE) .
Z(2°) . (29)

DEFINITION. — The unique function ¢ that satisfies (5.19) in called
solution by transposition of Problem (5.8).

(5.19)

Now we state the main result of this section, which is a consequence of
Theorem 3.2.
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THEOREM 5.1.— The unique solution by transposition v of the Problem
(5.8) has the following regularity:

ve = (0,7; (H(®@)) nwh=(0,T; (D)),

and

{¥/(0),9(0)} € F'.
In a addition, the linear map
{4° ¢} € F— {a(0)¢/(0), —(0)9(0)} € F'
is continuous.

Proof. — For every f € D(0,T; D(A)) we have

(0,0, ) = — j2 AT fz , Vb -To0Z,

=T

where 8 and ¢ are, respectively, solutions of

(a)?) +A®8 = f nQ
5?/6— =0 onY (5.20)
A

6(0) =6'(0)=0 in Q

and
(a(t)¢') + At)p =0 in Q
—% =0 on X (56.21)
dvy

$(0) = ¢° and ¢'(0) = ¢! in Q.

By the definition of F and from Theorem 3.1 it follows that

20,0, )] < € (16s 0.7, peapy * ||0,|IL1(0,T;H1(Q))) - (522

Indeed, it is sufficient to prove (5.22) when the initial data {4°,41} €
D(A) x HY(Q) because by density arguments we conclude the same when

{¢°, ¢} € F.
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We have by Schwarz inequality and Theorem 3.1
|L(0,0, f)] <

T 1/2
501/ (/ |¢|2d1“+/ |¢'|2dr+/ |v,¢>|dr) :
o \Jr(0) () T.(z0)

1/2
(/ |e|2dr+/ |0’|2dI‘+/ |Va€|d1“) <
I(z0) (%) Ta(29)

< [4°% 6 peayxir @) (”0”L1(0,T;D(A)) + ”9'||L1(0,T;H1(Q)))

which concludes (5.22).
On the other hand, from Theorem 3.2 we get

16l 22 0,75 ey + 19 2o 20 )y S CUF 07, payy  (5:29)
which is the crucial point for control problems involving time-dependent
coefficients.

In fact, before we prove (5.23) we observe that in the right side of equation
(5.20) we have f’ while in the right side of (5.23) we have f. Besides, we note
that when the coefficients do not depend on time (see for example the most
simple case for the wave equation), it is not difficult to obtain the above
inequality by using Theorem 3.1 and the following standard argument.

If w is a solution to problem

W-Aw=f in @
0w

—a-; = on I
w(0)=w'(0)=0 inQ

with f € D(0,T; D(A)), then § =’ is the solution of

9" —Af=f in Q
Gl
BV_A—O on X

6(0) =0 and 6/(0) =0 in Q.
But in our case, where we have time-dependent coefficients, this arguments

fails completely and we need to solve it in other way. From Theorem 3.2
and observing that 6(t) = fg 6'(s) ds after some calculations we obtain

160l 22 0,7 L2 () < *2llFll 2 0.7 ay)
1461 22 0.7 22 ()) < *2ll | 23 0,75 o))
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which implies
l181] 2 (0.7;D(4)) S *3 £l 22 (0,73 D(4)) * (5.24)
In addition
16| 2oz 22(2)) < Fall Fl 2207 Deay)

14701 0200 < ¥l llr0sp0ay

and therefore
16"l 22 0.7 s 212y < R6llFll 23 0,7 eay) - (5.25)

From (5.24) and (5.25) we get (5.23). Combining (5.22) and (5.23) we
obtain

1L(0,0, ) < Cllfll 2o, p(ayy: ¥ F €D(0,T; D(A))

which is sufficient to prove the desired regularity, that is,
¥ e L® (o, T; (D(4))"). (5.26)
In fact, let us define
S(f) =-L(0,0,f"), Y feD(0,T; D(A))

Since D(0,T'; D(A)) is dense in L1 (0, T'; D(A)), we can consider the unique
linear continuous extension S of S, given by

5(f) = S(f) =-L(0,0,f), VfeD(0,T; D(4))  (5.27)
and, consequently, if follows that

Se(1(0,7; D(4)) = 17(0,T; (D(4))') . (5.28)

Now, given f = 8 with ¢ € D(A) and 6 € D(0,T), according to (5.13),
(5.19), (5.27) and considering the fact that §° = 6! = 0 we obtain,

(§’ 900> = <S’ <P0> = _L(O’Oafl)
= [[we), r@)a=- [ o, o
0 ’ 0 ’ :
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So, by (5.28) it follows that

/ T(?(t) @)(t)dt = — / T(z/;(t) ©)6'(t) dt
0 ’ 0 ’

which implies that

T T
</ Se() dt, s0> = <—/ Yo' (1) dt, 90> » VeeD4).
0 0

Therefore S = ' in D’ (0, T; (D(A)) ') and (5.26) is then proved.

One observes that if in (5.19) we consider f = w(an’) + BA(en); 6 = on
with ¢ € D(A4%/2), n € D(0,T) and ¢° = ¢! = 0, we have

() + A®w =0 in L=(0,T; (D(A%%)").
Since a(t) > ag > 0, if follows that
" € L*® (o, T (D(A3/2))') (5.29)
Then, from (5.19), (5.26) and (5.29) we obtain

v e C(0,7; (HY@)") nc® ({0, T} (D(4))")

¥ € C(0.7; (D)) nC® ([0, T}; (D(4%/2)')

(see for example, J -L. Lions and E. Magenes [13, Vol. 1, Lemma 8.1]) which
makes ¢(0) and v’(0) meaningful.

Using the regularity of 9, considering f = ¢ (an’)’ + 8A(pn) and 8 = ©on
where ¢ € D(A%/?), p e C? (0,T) (first we get, for instance, n(t) = (T-t) 2
and secondly we can consider n(t) = (T — t)2), we obtain from (5.19) with
¢° = ¢! =0,

¥(0) =4 and ¢/(0) = p'.

Finally, considering f = 0 in (5.19) we conclude that
{a(0v'(0), ~a(09(0)} |7 < CI{¢°, 6"} p, ¥ {4% 6"} e F.
which ends the proof. O
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6. HUM and Exact Controllability
Let us define the linear operator A : F — F' given by
A{8°, 6} ={a(0)¥'(0), —a(0)¥(0)}, (6.1)

which is continuous in view of Theorem 5.1.
Considering f = 0, 8 = ¢° and 8! = ¢! in (5.13) and (5.14), we have

(6%, 61}, 1¢%,6")p 5 = ({aOW(0), ~a(O(O)}, {6°.¢1})
2
/E( 0)(|¢| +|¢] )d2+/20’*($0)|vu¢| ax,

that is, 9
(8¢%,6'}, {6% ' Vg g = [{6% "} -

This implies immediately that A is injective and self-adjoint. Then A
is an isomorphism from F to F'. Therefore, given {v*, -3} € F' we
obtain {a(0)y!, —-(0)y°} € F’ and consequently there exists a unique
{4°, 4} € F such that

A{¢°,¢'} = {(0)y", —(0)3°}, (6.2)
From (6.1) and (6.2) we have
P'(0)=y' and $(0)=1". (6.3)

Now we are going to finish the proof of Theorem 2.1. Since {#*,-°) €
L2(Q) x (H(Q))', taking into account the chain

D(A) x BY(Q) — F — HY(Q) x L}(Q) — L*(Q) x L*(Q)
o (HY(Q))' x I¥(Q) — F' — (D(4))" x (H}(Q))",

we obtain {y!,—y°} € F' and therefore in this case we deduce (6.3).
Defining in (2.1) the controls

w=s (-84 2@) onz6)
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and
vy = ﬂ_lAP‘(xO)¢ on Z.(z°)

from (6.3), the uniqueness of solutions to Problems (2.1) and
((a@®¥) +AB¥=0  inQ
oy vo on I(z0)
{ Bva - {v1 on E.(z0)
$(0) = 3% and ¢'(0) =y In Q
L$(T) = ¥/(T) = 0 in ©,
we finally conclude that

y(T):g/(T):O

Thus Theorem 2.1 is proved. O

7. Appendix

Since D(A) x H1(Q) is dense in F, there exist {¢0, 41} € D(A) x H*(Q)
such that
Jim {0,6,} = {¢°,¢'} in F (1.1)

and therefore, considering the inverse inequality,
lim {40,4,} = {¢%¢'} in H'(Q) x L}(Q). (7.2)

According to Theorem (3.1), for each v € N there exists ¢, €
C°([0, T]; D(A)) N