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Uniqueness for positive solutions
of p-Laplacian problem in an annulus(*)

ERIC NABANA(1)

Annales de la Faculte des Sciences de Toulouse Vol. VIII, nO 1, 1999

A l’aide d’une methode de tir et de quelques identites
de comparaison, nous donnons un résultat d’unicite pour les solutions
radiales positives d’un probleme de Dirichlet avec le p-laplacien dans un
anneau.

ABSTRACT. 2014 By means of a shooting method and some comparison
identities, we give a uniqueness result of positive radial solutions for p-
Laplacian Dirichlet problem in an annulus.

1. Introduction and Results

We give here a uniqueness result for positive radial solutions of the
problem

where S2 = {x E [ 0  a  b}, and Apu = 
1  p  +00 .

We start by transforming the radial equation of (P) into the form :

Our uniqueness result is then derived by using some comparison identities
established here for a initial value problem associated to this second order
differential equation.
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In Nabana-de Thelin ([4], [5]), we give uniqueness results of positive
radial solutions of (P) for Q a ball In this paper we essentially follow
the approach used in [5]. The difficulty is reduced to the obtention of the
comparison identities (I1), (12) and (13) in Section 2.

This kind of technique is associated to several names in the particular
case p = 2 (see for example : Kolodner [3], Coffman ([1], [2]), Ni [6], Ni-
Nussbaum [7]). It is important to remark that this method is made by the
first time for p ~ 2 in [5].

Let u(x) = a radial solution of (P). Then u verifies the following
problem

By making a change of variables of the kind

then problem (1.1) is transformed into

where a and ,Q depend on a and b.

For the remainder of this section, we first give a uniqueness result for the

problem ( 1.2) .

THEOREM l.l. - Suppose p > 2. Assume that F : Il8  [ a , ~ [ ~ II8 is

C1 with F(0, s) = 0 for s > a. Suppose that there exists M > 0 such that,
for 0  w  M and a  s  ,Q, F satisfies the following conditions :

Then problem (1.2) has at most one positive solution.



Theorem 1.1 is the fundamental tool in the proofs of the following
theorems which are generalisations of some results in ~7~. .

THEOREM 1.2.- Suppose that n > p > 2. Suppose that f : (u, r) E
[0, ~ [ x (a, b ] ~ f(u, r) E [0, ~ [ is Cl and that f(0 r) = 0 for all

Then (P) has at most one positive radial solution provided, for u > 0 and
a  r  b, the function f satisfies the following conditions

where ~C = (n - p)/(p - 1) > 0,

THEOREM 1.3.- Let S2 = {x E Rp | ( 0  a  |x|  b} with p > 2.

Suppose that f : (u, r) ~ [ 0 , ~ [ x a , b ] ~ I(u,r) E ( 0 , ~ [ is Cl and
that f(0, r) = 0 for all r E ~a, b~.

Then (P) has at most one positive radial solution provided, for u > 0 and
a  r  b, the function f satisfies (1.,~~ and the following conditions

If ~ f (u, - 0 in Theorem 1.2 and in Theorem 1.3, we obtain the
following corollary.

COROLLARY 1.4. - Suppose that n > p > 2 and that



Then, the problem

has at most one positive radial solution provided

2. Proof of Results

We begin this section by giving a theorem on existence and uniqueness
of a positive solution of the following initial value problem :

THEOREM 2.1.- Suppose that n > p and that the function f : (u, r) E
1I8 x lI8+ ~ f (u, r) ~ R is Cl. Then for each d > 0, the problem (2.1)
has a unique positive solution u(r) = u(r, d) defined in a maximal interval
Jd C ~ a , ( . . The function d - u(r, d) is Cl and r - u(r, d) is C2 if
1  p  2, and at all points r > a such that u’(r) # 0 if p > 2.

We prove this theorem in the Appendix.

2.1 Proof of Theorem 1.1

Let w(s, d) be a solution of the following initial value problem

Consider the set

and the map



The domain D is open in (a, co) and since w’ (T(d), d~ ~ 0, it arises from

the implicit function theorem that T is Cl at the neighbourhood of D’s
points and that 

...

Put p(s, d) = 8w(s, Then p satisfies the following problem

As in the proof of Theorem 2.2 in [6], we are going to show that T is strictly
decreasing on D. Since

it is sufficient to prove d)  0.

Put

Then, ’Ø satisfies the equation

Note that, from the hypothesis F(0, s) = 0 for all s > a and the uniqueness
of w(s, d), we deduce that v(s, d) ~ 0 at s > a for which w(s, d) = 0. In the
same way, if p(so) = 0, then necessarily ~(sp) ~ 0.

Now, for a given d > 0, put /~ = T(d).

LEMMA 2.1. - Let X = (p - Then

and the function vanishes at least once in the interval (a, ,Q).

Proof. - The identity (I1) is straightforward.



Suppose that p does not vanish in (a, ,Q). Then p(s) > 0 in (a, ~i).
Integrating (I1) from a to ,0, we obtain

Since X is continuous on [a, /3] with

then, the left-hand of (2.4) would be negative while the right-hand remains

positive because of the condition (Cl) of Theorem 1.1; this is a contradic-
tion. D

Since F(w, s) > 0 for 0  w  M, and a  s  ,~, there exists a unique
point 03B30 ~ (03B1, 03B2) such that = 0, v > 0 on ( a , and v  0 on

~’Yo ~ a~~ .

LEMMA 2.2.- Let Y = (s - a)zu~~ - ((s - Then, for all

a , ,0~ B {yp}, we have

with p’ = p/(p - 1). Let ço = min{s > a | p(s) = 0}. . Then yp  03BE0.

Proof. - A straightforward computation gives the comparison identity
(12).

Let e > 0 small enough and consider the function H defined by

Then, (12) can be put into the following form

The existence of ço is given by Lemma 2.1, and we have cp(s) > 0 for

a  s  ço and  0. Suppose that ço  7; Then

v(s) > 0 for all s such that ço .



Integrating (2.5) from a + e to go and by using condition (C2) in Theorem
1.1, we obtain

Therefore

thus w’ (o)  0 ; this is a contradiction. D

LEMMA 2.3. - Let Z = - Then :

and ~p is the unique zero of p in ] a [.

Proof. - The identity (13) is straightforward.
Suppose that p has others zeros in (a , ,0 ] and let

Then, p  0 in the interval and > 0. By integrating (13) frow
ço to and by considering the condition (C3), we have

thus > 0; a contradiction with the Lemma 2.2. D

It follows from Lemma 2.3 that p(s)  0 on ço  s  /3. In particular
d~  0, so Theorem 1.1 is proved. 0

2.2 Proof of Theorem 1.2

Let r and u(x) = u(r), a positive radial solution of (P). Then, u
satisfies the problem (1.1). Consider the following change of variables



Then problem (1.1) is transformed into

where

the function F is given by

We are going to apply Theorem 1.1 to the problem (2.6) in order to obtain
the uniqueness of u, positive radial solution of (P). It suffices to show that
the conditions (Cl), (C2) and (C3) of Theorem 1.1 are satisfied by the
function F defined at (2.7).

By a straightforward computation, we obtain an equivalence between

(Cl) and the condition (1.3) of Theorem 1.2 on the one hand and between

(C3) and (1.5) on the other hand. Otherwise, (C2) is equivalent to

This inequality is satisfied if f verifies the relation (1.4). Theorem 1.2 is
thus proved. 0

2.3 Proof of Theorem 1.3

Let r and u(x) = u(r) , a positive radial solution of (P). The change
of variables

transforms the problem (1.1) into

where a = - In(b), and {3 = - In(a).



Put

It is easy to see that F given at (2.9) satisfies the conditions (Cl), and (C3)
of Theorem 1.1 if f verifies respectively the relations (1.3) and (1.7). The
condition (C2) is verified by F if and only if

We observe that this last inequality is valid if f satisfies (1.6).
Then, the Theorem 1.3 follows immediately from Theorem 1.1 applied to

the problem (2.8). ~

3. Appendix - Proof of Theorem 2.1

Let K be a compact in R2 defined by

where 60 > 0 and 6~0 > 0 are fixed. Put

Consider E the Banach space defined by

with the norm

where

Select do > 0, such that Id - E  £0. .



Existence and uniqueness for (2.1) result from the study of fixed point of
the application .~’d : (u, v) E E --> (u, v) E E where u and v are defined by

Let B = {(v,, v) E E and ~~v - dp-l~~p  closed, convex
bounded subset in E.

Then 60 small enough and |d 2014d0| ~ ~, od is a Lipschitz map of
B into itself with Lipschitz constant less than one. In fact for all (u, v) E B
we have

and then

Therefore C B for 6 small enough.
Note that, for 6 small enough, there exists two constants ci > 0 and

c2 > 0 such that for all v E C~([a , a + 6 ]) with v(a) > 0, we have

Then, for v~ E C~([a, , a -I- b ~~ with = > 0, i = 1, 2, we obtain

where c(p) = (p’ - if 1  p  2, and c(p) = (p’ - 1)~~-2 if p > 2.
For all Xi = (ui, vi) E B, i = 1, 2, we have



The contraction mapping principle implies that has a unique fixed point
X = (u, v) in B. The functions u and v are in , a + b ~, IIB~ and we
have 

,

and thus, u(r) = u(r, d) is the unique solution of (2.1).
By using the same arguments of classical theory on existence and unique-

ness for initial value problem for ordinary differential equations, we show
that u is uniquely defined on a maximal interval Jd in [ a , +00 [.

It is immediate to see that r -> u(r) is C2 on Jd if 1  p  2, and that
r --~ u(r) is C2 only at the points r such that u~(r) ~ 0.

To prove that d -~ u(r, d) is C1, we consider the following map

For all X E B and 6 small enough, we have = 

Therefore, by the implicit function theorem for Banach spaces, we conclude
that the functions d -. u(r, d) and d --~ u’(r, d) are C1. 0
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