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Expansion growth of foliations(*)

SHINJI EcasHIRA(Y)

RESUME. — Nous définissons la croissance de 1'élargissement transverse
des feuilletages qui peuvent étre considérés comme une croissance du car-
dinal maximal des ensembles séparés d'un pseudo-groupe d’holonomie.
Nous prouvons que la croissance de 1'élargissement transverse est un in-
variant topologique des feuilletages, et nous calculons la croissance de
I’élargissement transverse de quelques feuilletages typiques de codimen-
sion 1.

ABSTRACT. — We define the expansion growth of foliations which is,
roughly speaking, growth of the maximum cardinality of separating
sets with respect to a holonomy pseudogroup. We prove that the
expansion growth is topological invariant for foliations and we compute
the expansion growth of several typical foliations of codimension 1.

0. Introduction

The entropy of foliations is defined by Ghys, Langevin and Walczak
[GLW]. Their definition was done by generalizing Bowen’s definition of the
entropy of dynamical systems [B]. Let F be a codimension g foliation of
class C° on a compact manifold M. When we fix a finite foliation cover U
of (M, F), we obtain the holonomy pseudogroup H of local homeomorphisms
of R? induced by U. Then we can define an integer s,(c) (n €IN, ¢ > 0)
to be the maximum cardinality of (n,¢)-separating sets with respect to the
holonomy pseudogroup X. s,(¢) is monotone increasing on n and monotone
decreasing on ¢. The entropy h(F,U) of the foliation F is defined by the
following formula:

1
h(F,U) = E_%H,in_,s;p - log sn(e).

(*) Regu le 12 Novembre 1992

(&) Department of Mathematical Sciences, University of Tokyo, 7-3-1, Hongo,
Bunkyoku, Tokyo, 113 (Japan)
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Shinji Egashira

When we fix a sufficiently small positive real number ¢, we notice that the
monotone increasing map s, (¢) with respect to n represents the expansion
of the foliation. For example, if F is a Reeb component then the growth
of sn,(¢) with respect to n is the linear growth. If F is a linear foliation on
T™ then the growth of s,(¢) is the constant growth.

In this paper, we consider the growth type of s, (¢) defined in the growth
set which is an extension of the usual growth set (cf. [HH2]) and we prove
that the growth of s,(¢) depends only on (M, F). Therefore it becomes
a topological invariant for foliations. Moreover we define an integer 7, (¢)
to be the minimum cardinality of (n,e)-spanning sets with respect to the
holonomy pseudogroup X and we show that the growth of s,(¢) is equal
to the growth of r,(c). We call it the expansion growth of (M,F). The
expansion growth of foliations produces a number of numerical topological
invariants for foliations. We also show that many of them are non-trivial
invariants.

In section 1, we define the growth set which is an extansion of the usual
growth set. The expansion growth of foliations is defined as an element of
this growth set. In section 2, we define the expansion growth of a foliation
and we describe several important properties of the expansion growth. In
section 3, we compute the expansion growth of several typical codimension
1 foliations. We also construct foliations which have various expansion
growths.

1. Growth

In this section, we define the growth of an increasing sequence of incresing
functions.

Let T be the set of nonnegative increasing functions on N:
I={g:N—][0,0c0); g(n) <g(n+1) forall n €IN}.

Let T be the set of increasing sequences of Z.

I= {(gj)jelN CZ; gj(n) <gjyi(n)forall j€lN and n € |N} .
We regard 7 as a subset of I by the map

I39—(9.9,9 .-)€Z.
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Expansion growth of foliations

We define the growth type of an elemgnt of I. We define a preorder <
in T as follows. For (gj)jelN’ (hk)kelN €T,

(95)jen = (hk)pgn =3I BEN, ¥ieN, TkeN, 34> 0
such that g;(n) < Ahg(Bn) for any n €IN.

In the definition, we note that B € IN is independent of 7 € IN and 4 > 0

may depends on j € IN. The preorder = induces an equivalence relation ~
in 7.

(gj)jelN = (hk)kelN — (gj)jelN = (hk)kem and (gj)jelN = (hk)kelN'

We define £ to be the set of equivalence classes in I:

:f/:

£ is the set of all growth types of increasing sequences of increasing functions
and has the partial order < induced by the preorder < . The equivalence
class of (gj)j e € T is written by [gj]j en € E~and is called the growth type
of (gj)j an- The equivalence class of g € T C T is simply written by [g]. Let
€ be the set of such growth types:

E={lglgeI}CE.

£ is equal to the partial ordered set of all growths of monotone increasing
functions in the usual sense (c¢f. [HH2]) and £ can be considered as an
extension of it.

For example, the following relation is easily seen

O s sh P’ S $[Lnn? .. ]
S =BTz 8 L

Here [0] (zesp. [1]) is the growth of the constant function whose value

is 0 (resp. 1). [e"] € € is said to have exactly exponential growth. For

k € INu{0}, [n*] € € is said to have exactly polynomial growth of degree k.
[gj]j en € € is said to be quasi-exponential if

lim hmsup Ioggj() >0.

j—00 n—oo
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Next we define the finite sum and the finite product of elements of £. For
[95]jeme [Pk pen € €5

[95) ;em + [Pe] ke = (95 + Ril jen»
[gj]jeIN : [hk]kelN = [91' ’ hj]jelN'

For example, the following relations are easily seen.
€-[0]=[0], €+[0]=¢-[l]=¢Eforfck.
E+[1]=¢forE£[0] €€

815G, 6L<¢ = &+a<&b+0, 8608 (.

2. Expansion growth of foliations

In this section, we define the expansion growth of a foliation on a compact
manifold and describe several properties of it. Let F be a C° codimension
q foliation on a compact (p + g)-dimensional manifold M. We assume
that 8M = 0, however the same discussion is applicable in the case where
OM + 0 provided F is tangent or transverse to dM.

A = (U*,U,UP) is called a triple of foliation covers of (M, F) if it satisfies
the following conditions.

(1) le U and U*® are open coverings of M.

A

(2) = { ’\01)}1—1’ u {(U'“So‘t }1,— and us = {( "Pl }

(3) Uf DU; DU

(4) ¢; = #Bly, and ¢f = @2y,

(5) @B(UP) = Bi(0) x Bi(0i), ¢;(U:) = Bj(0) x Bj(0;) and ¢f(U7) =
BY(0) x B}(0;) where 0 = (0, ..., 0) € RP, 0; = (T3, ..., Ti) € RY,
and Bj(z) = {z €RP;|z — z| < k} CIRP.

(6) If UP N UG b £ 0, then there exists a local homeomorphism ¢b, of
R? such that <I>b = ¢b, o Q on Ub N U,, where ¢I>b = pro<pl and
pr:RRP xR? — IRq is the pIOJectlon to the second fa.ctor

We put B; = B3(0;) CIRY. We call the set (¢;) "~ 1(Bp(o ) x{z}) (z € B;)

a plaque of U (or a plaque of U/;). Let PYU be the set of all plaques of U.
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Expansion growth of foliations

Fix a metriq d on M. We define the diameter of I/ to be the maximum
of the diameters of U; (i=1,..., 4):

diam(U) = maxAdiam(ﬁi).

=1, ...,

We define width(U/*,U) and width(U,U®) as follows:

widthU*,U) = min d(T;, M -T;),

=1, ...,

width(Y,U%) = min Ad(ﬁ-, M-U?).

=1, ...,

Here for K, K' C M,

d(K,K')= inf d(z,2').

(K,K') = inf d(z,2)
E'EK,

Let Leb(/) denote the Lebesgue number of U.

Let x be a point of M and let n be a natural number. Let Py, ..., P, be
plaques of U. (P, ..., P,) is said to be an n-chain of P¥ at z if z is a point
of Py and PLN Py g # 0. Let U, ..., U;, be foliation neighborhoods of U.
(Uiyy ++., Us,) is said to be an n-chain of U at z if there exists an n-chain
(Pigy «++s Pnyz)of PY at z (uniquely determined) such that P, . is a plaque
of U;,. When an n-chain (U;,, ..., U;,) of U at z is given, the n-chain of
PH at z with respect to (Ui, -+.y Ui,) is often written by (P14, ..., Pnz)-
For 1, ...,z € M, Let C,I'f(a:l) be the set of all n-chains of / at z; and
put

Ci(e1, .oeyan) = CH(@1) M- N CH ().

For K C M, let P%(K) C P¥ be the set of P, such that there exists z € K
and an n-chain (P, ..., P,) of P¥ at z.

For plaques P and P’ of U;, put

w(P, P') = max ma}d(z,ﬁ'b), max d(:c',—P_b) .
z€P z'eP'
Here P® (resp. P™) is the plaque of Uf’ containing P (resp. P'). For z,
y € M, we define

dA(z,y) = d(z,y), Ppg, P )
o (2, y) max{ (z,v) (U,-l,...,LIf?na)Jé cg(z,y)w( n,e n,y)}
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Here P, is the plaque of U;, where (Py g, ..., Pnz) is an n-chain of pU
at ¢ uniquely determined by (U;,, ..., Ui, ) € C¥(z). If C%(z,y) = 0, then

dA(z,y) = d(z,y). We remark that usually d2 is not continuous. However,
we can easily show the following lemma.

LEMMA 2.1.— d;':t is lower semi-continuous.

Let n be a natural number and let ¢ be a positive number. For z, y € M,
z and y are said to be (n, ¢, A)-separated if df(o:, y) > . Otherwise z and y
are said to be (n, ¢, A)-close. Let K be a subset of M. S C M is said to be
an (n,¢, A, K)-separating set if S is a subset of K and for any z, y € 5, =
and y are (n, ¢, A)-separated. R C M is said to be an (n,¢, A, K)-spanning
set if for any « € K, there exists y € R such that = and y are (n, ¢, A)-close.
Since M is compact, S is a finite set (cf lemma 2.14 and theorem 2.16).
Put

s#(s, K) = max{#5; S is an (n, ¢, A, K)-separating set},
r,’f(e,K) = max{#R; Ris an (n,¢, A, K)-spanning set} .

PROPOSITION 2.2
0 < r(e,K) < s2(e,K) < 0.

(e, K) and sA(e, K) are monotone increasing on n € IN and monotone
decreasing on € > 0. If K C K' then (e, K) < r{}(e, K') and s3 Ale,K) <
,"ﬁ(e, K').

Proof .— We only prove that ri(e, K) < sf(e,K).

Let S C K be an (n,¢,.A, K)-separating set with the maximum cardinal-
ity. If there exists

ze€ K — U{a:;d#(z,y) <e},
y€eS

then S U {z} is also an (n,¢, 4, K)-separating set, which contradicts the
assumptions. So

KC U{a:;d;f(z,y) <ce}.

yeS
S is an (n, ¢, A, K)-spanning set. Hence
(e, K)<#S..s (e, K).O
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Expansion growth of foliations

Let (ej)jelN be a monotone decreasing sequence of positive num-
bers which converges to 0. B)L the above proposition, (s7(e;, K ))jeIN’
(r;:‘(ej,K))jelN are elements of Z.

The following theorem is the main result of this paper.

THEOREM 2.3. — Let F be a codimension q foliation of classe C° on a
compact (p + q)-dimensional manifold M and let K be a subset of M. Let
d be a metric on M, let A be a triple of foliation covers of (M,F), and

let (Ej)jeIN be @ monotone decreasing sequence of positive numbers which
converges to 0. Then,

4 ~
[3#("—‘1’1 K)]jelN = [Tn (€5 K)]jelN €€

and this growth type is independent of the choice of d, A and (ej)jeIN‘

Before proving the above theorem, we prove two lemmas.

Let ¢ be a positive number and let A = (U°,U ,le) be a triple of foliation
covers of (M, F). ¢ is said to be small for A if

0 < ¢ < min{Leb(U{*), width(U*,U), width(U,U®)}.

Let B = (V*,V,V?) be another triple of foliation covers of (M, F), where
V= {(V},i,bj)}szl. A plaque of V is indicated by a letter Q. B is said to
be a refinement of A if

diam(V®) < min{Leb(l), width(/,uU%)}.

LEMMA 2.4.— Suppose that diam(V?) < Leb(U) and
0 < € < width(V,)?).
Then for all n €N,
35(25, K) < r,’f(e, K).
Hence if B is a refinement of A and ¢ is small for B, then the inequality
holds.

Proof .— Fixe > 0andn €IN. Let S C K be an (n, 2¢, B, K )-separating
set with the maximum cardinality and le¢ R C M be an (n,¢, A4, K)-
spanning set with the minimum cardinality. We can choose a map « from S
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to R such that d#(z, k(z)) < € for any © € S. We show that « is injective.
Suppose that there exists = # y € S such that z = k(z) = k(y) € R.

By d(z,z) < d2(z,2) < € and d(z,y) < df(z,y) < ¢, we have d(z,z) <
2¢. By dB(z,y) > 2, there exists an n-chain (Vj,, ..., Vj,) € CY(z,y)
such that w(Qn,z, Qny) > 2¢. (Here the n-chain (Q1z, ..., Qnz) at =
is determined by (Vj,, ..., V;,) € CY(z).) Moreover we may assume that

Tn € Qp , satisfies w(Qne, Qny) = d(zn, al,’ly) > 2¢ where Q5 is the
plaque of ijn containing Qp y.

Put 20 = =2 € Q1,¢, 20 = z and yo = y. By diam(V®) < Leb(U), for
each m = 1,..., n, there exists U; € U containing V?m. Obviously,
Uiy, -, Ui,) € Cﬁ(a:,y). For each m = 1,...,n — 1, take z,, €
@n,m n §m+1,z'

By induction, we show that fork =1, ..., n,

(Usyy «ney Us,) € CY(2,y2,y)
there exists zj, € Py, , such that d(zg,2;) < €.

Suppose that for K = m — 1, the above statement is true. By
d(Tm—1, 2m—1) < € < width(V, V?)

and z,,.1 € ij, we have z,.1 € T/'-(;m cU,. So (Uy,...,U;,) €
C%(:c,z,y). By d‘,’f(m, z)<eand zn, € Qm,x C Pz, we have

d(zm, Pl ;) < (=, 2) < & < width(V,?).

Since z,, is a point of ij, there exists z, € .ﬁbm,z rﬂ/';:'l C Ppm,; such that

d(zm, z2m) = d(:tm,—ﬁ?n,z) < ¢. Therefore for k = m, the above statement is
true.

Finally we obtain

(Uiys -+es Ui,) € CH (2,2, y)
zn € Pp, such that d(zn,2n) < €.

On the other hand, by dﬁ(z,y) < ¢ and z, € P, , we have d(zn,
dA(z,y) < €. By d(2n, zn) < €, Wwe have d(zn,?z,y) < 2e. By az,y C
we deduce the contradiction d(zn,af,’y) >2e.0

~-922 -



Expansion growth of foliations
LEMMA 2.5.— Suppose that diam(V) < width(U,U®) and
0 < ¢ < min{Leb(V*), width(V*,V)}.

Then for alln €N,

sﬁ(e,K) < rgn(g,K).

Hence if B is a refinement of .4 and ¢ is small for B, then the inequality
holds.

Proof .— Fix ¢ > 0 and n € IN. Let S C K be an (n,¢, A, K)-separating
set with the maximum cardinality and let R C M be a (Bn,(e/Z),B, K)-
spanning set with the minimum cardinality. We can choose a map
from S to R such that d} (z,x(2)) < ¢/2 for any 2 € S. We will
show that & is injective. Suppose that there exists ¢ # y € S such that
2 = x(2) = nly) € R.

By d(z,z) < d} _(z,2) < /2 and d(z,y) < d3 (2,9) < /2, we have
d(z,y) < e. By d#(:c,y) > ¢, there exists (U;;, ..., U; ) € C,I’f(a:,y) such
that w(Pn 3, Pry) > ¢. Moreover we may assume that 2, € P, ; satisfies

_b
W(Pp 2, Pry) =d(zpg,, Pny)>e.

Put zg =2 € Py, 20 =z2and yp = y. Foreach [ =1, ..., n — 1, take
25 € P . NP, and foreach I =1, ..., n, take a path v, from wlB(l—l)
to 27, contained in P .

Consider zg, zg, yo and v; C Ulb1 .

By induction, we show that for k =1, ..., B, there exists

(V}'l’ t V}k) eclr(myzay)a
2 € Qe N1,
2k, € Qp , such that d(zg, z) < %,‘
€
Yk € Qi y such that d(zp,y) < x
Suppose that for k =1 — 1, the above statement is true. By

diam({z;_1, -1, yi—1}) < € < Leb(1?),

there exists V; € V? containing z;_q, 2;_1, yl..l.—So (Vi ... V;,) €
Clv(:c,z,y). Let z; be the maximal point of v N sz with respect to
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the orientation of v1. By dgn(:c,z) < €/2, we have d(zl,a?’z) <ef2 <
width(V?*, V). Since z; is a point of 7;1, there exists z; € 6?,; NV, CQ,
such that d(z;,2;) = d(zl,a?’z) < €/2. Moreover by dgn(z,y) < €/2,
we have d(zl,a?,y) < £/2. There exists y; € a?’y such that d(z,y) =
d(zl,azy) < ¢€/2. So d(z},y;) < € < width(V?*,V). Again since z; is a point
of V;l, we have y; € Qi C V. (If z; # wﬂg, then we remark that zj is

a point of Q] and the subset of v; from z; to zp do not intersect with
V;’l ) e, V;z .) Therefore for k = [, the above statement is true.

Since the number of foliation neighborhoods of V* which intersects v; is
at most B, zp coincides with z5.

We obtain that
(Vis -+ Vig) €CB(2,2,9),
B € asB,;c )

zg € QB,z such that d(zpg,z5) <

YB € @B,y such that d(zp,yB) <

NN o

Moreover since V;,, ...V, intersect 71 C Uq, by
diam(V) < width(U,U®),

we have V;,,...V;5 C U{’.

We apply the same argument for z g, 25, yg and v2 C Uf’z . Moreover we
can continue for v3, ..., Yn.

Finally we obtain that

(ij AS) VjEn) € an(w,z, Y),

-3
ZBn € QBn,a:a
£

ZBn € QBn,z such that d(an,an) < 3!

€
YBn € QBn,y such that d(zgn,yBn) < 3

\VB(i—1)+1v ceey VBiCUf’ fori=1,...,n.

By yBn € @Bny C P,I:,y and d(zBn, YBr) < &, we deduce the contradiction
_b
d(zBn, Pn,y) >e. O
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Proof of theorem 2.3

First by the definition of the growth type and proposition 2.2, it is easy to
see that [s7(c;, K)]jGIN’ [r(e;, K)) . jan € € are independent of the choice
of (ej)j N’

Next we show that [sf(ej, K)}jelN = [r;’f(ej, K)]jelN and this growth is
indepenent of the choice of .A. Let A’ be another triple of foliation covers

of (M, F). Then we can take a triple of foliation covers B such that B is a
refinement of A and A’. So we may compare A with B.

Let ¢ be small for B. By proposition 2.2, lemma 2.4 and lemma 2.5, we
have .
rgn(-z-,K) > s,f(s,K) > r;’;‘(s,K)

> s5(2¢,K) > r3(2¢,K) foranynelN.

Therefore

[rBn(es, K)] jam > [57(c5, K] jem = [ (€5 K)] s

Z [35(€j7 K)]je‘N Z [1'5(61', K)]je]N *

By [rgn(sj, K)]jelN = [rf(ej, K)] e the above inequalities are equalities.

Finally we show that this growth is independent of the choice of d. Let
d’ be another metric on M. Then by the compactness of M, d and d’ are
uniformly equivalent. For any ¢ > 0, there exists § > 0 such that for z,
y € M if d(z,y) < § then d'(z,y) < ¢ and if d'(z,y) < § then d(z,y) < «.
Let R be an (n,6, A, K)-spanning set with respect to d with the minimum
cardinality.

(8, K) =

Here 772(6, K) with respect to d is written by r (6 K). For each z G K,
there exlsts Yy € R such that d‘A(w y) < 6. Then by the definition of

obtain d' (z,y) < ¢. Hence R is an (n, ¢, A, K)-spanning set with respect
to d’

rid (e, K) < #R = rA9(5,K).

So we have
Ad' . .
[ (e5, K)] iein < ["rf d(sa’ K)] €N *
J J

The converse inequality is similarly shown. O
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DEFINITION 2.6.— By theorem 2.3,
A A o
[311 (Eja K)]jeIN = [Tn (€j7 K)]jelN €€

depends only on (M,F) and K C M and it is a topological invariant for
foliations on compact manifolds. This growth is written by

n(K, F) (or simply n(K)) € €

and we call it the ezpansion growth of (M,F) on K. For a leaf L, n(L) is
called the expansion growth of the leaf L. 1(L) depends only on the inclusion
from L to M.

Remark 2.7

(1) n(K) = [0] if and only if K = 0.

(2) If L is a compact leaf then n(L) = [1].
(3) If K C K/, then n(K) < n(K').

(4) 7(K, F) is determined by K and Flsat” (K). Here sat” (K) is the
F-saturation of K.

Now we obtain many numerical topological invariants for foliations on
compact manifolds. Corollary 2.8 is deduced from theorem 2.3.

COROLLARY 2.8.— For l € N U {0} and m € IN, the following number
nfn(K, F) is a numerical topological invariant for foliations on compact
manifolds:

! —'m'su——————1 og) (s (e;
"lm(K)}-) _jliooh:l.oop (log)m(n) (l g) ( n( .’I’K))

-—'m'su-—-——l ol'rAs'

where (log)'(k) = logo---olog(k) (I times ). Here if n(K,F) = [0] or [1]
then put 1}, (K, F) = 0.

We will see that n}(K,F) and 17;+1(K, F) (I € N) are non-trivial by
theorem 3.7.

Next we describe several properties of n( K, F).

ProrosiTION 2.9
n(K) =n(K).
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Expansion growth of foliations

Proof . — Obviously,
n(K) > n(K).
We show the converse inequality Fix a metric d and a triple of foliation
covers A. For all ¢ > 0, we can take a positive number § such that 0 < § < e.

Let R be an (n,4, A, K)-spanning set with the minimum cardinality.

r2(6,K) = #R.

K C U {a:;d,‘f(:r:,y) <6} C U {a:;d#(:c,y) <8},
yER yER

Since UyeR{:c;d;f(:c, y) < 6} is a closed set by lemma 2.1, we have

K C U {mddz,y) <6} C U {zdi(z,y) <c}.
yER YyER

So R is an (n,¢, A, K)-spanning set.
(e, K) < #R=17(6,K).
Therefore

n(f) = [Trf(ej’?)]jem < ["':14(5_1'1 K)]jgN = n(K) -0

PROPOSITION 2.10.— Let K, K' be subsets of M. Then

n(KUK')=n(K)+n(K').

Proof .— Let n be a natural number, let ¢ be a positive real number,
and let A be a triple of foliation covers. By sii(e, K U K') > si(e, K),
s2(e,K'), we have

25A(e, K UK') > s2(c, K) + s2(e, K').

So
K UK') > n(K)+n(K').

—927 -
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We show the converse inequality. Let S be an (n, ¢, 4, K U K')-separating
set with the maximum cardinality.

sf(e, KUK')=#S.

Then SN K is an (n,¢,.A, K)-separating set and SN K' is an (n,¢, 4, K')-
separating set. So

s2(e,K) + s (e, K') > #(SNK) + #(SNK')
> #S = sﬁ(e, KUK").
Hence

n(K)+n(K')>n(KUK').0O

ProPOSITION 2.11.— Let A= (L{’,L{,le) be a triple of foliation covers.
For K C M, we have

n(K)=n( U P)-

PePY(K)

Proof.— By K C UPe’Pf‘(K) P, we have

n(K) Sn( U P)-

PePY(K)

We show the converse inequality. Fix a metric d on M. Let S be an
(n,e, A, Up ePU(K) P)-separating set with the maximum cardinality.

sﬁ<s, U P) = #8S.

PePU(K)

Let W = {Wk}fiel) be a finite open cover of M such that diam(W) < ¢
with the minimum cardinality. Fix Wj, € W and U;, € U. We define S’ as
follows:

S'={zeSNW,NU;y; Po,NK #0,

where Py, is a plaque of U;, containing z} .
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We can choose a map « from S’ to K such that for z € S, k(z) € Py, NK.
We show that x(S’) is an (n + 1, ¢, A, K)-separating set. Let « and y
be two points of S’. By z, y € Wy, d(2,y) < e. Since d,‘f(a:,y) > e,
there exists n-chain (U;,, ..., U; ) € Cg(a:, y) such that w(Pp g, Pry) > ¢.
By z,y € U, n Uy, (Ui, Uy, ..., Us) € Cg_*_l(n(:c), K,(y)). Hence
d#—{-l (k(z), k(y)) > € and & is injective.
Therefore x(S’) is an (n + 1, ¢, A, K)-separating set.

s (e, K) > #n(S") = #S'.

Summing over Wj, € W and U, € U, we have

A.C(e)-s#_{_l(e,K)Z#SISf(E, U P).

PePU(K)

Therefore

n(K)Zn( U P).D

PeP¥(K)

COROLLARY 2.12.— Let K C M. Put T; = ¢;'({o} x B;) and
T:U;f‘:lTi. Then

7 ( U P)OT =n(K).

PePU(K)

Proof.— Put

K'= ( U P) NT.
PePY(K)
By K C UPe'P{‘(K’) P, we have
K'c |J pPc U P
PePY(K) PePY(K')
So
n(K')Sn< U P) Sﬂ( U P).
PePU(K) PcPU(K")
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By proposition 2.11, we have

n( U P)=n(K)

PePY(K)
and
n( U P)=n(K')~
PePU(K")
Hence

7(K') =n(K).O

To compute 7(K ), we have only to compute n(K').

PROPOSITION 2.13.— Let F (resp. F') be a foliation on a compact
manifold M (resp. M'). Let F x F' be the product foliation on the manifold
M x M'. Let K (resp. K') be a subset of M (resp. M'). Then

K x K', F x F') = n(K,F)-n(K', F').

Proof.— Let d (resp. d') be a metric on M (resp. M'). We define a
metric d”’ on M x M’ as follows. For (z,2'), (y,¥') € M x M’,

d"((:c, :c’) , (v, y')) = max{d(w, Y), d'(zv', y')} .

Let n be a natural number and let ¢ be a positive number. Let A =
U? U, UP) (zesp. A’ = (U'*,U',U™)) be a triple of foliation covers of (M, F)
(resp. (M',7')). Then A x A = (U* x U, U x U', U x U®) is a triple
foliation covers of (M x M', F x F').

Let R (resp. R') be an (m,e,A, K)-spanning (resp. (n,¢, A, K')-
spanning) set with the minimum cardinality. We show that R x R'is an
(n,e, A x A', K x K')-spanning set. Let (z,z') be a point of K x K'.
Then there exists y € R (resp. y' € R') such that d(z,y) < e (zesp.
d';fl(a:' ,y') < €). Hence we can deduce

d”fXA ((w,:t') y (9 y,)) <e.
So R x R'is an (n,¢e, 4 x A', K x K')-spanning set.
(K x XK', F x F') < n(K, F) - n(K', ).
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Next we show the converse inequality. Let S (resp. S’) be an (n,¢, 4, K)-
separating (resp. (m,¢, A, K')-separating) set with the maximum cardinal-
ity. We show that S x S’ is an (n,¢,,4 x A', K x K')-separating set. Let
(z,2') and (y,y') be two points of S x S’. We may assume z # y. Then by
d2(z,y) > ¢, we can deduce that

AI
d”:x ((m’ Y), (:c', yl)) 2 €.
So S x S'is an (n,e,A x A, K x K')-separating set.

(K x K', F x F') > n(K, F) -n(K', 7). O

Next we give an easier definition of the expansion growth of foliations. In
this definition, we use a holonomy pseudogroup of local homeomorphisms
of local transverse sections of (M, F). Let A = (u*,u,ub) be a triple of
foliation covers of (M, F). Put T; = go{'l({o}x B)CM,T= Ule T.CM
and B = U4, B; C R%. We remark that 'I'ing is a homeomorphism of
T; to B; where &, = prop,. We define a map ¢ of B to T such that
oz) = (&; |T,~)_1(z) € T; C T for z € B; C B. We note that ¢ can be
extended to the continuous map of B to T.

We can define a pseudogroup of local homeomorphisms of B C IR?
induced by a foliation cover U. If U; N Uy # 0 then there exists a
homeomorphism ¢;;: of &;(U; N Uy) to ®,(U; N U,) such that

®;, =¢;0®y on U;NU;.
Put Hy = {idg} U {¢ii'};'4i'=1' Then we define H,, (n €IN) as follows:

Hp={fano--0f1; fi €Hi}.
Here the composition map f» o fy is defined on

domain(f;) N f; ! (domain(f,)) .
Put H = J,qnHn- We call H a pseudogroup of local homeomorphisms of
B induced by a foliation cover U/. We note that idg is an element of H,
and that

#H, <14+ A2+ A%+ 4 AP < nA? 41,
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Let z, y be points of B and let n be a natural number. We define
M1 (z,y) as follows:

Dfi(z,y) = max | f@) = fw)]-

FEHn such that z, y€ domain( f)

We remark that DZ;‘ ! is not continuous but lower semi-continuous. Let
¢ be a positive number. z and y are said to be (n, e, Hi)-separated if
D;’f‘ (z,y) > €. Otherwise z and y are said to be (n,¢,H;)-close. Let K be
a subset of B C IRZ. S C B is said to be an (n,¢,H1, K)-separating set if
S is a subset of K and for any z, y € S, z and y are (n, ¢, H1)-separated.
R C B is said to be an (n,¢,’H1, K)-spanning set if for any z € K, there
exists y € R such that z and y are (n €, H1)-close. By the following lemma,

S is a finite set. Let W = {Wk} ) be a finite open cover of B C IR? such
that diam(W) < € and W has the | mmlmum cardinality.

LEMMA 2.14.— If S is an (n,e,H1, K)-separating set, then
#S < C(e)#Mn

Proof.— For any f € Hp, we can choose a map x4 of B to W such
that for ¢ € B, if ¢ € domain(f) then f(z) € x¢(z) € W and otherwise
z € ky(z) € W. Then for z, y € S, there exists f € H, such that
, y € domain(f) and |f(z) — f(y)| > e. Since diam(W) < ¢, we have
k¢(z) # Kt(y) € W. Therefore we can define an injection map of § to
W x -+ x W (#Hy, times). So

#S < C(e)*M~ .0
Put
s (e, K) = max{#S; S is an (n,s, M, K)-separating set},
Hl (¢, K) =min{#R; Ris an (n,e,H;, K)-spanning set} .
The following proposition is easily seen.
ProPoOSITION 2.15
0 < (e, K) < 3 (6, K) < C(e)*7.

1(s-: K), s ‘(e K) and C(e)#M are monotone increasing on n €IN and
monotone decreasing one > 0. If K C K' then rifi (¢, K) < 721 (e, K') and
sti(e, K) < sl (e, K').
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Let (ej)jelN be a monotone decreasing sequence of positive num-
bers which converges to 0. By the above proposition, (3#1 (e, K ))jelN’
(rZit1 (€j,K))j€|N, (C(sj)#H")jelN are elements of 7 and we have

[ (e, )] jen < [37(65, K)] jon < [C(e) ™) jon € € -

Moreover it is easy to see that

. . 2n n -~
[C(ej)#un]jem < [J#H"]jem < [ +1]jeIN <[e]e€.

The following theorem shows that [1'2;‘1 (€5, K)]jelN and [s;’f‘ (&5, K)]jew
are equal to the expansion growth of the foliation . By this way, we can
compute the expansion growth of foliations more easily.

THEOREM 2.16. — Let K be a subset of M.
Put ®(K) = UL, (K NU;) C B. Then

n(K,F) = s (e, 2(K))| = |12 (e 2(K))]

<[] an <[] € €.

jeN

Before proving the above theorem, we show two lemmas.

LEMMA 2.17.— For any € > 0, there ezists § > 0 such that if z, y € B;
and |z — y| < & then

w(PL(m), PL(y)) <e
where P, is the plaque of U; containing i(x).
Proof .— The map
w:B; x B; 3 (z,y) — w(P,(4), Pyy)) € [0, +0)

is uniformly continuous. So for any ¢ > 0, there exists § > 0 such that
for any (z,y), (z',¥') € B; x B; if max{|z — 2'|, |y — ¥'|} < 6 then
‘w(PL(_,B),PL(y)) -—w(PL(z,),PL(y,))I < e. Especially putting 2’ = ¢y = y,
if |t — y| < & then w(PL(,_.), PL(y)) <e. O
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LEMMA 2.18.— For any € > 0, there ezists § > 0 such that if ¢, y € B;
and

w(PL(m)’ PL(y)) <é

then |z —y| < e.

Proof .— Fix a positive number ¢. The map
v:{(z,9) € Bix Bi; le —y| > ¢} 3 (z,y) —
b —b
max {d(t(z), Pb(y)) , d(L(y), P,,(z))} €0, +o0)

is continuous. Since domain(v) is compact, there exists (zo,yo) € B; x B;
which gives the minimum value of v. If v(zg,y) = 0, then we obtain
t(zo) € _ﬁlz(yo). So z9g = yo. This contradicts |zg — yo| > . Hence
there exists a positive number § such that v(zg,yo) > 6 > 0. Therefore
if |z — y| > ¢, then

w(PL(:B)1 PL(y)) > v(z,y) > v(zo,y0) 2 6.0

Proof of theorem 2.16

By corollary 2.12, we may assume that K C T C M. We will show

that n(K,F) < [r”l (¢4, <I>(K))] N Fix a natural number n and a
3

positive number . Take a positive number § < 1 which satisfies lemma
2.17 and that if |z’ — 3| < 6 then d(i(z’), ¢(¥')) < e. Let R C B be
an (n +1,6 Hi1, (K ))-spa.nning set with the minimum cardinality. We
give £ € K C T. Then there exists ip € {1, ..., A} such that = € T,.
Put z/ = Q,o(a:) € B;,. Since R is a spanning set, there exists y’ E R
such that Dn+1(z ,¥) < 6. By |2’ —y| <8 <1, we have y’ € B,0
y=y') € T;, CU;,. Thend(z,y) < ¢. For anyéU,l, ceey ) € C¥(a, y)
we have (U;,, Uy, ..., Us,) € C,Zf+1(:c,y). By Dn_H(a: ,y) < 6 we have

I§ ( in,& ﬂf[jin) _Qin (HnyymTin)| < 6.

Here we remark that P; , N T;_ consists of only one point. So by lemma
2.17, w(P;, =, B, y) < €. Hence d2(z,y) < e. So ¢(R) is an (n,¢, A, K)-
spanning set. Therefore

(e, K) < #u(R) <114,

1K, F) < [ (25, 2(K))] -

(6, 2(K)) -
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Next we will show that (K, F) > [sy‘ (ej,é(K))] an” Fix a natural
number n and a positive number ¢. Take a positivi: number § which
satisfies lemma 2.18. Let S C B be an (n, e, H1,®(K))-separating set
with the maximum cardinality. Fix i9 € {1, ..., A}. Take two points z/,
y' € SN B;,. Put z = (') and y = +(y'). Then by D}t (z',y') > ¢, there
exists (U; U;,) € C%(z,y) such that

11 s

12, (PinaNTi,) — 8, (P yNT:)| > .

So by lemma 2.18, we have w(P;, ;, P;, ) > 6. Hence d;‘,t(a:,y) > 6. So
(S N B;,) is an (n,§, A, K)-separating set. Therefore

57 (6,K) > #(SN B;,) = #(SN B;,).
So

A'S#(‘S:K) 2 #5:317;,‘1(5’&([{))'

n(K,F) > [3,7;[1 (ej, *I>(K))]jelN .0

Ghys, Langevin and Walczak [GLW] defined the entropy h(F,U) of a
foliation F to be

1
h(F,U) = lim lim sup ~ log sM1 (e, B).
— o0

e—0 n

The choice of the equivalence class of sequences of monotone increasing
functions in section 1 was chosen precisely so that the entropy of foliations
is well-defined up to multiplication of positive numbers on the equivalence
class. This gives the following corollary.

COROLLARY 2.19.— The entropy of a foliation F on a compact manifold
M is not zero if and only if n(M,F) € € has quasi-ezponential growth.

By the theorem 2.16, we had n(M, F) < [een] . But the expansion growth
of foliations of class C! is dominated by the exactly exponential growth
[GLW].
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PROPOSITION 2.20.— If F is a foliation of class C*, then

n(M,F) < [e"].

Proof .— Let C(¢) be as in lemma 2.14. Since B C IR? is compact, there
exists a positive number a such that

a

On the other hand, since F is a foliation of class C1, there exists a
Lipschitz constant 8 > 1 such that for any f € H; and for any =z,
y € domain(f), lf z) — f(y)| < Blz — y|. Therefore if Dn‘(a: y) > ¢
then

Iw—yl_ﬁn-

pomse(z) e (7]

n(M,F) = [ U (eJ’B)]JgN > [(e;L)q ',Bqn] sen <[e"].0

So

3. Codimension 1 case

In this section, we restrict ourselves to a transversely oriented codi-
mension 1 foliation F of class C° on a compact manifold M. Take a
1-dimensional foliation J transverse to F. (By [HH2], it exists.) Let

= Uus,uu b) be a tnple of foliation covers of (M, F). We may assume
tha.t udb = {( , o2 } is a bidistinguished foliation cover of (F,J). W
use the notations whlch we defined in section 2. Put T; = go:l ({0} x B; )
We note that U can be taken so that for i # ¢/, T; N T; = 0. Put
T = Ul_1 T; C M. We identify T C M with B C IR by the map L.
Fix a metric d on M. We may assume that for each i the metric on T;
induced by d coincides with the one induced from the Euclidean metric on
R. Let H1, H, and K be as in section 2.
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Now we define the growth of a leaf and the sum of growths of at most a
countable number of leaves. For a leaf L and y € LN T, put

gr(L) = [#HMa(y)] € €.

For a set {L j }j eIN of at most a countable number of leaves and y; € L;NT,
put

Z gr(Lj) = [#Hn(y1, ceny yj)]jelN cE.
jeiN

We show that cin8E(L;) is independent of the choice of y; and if
jelN J J
{Fk}kelN is a set of at most a countable number of leaves such that

{L;};an = {Fr}pg then
doer(Li) =) ex(Fe).
j€IN keIN

Let 2z, € F, N T. For any j € IN, there exists £ € IN and N € N such that

{y1, - ¥} CHN (210 -0, 21).

Therefore

#Hn(y1s -+ vr ¥5) < #Hanlz1, ..., 2,) foranyn > N.
We can take a large positive real number C such that

#MHn(y1y oo ¥5) S C-#Hop(z1, ..., 2;) foranyneN.

So

Doe(L;) <Y ar(Fr).

j€eN keIN

The converse inequality is similarly shown. Of course, if {L

J'}jew =
{Fl, ceey Fn} then

> sr(L;) = gr(F1) + - + gr(Fn).
jem

Moreover it is easy to see that > jem 88(L;) is independent of the choice of
a foliation cover.
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We also define the growth of an open connected F-saturated set Y.

gr(Y) = Z gr(L)e €.
L is a leaf contained in §Y

Here §Y is the set of border leaves of Y and §Y consists of finitely many
leaves (cf. [D]).

LEMMA 3.1.— Let K C M be an F-saturated set. Let {Lj}jelN be a set
of at most countable leaves which satisfies following two conditions.
(1) Ujen Lj is dense in K.
(2) Every leaf which is a border leaf of M — K is contained in {Lj}jelN'
Then
n(K)< > er(L;).

jeiN

In particular,

n(M) < [#Hn] < ["].

We remark that in codimensions greater than 1, this lemma does not
hold.

Proof.— Fix 0 < ¢ < min;z; d(T;, Tir). Let {z1} oy = (Ujen L5)NT-
By (1), we can take an integer N satisfying the following (a) and (b).

a) {z1,..., 2y} is a (¢/3)-dense set in K NT.

(
(b) If a component of T— K has a length more than /3, then its endpoints
(except endpoints of T') are contained in {zy, ..., zx5}.

We will show that Hp(z1, ..., 2n) is an (n,€, Hy, K N T)-spanning set.
For any 2 € KN T, let y be a point of Hp(z1, ..., 25) which gives the
minimum value of d(z,y). We may assume that ¢ < y. First we show
DZ,{ !(z,y) < e. Suppose the contrary. There exists f € Hn such that
d(f(z), f(y)) > e. Since U is a distinguished foliation cover of (F,J), f is
defined on [z, y]. Put

s [z f(z)+ fly) f(=)+2f(@)
3 ! 3 ’
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If K NJ # 0 then by (a) there exists z; € [f(z), f(v)) N{z1, ..., 2x}

If KNJ = 0 then the length of the component of T — K containing J is
more than ¢/3. By (b) and f(z), f(y) € K we obtain z, € [f(z), f(y)) N
{21, +++, 2N} So f~Y(zx) € [z, y)"Hn(z1, - .., zx). This contradicts the
choice of y. So szl (z,y) < €. Hence we have

(e, KNT) < #Hnlz1, .v, 28) < N - #Hp < N(nA2" 4+ 1).

Finally,

n(K) =n(K) < [#Hn(z1, -, zj)]jelN = Z gr(L;)
j€IN

< [#Ha] <[e"].O

The above lemma is very useful. For example, it is easy to show that if
(M, F) is a foliated S'-bundle over T2 then n(M,F) < [n?].

Let L be a resilient leaf. A resilient leaf captures itself by a holonomy
contraction. It is easy to see that (L) > [e"] (¢f. [GLM]). By lemma 3.1,
we have (M) < [e™]. So we have the following lemma.

LEMMA 3.2.— If L is a resilient leaf, then n(L) = [e™]. Especially if Y is
an open LMS (local minimal set, cf. [CC]) with holonomy, then n(Y) = ["].

Here Y is said to be without holonomy if each leaf contained in Y has
trivial germinal holonomy.

Moreover by lemma 3.1, we have the following theorem. By this theorem,
we can compute 7)(Z) in case where Z is a semi-proper leaf or an ELMS
(exceptional local minimal set (¢f. [CC])).

THEOREM 3.3. — Let Z be a F-saturated set such that Int(Z) = 0, then

n(Z) = Z gr(L).

L is a border leaf of M—Z

Proof . — Let {Lj}jelN be a set of all border leaves of M — Z. Since
{Lj}j N satisfies the hyperthesis of lemma 3.1, we have the inequality

n(2) < Y gr(L;).

jeiN
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We show 1(Z) > 3 ein 82(L;)- Put {z}on = (Ujem £5)NT- {2k}
is written as a union {zk} kN = {m,} 1en Y {ym}m IN? where the positive
(resp. negative) side of Lz, (resp. Ly,,) is contained in M — Z. For any
positive integer N, we can find a positive number § which satisfies the
following conditions. For every z; € {1, ..., TN}, the é-neighborhood of
x; is contained in some U; and its positive side is contained in M — Z.
Moreover we may take § < min;;: d(T;,T;) and small for A.

We show that Hn(z1, ..., zN) is (4n,6, A, Z)-separating set. For v,
w € Hn(z1, ..., Tx), We show dfn(v,w) > 6. Suppose that d'zn(v,w) < 4.

Here we remark that we are working with d* and not with pi. By
d(v,w) < 8, there exists T; such that v, w € T;. We may assume that v < w.
We can represent v = f(z;) such that f € H, and z; € {z1, ..., zx}. By
dﬁn(v,w) < 6§, we can apply the same discussion as that of lemma 2.5.
Hence we obtain (U;,, ..., Ui, ) € an(v,w) along f~! such that there
exists £ € Pgpn 4 such that d(z;,z) < 6. This implies ¢ € M — Z. This
contradicts the choice of {z1, ..., zx}. So dﬁn(v, w) > 6 and

sﬁn(é,i) > #Hn(21, .00y TN)-

Now for all N € IN, we take N1, Ny € IN such that

{21, ey ZN}Q{M, ey wN1}U{y1’ seey yNz}

and take § > 0 which satisfies the above condition with respect to
{z1, ..., zn, } and {91, ..., yn, }- Then,

23:2",(617) Z #Hn(il)]_, ceey le) + #%n(yly ey yNz)
> #Ha(z1, oo 28).©

Therefore

n(Z) = 77(7) 2> [#Hn(zly vesy zj)]j€|N = Z gr(Lj) .a
j€EIN

COROLLARY 3.4.— Let L be a totally proper leaf (i.e. L consists of
proper leaves). Then

n(L) = gr(L).
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Proof .— By theorem 3.3,

n(L)= > g(F).

Fisaleafof L

It is easy to be seen that

> ex(F) ().

Fisaleafof L

We will show that
> e(F) <g(I).

Fisaleaf of L

Fix z€ LNT. Let {y;}, .y = (L~ L)NT. Fix j € N. Let F be a leaf
containing y;. We may assume that L accumulates F from the negative
side. For each y € F N T, there exists n € IN and fy € Hy, such that
¥ = fy(y;) € Hn(y;) — Hn-1(y;)- By [D], there exists (w, y;] C T such
that (w, y;] C domain(fy) for any y € FNT. Since L accumulates F from
the negative side, we can take z; € (w, y;) NHp,(z) for a large number N;.
Then,

#ﬂn(yj) < #Hn(z]) < #Hn-l-Nj (z) .
Now for any j € IN, we can take a large number C such that

#Hn(zv Y1y - ey y]) < #Hn(z) + #Hn(yl) +o #%n(y])
<C- #HZn(Z)

for any n € IN. Therefore,

> wm(f)<e(L).o

Fisaleafof L

Next we consider an open connected F-saturated set Y. If Y is an open
LMS with holonomy, then by lemma 3.2, we have n(Y) = [¢"]. So we
consider the case where Y is without holonomy. If Y is trivial at infinity,
we can compute the expansion growth of (M,F) on Y.
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THEOREM 3.5.— Let Y be an open connected F-saturated set without
holonomy trivial at infinity.
(1.1) IfY = M and F has no EMS (ezceptional minimal set) then
n(Y) =[1].
(1.2) IfY = M and F has an EMS then n(Y) = [n"~1].
(2.0) If Y # M and r = 0 then n(Y) = n(8Y).
(2.1) If Y # M, r > 1 and .7—'|Y has no EMS then

2(Y) =n(6Y) + [n] - gr(Y).

(2.2) IfY # M and F|, has an EMS then n(Y) = n(§Y) + [n"] - gz(Y).

Here v is the rank of the image of the Novikov transformation of x1(Y) in
Homeo (R) (cf. [1]).

For example, if (M, F) is a bundle foliation over S 1 or an irrational
foliation on T2 then (M, F) = [1] by (1.1) of the above theorem. If (T2, F)
is a Denjoy foliation then n('ll'z, F) = [n] by (1.2) of the above theorem. If
(M, F) is a Reeb foliation then n(M, F) = [n] by (2.1) of the above theorem
and proposition 2.9. We remark that if Y is not trivial at infinity in the
assumption of the above theorem then we see that n(Y") is complicated (cf.
the proof of theorem 3.7).

Here an open connected F-saturated set is said to be trivial at infinity if
there exists a nuclear-arm decomposition (¢f. [D]) such that F is a product
foliation in each arm. If Y = M then the condition where Y is trivial at
infinity is vacuous.

We remark that since §Y satisfies the assumption of theorem 3.3, 7(8Y)
is represented by the sum of growths of border leaves of M — 3Y.

We only prove (2.1) and (2.2). The proof of (1.1), (2.0) and (1.2) are
similar and easier to those of (2.1) and (2.2) respectively. We remark that

(Y, Fly) in the case (2.0) is a product foliation of a border leaf and an open
interval.

Let Y be as in (2.1) or (2.2) of theorem. We fix a nuclear-arm
decomposition of Y (cf. [D]):

Y=XUK{U---UK,

where X is a nucleus and X, (m =1, ..., 3) is an arm. We may assume
that J | K. is a product foliation. Since Y is trivial at infinity, we may

— 42—



Expansion growth of foliations

assume that F | k.. is a product foliation. Moreover we may assume that
m
AT does not intersect any K.

Let {Ii}ielN be the set of all components of Y N 7. Put I; = (a;,b;)
(¢ €IN). We may assume that there exists a map « of N such that

r(n)
U I, C U P
i=1  PeP¥(X)

and

U ILn U P=9

i>n(n) PePY(X)

for any n € IN. We can easily see that [x(n)] = gr(Y). Put

g1 = {f|domain(f)r11,-;f€%1, iE'N},
gn—_-{fno-..oh;fzegl} (nelN)

and

G = Ugn

nelN

Since F |Y is without holonomy, =1 (Y") acts freely on each leaf J of J IY'
So we obtain the subgroup Gj of Homeot(J) induced by the action of
71(Y). Since Y is trivial at infinity, G is finitely generated. Since G;
is free, there exists a monotone increasing continuous map hy of J to R
(resp. S!) such that the subgroup Gjr (resp. Ggi) of Homeoy (R) (resp.
Homeo, (S')) induced by hy and Gy is a subgroup of translations of R
(resp. rotations of S!) of rank r (resp. r —1). We remark that in the
case (2.1), hy is a homeomorphism. We identify the group of translations
of R with R. We may assume that G|r is generated by positive numbers
A1y coey Qp.

By the above consideration, there exists a monotone increasing map h;
(¢ €IN) of I; into R satisfying the following condition. For any f € G, there
exists ay € Gr such that

h(f(z)) = h(z) + ay for any z € domain(f)
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where h(z) = h;(z) if € I;. Moreover since Y is trivial at infinity, we may
assume that ay = 0 for any f € Gy except for finitely many elements. So
we can take a large real number « such that

a > maXx (a¢l.
fe%' fl

Proof of (2.1) of theorem 3.5
We are going to show that

n(Y) 2 n(8Y) + [n] g2(Y) .

Obsviously n(Y) > n(8§Y). Fix a leaf F C 6Y. We show that n(Y) >
[n] gz(F). We may assume that the negative side of F' is contained in Y and
by € 811 is a point of F'. For each n € IN and for each b € H,,(b1)—Hn—1(b1),
we fix f € Hp such that b = f,(b1). Since Y is trivial at infinity, there
exists ¢ € I; such that f; is defined on [c, by ] for any b € H(b;). By r > 1,
there exists a loop v based on b; contained in F' such that the holonomy
map fy of I; induced by v is a contraction to b;. Here we may assume that
fv is defined on [c, by ]. Take a large natural number N such that fy € Hy.

Take a positive real number § satisfying the following conditions:
6 < d(c, U Pb) s
PP (£4(c))
6§ < min d(Ti,Til) ,
i#i!
and § is small for A. For n €N, put
S, = {f,,(f.’,(c)) b Hn(by), =1, ..., n} .

Then we can deduce that S, is an (A(N +1)n, é, A, Y)-separating set. We

remark that we are working not with Dz,i ! by with d;ﬂ (¢f. lemma 2.5 and
theorem 3.3). So

AN +1)n(8Y) > #5n 2 - #Ha(br).

Therefore
n(Y) > [n]gr(F).
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Hence
n(Y) > n(6Y) + [n] gz(V).

Next we show that
n(Y) < n(8Y) + [n] ge(Y).
Fix a positive real number ¢. There exists a large integer ng such that

|I;| < € for any i > k(ng). We take a positive real number § such that for
any ¢ < k(ng) and for any z, y € I, if |z — y| > ¢ then |h,~(:c) - h,-(y)| > 6.

We take points 21, ..., zy € R satisfying the following conditions:
€ .
z1 < h; (a,‘ + 5) if |I;] > e
=y 2 hi(bi - 7) if 1G] > .

0< 241 —2,<$.
ZN—2z21 2 .
hi(L)n{z1,..., 25} #0 for any i €N.

Fix a positive integer n. Put

K(n+no)
R, = U hi_1 ({zx +lask=1,..., N, l=—n, ..., n}) .

i=1

Let R, be an (n,¢,H;,8Y NT)-spanning set with the minimum cardinality.

We will show that R, U R}, is an (n, 2¢, M1, Y N T)-spanning set. Take
any point = of Y NT. Let I; be a component of Y N T containing z.

First we consider the case where i < x(n + ng). Let y € R, be a point
which gives the minimum value of |z — y|. We remark that y is a point of
I;. We may assume that z < y. We show that DZf‘(w,y) < €. Suppose
Dl (z,y) > €. Then there exists f € G, such that lf(a:) - f(y)l > e. Let
I; be a component of Y N T containing f(z) and f(y). By

|11 > |f(z) = f(y)| > e,
we have j < k(ng). Then

&€

bj—2) #0.

(F(z), F(¥)) N (aj + <, 5

2
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So
|hj (F(z)) = hi ()| 2 6

and

(h; (f(=)), hi(F())) N (21, 2n) # 0.

On the other hand, h;(f(z)) = hi(z) + oy and h;(f(v)) = hi(y) + ay.
So |h,-(:c) - hi(y)i > 6. By f € Gn, we have |ay| < na. So

(hi(z), hi(y)) N (21 — na,zy + na) £ 0.
Therefore there exists a point
z € {zk+la; k=1,...,N,l=—n, ..., n} n (hi(a:), hi(y)) .

So
R (z) € Ran (2,y).

This contradicts the choice of y. Hence DI Yz,y) <e.

Next we consider the case where i > k(n + ng). Obviously, |z — b;| < e.
By b; € 6Y N T, there exists y € R), such that D (bi,y) < e. We show
that D} (z,y) < 2¢. Given any f € Hy, such that z, y € domain(f).

By f € H, and the choice of x(n), f(z) is contained in the arm K,,
containing . So f is defined on [a;, b;] and (f(as), f(b;)) € {L;}

i>r(no)’
So °

|f(2) — £(b:)] < | F(ai) — F(Bi)] <e.

By DI (bi, ) < &, we have |f(b;) — f(y)| < e. Therefore |f(z)— f(y)| < 2e.
So DZ;‘1 (z,y) < 2e.

By the above two results, R, U R!, is an (n,2¢,H1,Y N T)-spanning set.
Hence

r,”;‘l(Ze,YﬂT) < #R, + #R),
<rM(e,6Y NT) + N(2n + 1) - k(n + ng) .
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Then we can take a large positive real number C such that
M1 My .
T (26,Y NT) <7 (e,8Y NT) + Cn - 5(2n)

for any n € IN. So
n(Y) < n(6Y) + [n]gr(Y). O

Next we prove (2.2) of theorem 3.5. Before proving (2.2), we show the
following proposition.

PROPOSITION 3.6.— Let Y be as in (2.1) or (2.2) of theorem 3.5. If L
18 a leaf contained in'Y, then

gr(L) = [n"] gr(Y).

Proof .— We show that gr(L) < [n"]gr(Y'). We remark that if h;{z) =
hi(y) for = # y € I, then the leaf containing z and the leaf containing y
are distinct. Since {af; f €G1} is a finite set, we can take a large natural
number N such that

{af; feqi}C {Ztkak;tk:—N7 ---,N} .

k=1

Fix a point ¢ € LN I;. Let n be a natural number. Take any point f(e) €
Mn(c) (f € Gn). Then we have f(c) € Ufirll:) I; and h(f(c)) = h(c) + ay.
By f € G,, we have

d
ay € {Ztkak;tk:—Nn, ceey Nn} .

k=1
So .
h(f(c)) € {h(c) + Ztkak; t, = —Nn, ..., N'n} .

k=1

This implies that
#Hn(c) < (2Nn +1)" - k(n).

So
gr(L) < [n"]gr(Y).
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Next we show that gr(L) > [n"]gr(Y). Fix a leaf F' contained in 6Y.
We have only to show that gr(L) > [n"]gr(F). we may assume that the
negative side of F' is contained in Y and b € 0I; is a point of F. For
any n € IN and for any b € Hp(b1) — Hn—1(b1), we fix f € Hy, such that
b = fy(b1). Since Y is trivial at infinity, there exists ¢ € L N I; such that
fp is defined on [c, by ] for any b € H(b1). There exists a loop v based on
b, contained in F such that the holonomy map fy of I; induced by v is a
contraction to b;. Here we may assume that f, is defined on [c, b;]. Put
o' = hi(fy(c)) —hi(c). If necessary, by replacing v with y™, we can assume
that

a' > Ay eeey Qp .

We take a large positive integer N satisfying the following conditions.

f'yeHN

and for any ¢ € [c, fy(c)] and for any k € {1, ..., 7}, there exists a
f € Hy such that

hi(f(z)) = hi(z) + o, -

Let af, (I = 1, ..., ™) be a element of {0, &1, ..., ar}. We can take
t; € {0, 1} satisfying the following condition.

B =1+ ok, — i €[0, ]

forl =1, ..., rn, where Bg = 0. Then there exists fi, ..., frn € Hy such
that

fv_tl of o...of;tl o fi(c) € [C, f.,(c)]

and
hiof o fio o f "o fi(c) = hi(c) + B

foranyl € {0, 1, ..., rn}. Then

hio f‘$1+"‘+tru ) f;trn 0 fppo0---0 f‘y_tl o fl(c) =

= hl(c) + ap, +tog,, -
The cardinality of the set of elements of the form
Ittt o £t o frp oo frH o fi(c)
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by this construction is more than n”. So

#(Hanem(c) N T1) > a7

Therefore the cardinality of the set of elements of the form

ctton e —t
fboff/1+ +t of,yt'“of,.no“-of,y Yo fi(e)

(b € Hn(b1)) is more than n” - #£Hn(by). So

#H(3Nr+l)n(c) > n’ . #Hn(bl) .

Therefore
gr(L) > [n"]gr(F).

Hence
gr(L) > [n"]gr(Y). O

Proof of (2.2) of theorem 3.5

Obviously, 7(Y) > n(6Y). Let Z be an EMS of .7-'|Y. By proposition 3.6,
a semi-proper exceptional leaf [ contained in Z has growth [n"]gr(Y). So
by theorem 3.3,

n(Z) > gr(L) = [n"] gx(Y').
Therefore
1Y) > n(8Y) +n(Z) > n(8Y) + [n"] gx(Y) .

We show the converse inequality. Let {Fk} keN be the set of all border
leaves of M — 8Y. By theorem 3.3,

n(6Y) = ) gr(Fy).
keIN

Let {L; }jeIN be a set of leaves contained in Y such that Ujen L;j is dense
in Y. By proposition 3.6, gr(L;) = [n"] gr(Y'). Moreover from the proof of
proposition 3.6, we can easily deduce that

> er(L;) = [n"]gx(Y).

jeiN
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{ Fk} ke Y {Lj}j N satisfies the assumption of lemma 3.1. So

oY) <Y ex(Fe) + Y gr(L;) = n(8Y) + [n"]gx(Y). O
kelN j€lN

Finally we will construct foliations which have various expansion growths.
THEOREM 3.7.— Let g be a map of NU{0} to N such that g(0) =1 and
g(n) < g(n+1)<2¢(n) foranyneiNU{0}.
Then there ezists a foliated manifold (M, F) such that

(M, F) = [ng(n)] .

Proof.— Put I = [0, 1]. Let f; be an orientation-preserving homeo-
morphism of I such that f(z) > z for any = € (0,1). Take a € (0,1) and
put b = fi(a). Let f3 be an orientation-preserving homeomorphism of [a, b]
such that f3(z) > z for any = € (a,b). We define the orientation-preserving
homeomorphism fy of I as follows:

f2000=0, fo(l)=1

and
lefim.([a,b]) =fi"o fg(‘"") o fl_m|f1"‘([a,b]) foranyme Z.

Let X5 be a closed surface of genus 2. We can represent the fundamental
group of Xy as follows:

71(22) = (71, 72, 73, a5 [v1.72][13, 74l = 1)
We define a homomorphism ¥ of 71(X2) to Homeo, (I) such that

¥(71) = fr, ¥(y3) = f2, and ¥(y2) = ¥(v4) =idy.

Then we obtain the suspension foliation Fg of ¥ on X3 x I.
We will show that

n(Z2 x I, Fg) > [n?g(n)] .
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Fix a fiber I of £3 x I. Considering the proof of theorem 2.16, we have only
to work with the group of homeomorphisms of the fiber I. Put

Hl = {idI) fl’ fl_ll f29 fz_l}'

Take a point ¢ € (a,b). Put

6 = min{|fh(c) - ¢

;kez—{m}.
Let n be a natural number. Put
Sp = {f{(f?’,"(c)) i k=-ng(n), ..., ng(n), I = —n, ..., n} .
Then we can easily show that S, is a (4n, §, H1, I)-separating set. So
san (6,1) > #5Sn = (2n+1)(2ng(n) + 1)
(T2 x I, Fg) > [n’g(n)] .

We show the converse inequality. Let ¢ be a positive number. Let
21, «+«, 2y € I be an (¢/2)-dense set of I. Put

Rn =Hn({z1, ---, zn}) -
Then we can easily show that R, is an (n,e,H1,I)-spanning set. So

o1 (e, 1) < #Ry < N(2n +1)(2ng(n) +1)
(22 x I, Fy) < [n’g(n)] . 0O

We remark that the Fy-saturation of (a,b) is an open connected set
without holonomy but not trivial at infinity.

By this theorem, we see that nll(K, F) and an'l(K, F) (I €IN) defined in
corollary 2.8 are non-trivial. For example, if we let g(n) be the integer part
of n* (a > 0), then n%(M, F) = 2+ a. If we let g(n) be the integer part
of ™ (0 < a < 1), then n?(M,F) = a. If we let g(n) be the integer part
of e1°8™)% (o > 1), then n3(M,F) = a. So we obtained many numerical
topological invariants for foliations.
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