
ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

BANG-YEN CHEN

YOSHIHIKO TAZAWA
Slant surfaces of codimension two
Annales de la faculté des sciences de Toulouse 5e série, tome 11,
no 3 (1990), p. 29-43
<http://www.numdam.org/item?id=AFST_1990_5_11_3_29_0>

© Université Paul Sabatier, 1990, tous droits réservés.

L’accès aux archives de la revue « Annales de la faculté des sciences de
Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitu-
tive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AFST_1990_5_11_3_29_0
http://picard.ups-tlse.fr/~annales/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


- 29 -

Slant surfaces of codimension two

BANG-YEN CHEN(1) and YOSHIHIKO TAZAWA(2)

Annales de la Faculté des Sciences de Toulouse Vol. XI, n° 3, 1990

RESUME. - Une immersion isométrique d’une variete riemannienne
dans une variété presque hermitienne est dite oblique si 1’angle de
Wirtinger est constant [1]. Le but de cet article est d’etudier et de carac-
teriser les surfaces obliques dans le plan complexe 2 utilisant 1’application
de Gauss. Nos démontrons que chaque surface n’ayant aucun point tan-
gent complexe dans une variété presque hermitienne M de dimension 4
est oblique par rapport à une structure presque complexe bien choisie sur
M.

ABSTRACT. - A slant immersion is an isometric immersion from a
Riemannian manifold into an almost Hermitian manifold with constant

Wirtinger angle (1~ . In this article we study and characterize slant surfaces
in the complex 2-plane ~2 via the Gauss map. We also prove that

every surface without complex tangent points in a 4-dimensional almost
Hermitian manifold M is slant with respect to a suitably chosen almost
complex structure on M.

1. Introduction

Let x : M ~ M be an isometric immersion of a Riemannian manifold
M with Riemannian metric g into an almost Hermitian manifold M with
an almost complex structure J and an almost hermitian metric g. For each
nonzero vector X tangent to M at p e M, the angle 8(X ) between JX
and the tangent space TpM of M at p is called the Wirtinger angle of X. .
The immersion x is said to be general slant if the Wirtinger angle 9(X ) is
constant (which is independent of the choice ofpeM and X E TpM). In
this case the angle 8 is called the slant angle of the slant immersion.
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If x is a totally real (or Lagrangian) immersion, then Tp M ~ J(TpM) for
any p e M where M is the normal space of M in M at p. Thus a totally
real immersion is a general slant immersion with Wirtinger angle 8 - ?r/2.
If M is also an almost Hermitian manifold with almost complex structure
J, then the immersion z : M is called holomorphic (respectily, anti-

holomorphic) if we have

for any X E TpM. It is clear that holomorphic and anti-holomorphic
immersions are general slant immersions with 8 - 0. A general slant
immersion which is neither holomorphic nor anti-holomorphic is simply
called a slant immersion ~1~. In paragraph 2 we review the geometry of
the Grassmannian G(2,4) for later use. In paragraph 3 we investigate
the relationship between 2-planes in the Euclidean 4-space E4 and the
complex structures on E4. By applying the relationship we obtain a
pointwise observation concerning slant surfaces. In paragraph 4 we study
slant surfaces via their Gauss map. In particular we obtain in this section a
new characterization of slant surfaces and we also prove that a non-minimal

surface in E4 can be slant with respect to at most four compatible complex
structures on E4. In paragraph 5 we prove that every Hermitian manifold
is a proper slant surface with any prescribed slant angle with respect to a
suitable almost complex structure. In the last section we define doubly slant
surfaces and show that their Gaussian and the normal curvatures vanish

identically.

2. Geometry of G(2, 4)

In the section we recall some results concerning the geometry of the
Grassmannian G(2,4) of oriented 2-planes in E4 (for details, see [2, 3, 7,
8]).

Let Em = ( . , . )) be the Euclidean m-space with the canonical
inner product (’, ’). Let ~E1, ... , be the canonical basis of Em.

Then 03A8 := E1 ^ ... A gives the canonical orientation of Em. For each

n E ~ 1, ..., m~, the space /~n Em is an (’;:) -dimensional real vector space
with the inner product, also denote by ( ~ , ~ ~, defined by



and be extended linearly. The two vector spaces and 

are identified in a natural way by

for any 03A6 E and any ..., E Em. . The Grassmannian

G(n, m) of oriented n-planes in was identified with the set Dl (n, m) of
unit decomposable n-vectors in The identification ~p : G (n, m) -
Dl (n, m) is given by = X1 n ~ ~ ~ n Xn for any positive orthonormal
basis ofV E G(n, m) .

The star operator * : /~2 E4 ~ A 2 E4 is defined by

If we regard a V E G(2, 4) as an element in D1(2, 4) via cp, we have *V = 
where V..L is the oriented orthogonal complement of V in E4 . Since * is a

symmetric involution, /B~ E4 is decomposed into the following orthogonal
direct sum :

of eigenspaces of * with eigenvalues 1 and -1, respectively. Denote by
7r-~ and ~r_ the natural projections from /~2 E4 into /1+ E4 and n2 E4,
respectively.

Given a positive orthonormal basis ... , e4 ~ of E4, we put

Then ~2, ~I3~ and ~r~4, r~5, are orthonormal bases of ~+ E4 and
/B~_ E4 respectively. We shall orient /~+ E4 and /B~_ E4 so that these two
bases are positive.

For any £ E Di(2, 4) we have



If we denote by ,S+ and ,S2 the 2-spheres centered at the origin with radius
1/~/2 in /B~ E4 and /B~. E4, respectively, then we have

and

3. Complex structures on E4

Let ~2 = ~IR2 , ~ ~ , ~ ~ , Jo) be the complex plane with the canonical
(almost) complex structure Jo defined by Jo(a, b, c, d) _ (-b, a, -d, c). Jo
is an orientation preserving isomorphism. We denote by G the set of all
(almost) complex structures on E4 which are compatible with the inner
product (’, ’), i.e.,

For each we choose an (orthonormal) J-basis ... , e4 ~ so that
Jel = e2, Je3 = e4. Two J-bases of the same complex structure J have the
same orientation. By using the canonical orientation ~ = E1 /~ ~ ~ ~ A E4, we

divide 9 into two disjoint subsets :

and

For each J E g, there is a unique 2-vector ~J E A 2 E4 defined as follows.
Let Q j be the Kaehler form of J, i.e.,

for any X, Y E E4. The 2-vector ~J associated with J is defined to be the
unique 2-vector satisfying



LEMMA 3.1..2014 The mapping

defined by ~(J~ _ ~J gives rise to two bijections : :

where and S~ (~) are the 2-spheres centered at the origin with
radius B/2 in n+ E4 and ~~_ E4, respectively.

Proof. - Let J E ~ and ... , e4~ be a J-basis. If J E g+
(respectively, J E ~-), then ..., e4~ is positive (respectively, negative).
Since 03B6J = e1 ^ e2 + e3 ^ e4 by (3.1), ( maps g+ into and maps G-
into S2-(2). Their injectivity are clear.

Conservely, for each ~ E S+ (~), we have ) ( E ,S+ . Hence, we can pick
an oriented 2-plane V such that V E ~r+1 ( 2 ~). Now we choose a positive
orthonormal basis ... , e4~ such that e2~ is a positive basis of V.
Let J be the complex structure on E4 such that Jei = e2, Je2 = -e1,
Je3 = e4, Je4 = -e3. Then J E g+ and ~J = ~’.

E S2 ( ~) , we pick V E ~r=1 ( 2 ~ ) and define J by = e 2 ,

Je2 = -el, Je3 = -e4, Je4 = e3. Then we have a similar result. D

In the following we identify g, g+ and g- with 5~.(~2) U S2 (~),
S’+ ( ~) , and S2 ( ~) , respectively, via (.

For each V E G(2, 4) and each J E g, we define

Then E [0, 7r]. A 2-plane V is said to be a-slant if = a.

The relation between defined in paragraph 1 and is as

follows. Let x be an isometric immersion of M into (M, ~, J). If we regard
(TpM, ~, J) as a complex plane with the induced inner product (’, ’), then
we have

for any non-zero vector X E TpM.



If M is oriented, then M has a unique complex structure J determined
by its orientation and its metric induced from g. With respect to a j, we
have:

The argument above also hold for the case dim M > 4. We note that a J
coincides with the angle defined in [6].

LEMMA 3.2

~i~ If J E ~+, J then is the angle between ~+ (V) and ~J .

(ii) If J E ~- , then aJ(V) is the angle between ~r_ (V) and ~J .

Proof. - If J E ~+, then, by (3.2), (3.5) and lemma 3.1, we have

_ _ ~~J~ V) _ ~~J ~ ’~+(V + ~r_(V)~ _ ~~J a ’~+(V )~

which is the cosine of the angle between ~+ ( V ) and (j, since = ~/2
and I I ~+ ( V ) I = Similar argument applies to the case J E ~ - . 0

For each a E ~ 0 , ~ ~ and J E ~, we define

i.e., is the set of all oriented 2-planes in E4 which are a-slant with
respect to J. Also for each a E [0, and V E G(2, 4) we define

i.e., is the set of all compatible complex structure on E4 with respect
to which V is a-slant. We put

By applying lemma 3.2 we obtain the following generalization of propo-
sition 2 of [3].



PROPOSITION 3.3

~i~ If J E g+, then = x S2 where is the circle on S’+
consisting of 2-vectors u,hich make constant angle a with ~,~ .

(ii) If J E ~-, then = S+ x where is the circle on S~
consisting of 2-vectors which make constant angle a with ~J .

(iii) Via the identification ( given in ~3.l~~, is a circle on S+ (~~
consisting of 2-vectors in S‘+(~~ which make constant angle a with
~r+(~). . Similarly, is a circle on S~ (~~ obtained in a similar
way. 

For simplicity, for each V E G(2, 4), we define JY and Jv as the complex
structures given by

where ( is the bijection given in lemma 3.1. It is clear that JY E g+ and

4. Slant surfaces and Gauss map

Let x : At 2014~ E4 be an isometric immersion from an oriented surface
M into E4. We denote by V and V the Riemannian connections of M
and E4, respectively. We choose a positive orthonormal local frame field

..., e4 ~ in E4 such that, restricted to M, the vectors e1, e2 give a
positive frame field tangent to M (and hence e3, e4 are normal to M). Let
w 1, ... , be the field of dual frame field. The structure equations of E4
are then given by

If we restrict these forms to M, then = w4 = 0. From = = 0,
(4.2), and Cartan’s lemma, we have



The Gauss curvature G and the normal curvature GD of M in E4 are
given respectively by

In the following we denote by v : ~YI --~ G(2, 4) the Gauss map of the
immersion x defined by

where we identify G(2, 4) with Di(2,4) consisting of unit decomposable
2-vectors in A 2 define two maps v+ and v- by

where ~+ and 1r - are the projections given in paragraph 2. Then v+ and
v- map M into S’+ and S2 , respectively.

In terms of v+ and v-, , we have the following characterization of slant
surfaces in ~2. .

PROPOSITION 4.1.2014 Let M --~ E4 be an isometric immersion from
an oriented surface M into E4. Then x is a slant immersion with respect
to a complez structure J E g+ (respectively, J E ~-~ if and only if v+(M)
is contained in a circle on S+ (respectively, v- (M) is contained in a circle
on S’2 ~.

Moreover, x is a-slant with respect to J E g+ (respectively, J E ~-~ if
and only if v+(M) is contained in a circle Sa on S+ (respectively, v_ (M)
is contained in a circle on S2-), where S+J,a and are the circles

defined in proposition 3.3. 
~ ~ 

Proof. - If x . M -~ E4 is a-slant with respect to J E ~+, then by
(3.11) and proposition 3.3, we have v(TpM) E x S2 for any p E M.
Thus v+(M) is contained in a circle on 6’~ consisting of 2-vectors in
5~. which make angle a with (J.

Conversely, if x : M --> E4 is an immersion such that v+ (M) is contained
in a circle S1 on S2+. Let ~ be a vector in A 2 E4 with length B/2 which is
normal to the 2-plane in n2 E4 containing S1. Then r~ E By



lemma 3.1, there is a unique J E g+ such that ~J = r~. It is clear that

S1 is a for some constant angle a. Therefore, by proposition 3.3, the
immersion x is a-slant with respect to J E ~+ . Similar argument applies to
the other case. 0

The following lemma was obtained in [1] (given in the proof of theorem 1
of [1]). Here we reprove it by using Gauss map.

LEMMA 4.2. - Let .c : . M -~ E4 be an isometric immersion from an
surface M into E4. Then M is minimal and slant with respect to some
J E g+ (respectively, J E ~-~ if and only if v+(M) (respectively, v_ (M)~
is a singleton.

Proof. - If x is minimal, then both v+ and v- are anti-holomorphic ~5~ .
In particular, v+ and v- are open maps if they are not constant maps.
However, if x is slant with respect to J E g+ (respectively, J E ~- ), then,
by proposition 4.1, v+ (respectively, v_ ) cannot be an open map. Hence,
v+(M) (respectively, v_ (M)) is a singleton.

Conversely, if v+ ( M ) (respectively, v_ ( M ) ) is a singleton, say ~~ ~ . Then
2~ E S+ ( ~) . Thus, by lemma 3.1, there is a unique J = ~ -1 ( 2~ ) E g+
such that v+(M) is contained in Thus x is holomorphic with respect
to J (see proposition 2 of [3]), in particular, a? is a minimal immersion.
Because a singleton {~} lies in every circle S1 on S’+ through ~, proposition
4.1 implies that for any a E ~ [0, ~ ~, there exists a Ja e g+ (respectively,
Ja e 9 - ), such that x is a-slant with respect to Ja. D

By applying proposition 4.1 and lemma 4.2 we have the following result
concerning non-minimal surfaces.

THEOREM 4.3. - If x : M --> E4 is not miminal, then there ezist at
most two complez structures ±J E g+ and at most two complex structures
~J~ E ~- such that x is slant with respect them.

Proof. - If x is a non-minimal, a-slant immersion with respect to a

complex structure J E g+ (respectively, J~ E ~- ), then, by proposition 4.1
and lemma 4.2, ~+(M) ) (respectively, v_ ( M ) ) contains an arc of the circle

(respectively, ,~).
Thus, xJ and xJ’ are the only possible complex structures which make

x to be slant according to proposition 4.1. D

From proposition 4.1, lemma 4.2 and theorem 4.3 we have the following.



PROPOSITION 4.4. - Let : M --~ E4 be an isometric immersion from
a surface M into E4. . Then the following statements are equivalent:

(i) x in minimal and slant with respect to some complex structure
J E ~+ (respectively, J E ~-~;
v+ (M) (respectively, v_ (~VI ~~ is a singleton;

(iii) x is holomorphic with respect some complex structure J E G+

(respectively, J E G-~;
(iv) for each a E [0, 03C0], there exist Ja E G+ (respectively, Jd E G-)

such that ae is a-slant with respect to Ja.

Theorem 4.3 and proposition 4.4 provide us a clear geometric under-
standing of lemmas 5 and 6 and theorems 1, 3 and 4 of ~1~ .

5. Slant surfaces in 4-dimensional almost Hermitian manifolds

Let : M - (M, J) be an immersion of a manifold M into an almost
complex manifold (M, J). Then a point p E M is called a complex tangent
point if the tangent plane of M at p is invariant under the action of J. The
purpose of this section is to prove the following.

THEOREM 5.1. Let x : M ~ (M, g, J) be an imbedding from an
oriented surface M into an almost Hermitian manifold (M, g, J~ . If x has
no complex tangent point, for any prescribed angle a E (0, 03C0), there exists

an almost complex structure J on M satisfying the following conditions:

~i~ (M, g, J~ is an almost Hermitian manifold, and

x is a-slant with respect to J .

Proof. - has a natural orientation determined by J. At each point
p E M, (TpM, gp) is a Euclidean 4-space and so we can apply the argument
given in paragraphs 2 and 3.

According to (2.4) the vector bundle /‘2(M) of 2-vectors on M is a direct
sum of two vector subbundles.

We define two sphere-bundles over M by



By applying lemma 3.1 we can identify a cross-section

with an almost complex structure J.y on M such that (M, g, is an almost

Hermitian manifold. In the following we denote by p the cross-section
corresponding to J and we want to construct another cross-section  to
obtain the desired almost complex structure J.

We consider the pull-backs of these bundles via the immersion a?, i.e.,

The tangent bundle TM determines a cross-section r : M ~ S’+(M) given
by

where x+ is the projection of onto n+ (T~,~VI ~. Note that 2r is a
cross-section of S+ (M);

We denote x * p also by p, which gives us another cross-section:

Since c has no complex tangent point,

Therefore, p(p) and 2r(p) determine a 2-plane in which intersects

the circle 
p 

at two points, where is the circle on (S+ (M)) p
determined in proposition 3.3 with V = TpM. Let be one of the two

points which lies on the half-great-circle on (5~ (At)) starting from 2r(p)
and passing through p(p). Since p and r are differentiable, so is r. Thus
we get the third cross-section:

and we want to extend 03C3 to a cross-section  of S+ (M).



For each p we choose an open neighborhood Up of p in M such
that ~I U nM can be extended to a cross-section of S+(M~ on U~,:P

We identify here the manifold M with its image via the imbedding.
We put

and pick a locally finitely countable refinement {~}~. of the open covering
U. For each i we pick a point p E M such that Ui is contained

in Up and put

Let ~~i ~ be a differentiable partition of unity on U subordinated to the
covering {Ui}. We define a cross-section 03C3 of ̂ 2+()|U by

By the construction of 03C3i and 03C3 we have

Since the angle , p( p~ ~  ~r for any p E M, we have

By continuity of 03C3 we can pick an open neighborhood W of M contained in
U such that

We define a cross-section  of S+ (M) by



Then we have p(q))  03C0 for any q E M too. Finally, we consider
the open covering {W, M - M~ of M and local cross-section û and pl -
and repeat the same argument using a partition of unity subordiante to
{W, M - M} to get a cross-section : S2+() satisfying |M = cr.
Now, it is clear that the almost complex structure J corresponding to ? is
the desired almost complex structure. D

6. Appendix : double slant surfaces in ~2

An immersion x : : M2 -+ E4 is called doubly slant if it is slant with

respect to a complex structure J E g+ and at the same time it is slant with
respect to another complex structure J E ~- . .

Equivalently, the immersion x is doubly slant if and only if there exists
a V E G(2, 4) such that x is slant with respect to both JY and where
Jy and Jr~ are defined by (3.13).

PROPOSITION f .1. : M2 --~ E4 is a doubly slant immersion, then

Proof. - If x is doubly slant, then, by proposition 4.1, we know that
v+ ( M ) and v_ ( M ) both lie in some circles on S+ and S2 , respectively.
Thus, both (v+~ * and (v_ ~ * are singular at every point p E M. The result
then follows from the following lemma of ~7~ .

LEMMA 6.2. - For an isometric immersion ae : M2 ---~ E4, we have

This lemma can be proved in our notation as follows.

From (4.8) we have v*X = for any X tangent
to M. Thus, by applying (2.5), (4.1) and (4.4), we find (see [3])



Since ~r~2, r~3~ is a positive orthonormal basis of ~p~S+ and ~r~5, is

a positive orthonormal basis of Tv_ ~~~ 5~ we obtain

By applying (4.4), (4.6), (4.7) and (6.2) we obtain the lemma.

Remark 6.3. - Examples 1 through 6 of ~1~ are examples of doubly slant
surfaces in ~2. Here we give another example of doubly slant surfaces.

Example. - For any two nonzero real numbers p and q, we consider the
following immersion from IR x (0, oo) into ~2 defined by

v) _ (pv sin u , pv cos u , v sin qu , v cos qu) . (6.3)

The slant angles and the ranks of v, v+ and v- of those examples can be
determined by direct compution. We list them as the following table.

Except for example 4, a and b above are the slant angles with respect
to Jo = and J1 = (cf. (3.13~~. For example 4, a is the slant
angle with respect to Jo and b is the slant angle with respect to JE1 ~E3 ’

In [4] further results on slant immersions have been obtained.
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