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An asymptotic condition for variational points
of nonquadratic functionals

THOMAS H. OTWAY(1)

Annales de la Faculte des Sciences de Toulouse Vol. XI, n° 2, 1990

Soit u . M ~ N une application d’une variete rieman-
nienne M dans une autre N. On demontre un enonce du type Liouville
pour certaines fonctionnelles E(u) non quadratiques, moyennant une
minoration de la variation de E(u) et une hypothese sur M.

ABSTRACT. - Let u : M - N be a map between Riemannian mani-
folds M and N. We prove a Liouville theorem for certain nonquadratic
functionals E(u) under a restriction on the variation of E(u) and a hy-
pothesis on M.

1. Introduction

Let u : M -~ N be a map from an n-dimensional Riemannian manifold
M to a Riemannian manifold N. Let M be complete, noncompact, simply
connected, with infinite injectivity radius (topologically Define on M
a Riemannian n-disc B = BR (x p ) of radius R centered at a point x p E M.
Assume that for some f there is a smooth embedding of M into (e.g.,
the exponential map); via this embedding choose local coordinates en B.
Let the C~ metric g on M satisfy V y E B the differential inequality

Here Ko is a constant independent of R; is the Christoffel symbol for
gij at y; r = x0| is the geodesic radial coordinate on B ; the index 1
denotes the radial direction; we use the Einstein convention for summing
repeated indices. Assume that N is smoothly embedded in Rq for some q.
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Define the local energy functional

where S2 is a given subdomain of M; du(x) E T; M is the differential at x
of the map u; p E 

is a scalar-valued function of t E R- satisfying

for independent constants Kl > 0 and I~2 > 0.

Suppose that E is locally finite on M in the sense that on the restriction
H = M) B, E is a finite scalar function of the radius R of B for finite R.
Also suppose that E satisfies the growth condition

as R --; oo, where n > p(A’i/~)’ .

Finally, assume that E satisfies a variational inequality on 03A9 of the form

where f is a given function on H (Theorem 2.1); lbt is any 1-parameter
family of compactly supported diffeomorphisms of M with identity
and t a small parameter;

is the initial velocity field of the flow generated by ~t.
In this note we give conditions on f and H which imply that u is the

constant map almost everywhere on M.

The class of functionals considered includes radial perturbations of finite-

energy polyharmonic maps. Hypothesis (1.4) is somewhat weaker, however,



than the corresponding variational hypothesis used in the study of minimal
surfaces and harmonic maps; a map is said to be r-stationary on a manifold
M [1], [5] if the first r-variation

vanishes on M for all families ’tPt defined as in (1.4). In our case

where ~ei ~ is an orthonormal basis for TM.
Under the hypotheses of the theorems given in Section 2, this object does

not vanish on M. However, if p = 2 and w is the identity, then our choice
of the function f in Theorem 2.1 gives (1.4) a geometric interpretation as
a decay condition on a generalized r-tension vector field bounded by f (cf.
[1], [5]).

Our results are extensions of a theorem by Price for r-stationary harmonic
maps on Rn or an [5]. Theorem 2.2 extends work by Costa and Liao [2],
also for harmonic maps. A special case of Theorem 2.1 and some extensions
to other types of fields are given in [3] and [4]. .

2. Theorems

THEOREM 2.1.2014 Let u, M, N, B, E, w, and p be defined as in Section
1 and satisfy V R > 0 conditions (1.1~-(1.,~~, where in (1.,~~ SZ = B. . Let the
function f in ~1.,~~ satisfy for all y E B, for some parameter T E (0, R) and
for some constant ~ > 0

Then u takes almost every point on M onto a single point of N.



Although f(x, T) is as T - ~, the growth condition (1.3) insures
that the righthand side of (1.4) will in general be nonzero even at the limit.
If condition ( 1.3) is strengthened, then Theorem 2.1 is true even for certain
maps which do not satisfy (1.4) on all of B.

THEOREM 2.2. - Let condition (1.~~ be replaced by the hypothesis that
pt ~~-) - 

’

du E L o for some ~p E (0, k 1) and some k E (1, n); but assume
only that u satisfies (1.,~~ on SZ = B N ~, where ~ is a compact subset of B
of Hausdorff codimension k. Then the conclusion of Theorem holds.

Theorem 2.1 follows from a technical lemma:

LEMMA 2.3. (Asymptotic monotonicity). - Assume the hypotheses of
Theorem with the possible exception of (1.~~. Then u satisfies almost

everywhere on SZ = BT(xp) the differential inequality

where

In order to prove Theorem 2.2 we must prove

LEMMA 2.4. - The conclusion of Lemma ,~.3 holds under the assump-
tions of Theorem 2.2.

If the energy over Br(xo) satisfies (1.3), then certainly the product of
the function and the energy over Br(xo) will also satisfy (1.3).
Thus inequality (2.2) implies Theorem 2.1. Similarly, since the hypotheses
of Theorem 2.2 imply that u is in fact a finite-energy map on all of M, then

(1.3) is satisfied and Lemma 2.4 implies Theorem 2.2.



3. Proofs

We prove Lemma 2.3 by modifying arguments by Price [5] (see also [1]).
Initially we take p > 2.

Inequality ( 1.4) can be written

where = 2, 3, ... , n, is an orthonormal basis for TM.
Choose

where I E C 1 is chosen so that y(r) > 0, ~’ ( r )  0, I(r) = 1 for r ~ T, and
y(r) = 0 for r > T + 6 with 6 > 0 a small constant and T E (0, R). Then

Also, explicit computation of the inner product v gives, byP P P 
B 

~ 

~/ 
g ~ Y

Young’s inequality,

Putting these estimates together and cancelling where possible yields in
place of (3.1) the inequality (for n = B)

Let y(r) = = Sp(r/T) for ~p satisiying



and ~(r)  0. Then

and (3.2) becomes

Using hypotheses (1.2),

A similar inequality can be obtained for the last integral on the right in

(3.4), yielding

In (3.5) we have used (3.3) to effectively bound r by 2T. Choose f as in

(2.1) and multiply (3.5) by the integrating factor



Since T  R we can use (1.1) to bound A by K0/2 in (3.5) and, using the
definition of y, obtain (2.2).

If 0  p  2 we replace (1.4) by a hypothesis lacking explicit variational
meaning, namely, that for all ~’ > 0 we have

Reasoning exactly as in the case p > 2 but with (3.6) replacing (1.4) we
find that the term

only gets bigger if we replace it by the term

Thus we eventually arrive at the inequality

Notice that since y is defined to have compact support in B the right-hand
side of (3.7) is bounded independently of 6’ if f satisfies (2.1). Thus we can
let 6’ tend to zero inside the integral on the left. Obviously

for p E (0,2), so

which for 0  p  2 is bounded by as ~~ -~ o,



This completes the proof of Lemma 2.3, which in turn proves Theorem 2.1.
We conclure by proving Lemma 2.4 (and thus Theorem 2.2).
We require two classical lemmas :

LEMMA 3.1. (Serrin ~6~). Denote by the class of smooth
functions which satisfy 0  ~  1 and vanish in some neighborhood of _
the compact Let ~ have zero s-capacity for 1  s _ n. Then there
exists a sequence of . functions contained in U(~~ such that --~ 1
a. e. --~ o.

LEMMA 3.2. (Carlson [7]). - Let the compact set 03A3 have Hausdooff
dimension m, 0  m  n - 1. Then the s-capacity of ~ is zero, where
s = n - m - ~p for ~p in the interval (0, n - m -1).

In proving Lemma 2.4 we argue just as in the proof of Lemma 2.3, but
we choose

where 7/ = ~"~ is the sequence of Lemma 3.1. In computing (3.2) we obtain
on the right an extra term involving the derivative of ~"~; this term can be
estimated

which tends to zero as v tends to infinity. The remainder of the proof of
Lemma 2.4 is identical to that of Lemma 2.3.

This work was partially supported by a grant from the Naval Academy
Research Council for the summer of 1988. I am grateful to F-H. Lin for
suggesting that the result should be true in a larger interval than p > 2.
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