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Asymptotic estimates in Weighted
Hölder spaces for a class of

elliptic scale-covariant
second order operators

PIOTR T. CHRU015ACIEL(1)(2)

Annales de la Faculté des Sciences de Toulouse Vol. XI, n° 1, 1990

On derive des estimations a priori dans les espaces de Holder
a poids pour des operateurs elliptiques de second ordre "covariant" sous

, 
l’action des transformations de changement d’échelle, r ~ Ar. On démontre
l’existence des solutions du "probleme de Dirichlet exterieur modulo un
nombre fini d’harmoniques spheriques", ce qui est un résultat utile lorsqu’on
s’intéresse au probleme d’existence de solutions de l’équation avec source
independamment des valeurs au bord de la solution (l’alternative habituelle
de Fredholm ne garantit pas existence de solutions pour toute source).
Finalement les résultats obtenus sont utilises pour etablir un développement
asymptotique fin de certaines solutions de l’équation de p-Laplace pour des
varietes asymptotiquement euclidiennes. -

ABSTRACT. - Pointwise asymptotic estimates for solutions of second
order elliptic equations of a certain form are derived.

1. Introduction

It as been recently observed [Ki] [JK] that the existence of solutions of
the p-Laplace equation.
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satisfying certain conditions allows an elementary proof to the positive
energy theorem in general relativity. In order to carry out this proof one
needs certain fine asymptotic estimates on the behaviour on the solutions
of (1.1) at infinity. The proof of such estimates, presented in section 4 of
this paper, requires an asymptotic estimate on the behaviour of solutions
of linear equations of the form(*) :

A sharp estimate for equations of this type does no seem to exist in the
literature unless p = 2 [Me]. Equations of this type have been studied by
Bagirov and Kondratev [BK] in weighted Sobolev spaces, their results can
be used to obtain pointwise estimates via weighted embeddings theorems
which, however, are not sharp as far as the pointwise decay (or growth) rates
are concerned. If p = 2 pointwise estimates of the appropriate type have
been obtained by N. Meyers [Me] (cf. also [CSCB] and references therein
for a restricted range of decay rates but for more general operators). The
object of this paper is to present an elementary argument which leads to a
priori estimates for solutions of equations of the form:

a E R+, b, c E R, As is the Laplace-Beltrami operator on a compact
Riemannian manifold S (in the case of interest, eq. (1.2), S is a sphere).
In the particular case a = 1, b = n - 1, c = 0, ~5’ _ (1.3) is just
the Laplace equation and we recover the results of Meyers [Me], using an
apparently much simpler method. The idea of the proof given here is to
solve (1.3) by explicit integrals for a finite number of terms in the harmonic
decomposition of p and to use the comparison principle for an "energy
integral" to show that the remainder also has the required asymptotic
properties. When (1.3) is the Laplace equation, it is well known that for p
decaying as r-~, k-integer, k > n - 2, there will in general be logarithmic
terms in /; therefore it is natural to consider a logarithmic weight for p as
well since in some applications on needs to iterate (1.3). Our main result
can loosely be described as follows: if

(*) A comma denotes partial differentiation, the summation convention is used

throughout.



there always exists a solution of (1.3) satisfying:

If we know the spectrum of S, the q + 2 exponent in the logarithm above
can be replaced by q -1- 1 or by q under certain conditions. In section 2 the
asymptotic estimates are derived. In section 3 existence of solutions of (1.3)
satisfying (1.4) is established using the results of section 2. In section 4 the
results of section 2 are used to obtain the desired asymptotic estimate for
solutions of the p-Laplace equation.

2. Asymptotic Estimates

Let r E ~ let S be a compact Riemannian manifold(*), let

H = 1, oo) x S, let a twice differentiable function f satisfy:

a E R+, b, c E R. Let be a complete orthonormal set of eigenfunctions
of 0394S03C6i = -03BBi03C6i, 03C6i ordered in such a way that 03BBi  03BBj for i  j. . Let

denote an eigenspace of -L~s, with the indices ordered with increasing
eigenvalues, let Ok = Ui _ k let Vk be the orthogonal complement of Ok
(in L2(S)). Associated to the eigenvalues of -As are the "characteristic
decay exponents ~c~ " :

For x = (r1,p1), y = (r2,p2), we set |x-y|2 = (r1-r2)2+d(p1,p2)2, where
d is the Riemannian distance on S’. For k ~ N U {0}, 03B1, q E R, A E (0,1),
we define:

(*) We assume that S has no boundary. All the results presented here will be valid if
f is assumed to vanish on aS, when non-empty.



- 
, Ca - Ca > o, - C« > 9’ , - C‘« - C‘« , o . Wk

denotes the standard Sobolev space, L p - . The letter C denotes
a generic constant which may vary from line to line. S is assumed to

be equipped with a smooth Riemannian metric for simplicity, d~c is the

Riemannian normalized (to one) measure on S. f will be said harmonic if
Lf = 0.

We shall need the following elementary result :

LEMMA 2.1. - Let p - pZ(r)cpi (no summation over i), with 0394S03C6i -
- 03BBi03C6i, let the function fZ be given by:

(*) (2.4) and (2.5) are clearly special cases of (2.3), it is however useful to write them
explicitly for the sake of clarity of the proof of theorem 2.1. A similar remark
applies to (2.6)-(2.8).



The function f = fi03C6i satisfies L f = p.

The following computational lemma shows that under appropriate con-
ditions the functions + In are super- and sub-solutions of the

equation (2.1).

LEMMA 2.2. - Let a > 0, b, e, a, q E R. . There positive constants
Cl (a, b, e, a, q) and C2 (a, b, e, a, q) such that, if:

then:

We shall also need the following well known result:

LEMMA 2.3. - For 03C6 E W1,2(S) n Vk we have:

LEMMA 2.4. - Let Qo = [1, Ro] ] x S or let no = [1, 00) let f
s atis f y in 03A90:



There exists mo( a, b, c, 03BBi, 03B1,03B2) such that the condition:

If moreover 03C1 ~ Ck,03BB03B1-2,q, f|{1} S=03C6 ~ Ck+2, 03BB(S), and f|{R0} S = 0 if
no = [1 , Ro] x S, then:

C3( a, b, c, /?, ~, A), ~4(0,6, c, k , c~ /3, q , A). .
C3 and C4 are 03B2-independent if H = [ 1, J?o ] x 5’.

Proof. - If 03B1  0 or 03B2 ~ 0 let  = 0, if 03B1 > 0 and 03A90 = [1, R0]  S let
= a + 1, if a > 0 and no = [ 1, ~) x S let 03B2 = 03B2. The function /= 

satisfies an equation of the form (2.1):

with: O

and we have used lemma 2.3 and (2.11 ) to estimate the  0394S term,

together with 2 ~ -2 2-2r2, so that :



If > {S[a(X+ 1) +&#x26;] +2?+ 1}/~ lemma 2.2 and the comparison
principle yield (F - 0 as r 2014~ oo if Ro = oo):

For 4  R  Ro /4 and r E ( 1 /2 , 2) consider:

f ~ satisfies L f R = pR with

and (2.12) implies:

Interior L2 estimates [Se] and Schauder theory [GT] lead to:

(2.13) and Loo or up to boundary estimates [Se] [GT] give:

These estimates combined with the rescaled version of (2.13) yield the
claimed result.

We shall state in detail our estimates only when all the ~i and ~i are
distinct (cf. remark 4 below):

THEOREM 2.1. Suppose that V i, ~ p.i. . ~et f be a twice

differentiable function satisfying:



a, ~, q E R, and if a E we shall suppose q ~ 1, if ~3 E we

shall suppose q > 0. f can be written in the form: 

where:



where the constants Clog and Co depend on a, b, c, a, q and the spectrum of
,S’{*~. If p E Ca’~2 then:

.Remark : :

1) The coefficients At are neither determined by the asymptotic condi-
tion f = O(r~) ’ ’ nor by f .

2) It should be stressed that all the sums in the statement of theorem 2.1
are over finite sets of indices.

3) If any sets of indices over which the summations are perfomed above
are empty, then the corresponding term is of course zero. In particular,
if ~a} n there are no higher powers of Inr in f. . It must

also be noted that though the r dependence of the higher log terms
is fairly arbitrary - dictated by the behaviour of p the "angular"
dependence of these terms is rigidly fixed.

4) If for some io we have = then f will differ from (2.14) by a finite
number of terms of the form (2.6)-(2.8), with radial behaviour which
can "pick-up" up to two powers of Inr more than p has if a the
details are straightforward and are left to the reader. 

°

5) and q = -1 the function flog will be replaced by flog(log),
with (2.22) replaced by:

6) If ,Q E and q  0 the results remain valid except (2.18), where
no terms with = {3 will appear in the summation.

Proof. - Let m0 be given by lemma 2.4, let i = 1, ... , J, be an
orthonormal basis of Omo? let:

~*~ In fact only a finite number of ~i’S matters.



The function:

satisfies the equation:

therefore by lemma 2.4 ( f f  + In r)q and to achieve our

proof, it is sufficient to estimate the finite number of terms E We
have:

therefore the are given by lemma 2.1. The set I = N n [0, J] can be
partitioned as follows:

If a ~ the sets , a 
= 1, 2, 3, are empty and it is sufficient to

consider the first three sets above. For i E I~ the are of the form (2.5)
with f i === 0, let f p === each term satisfies (2.23) therefore
their finite sum also will. For i E Ip the fi’s are of the form (2.4), let fP =

the constants fi are uniquely determined by p and f and

again each t erm satisfies ( 2. 23 ) . For i E Iii the f i’s are of the form ( 2. 5 ), let
f p = [integrals in (2.5)] fH = [the fi terms in (2.5)] 03C6i,

f p satisfies (2.23), and an elementary calculation gives (2.19). For i E IH
are of the form (2.3), let f p = (integrals in (2.3)~ let

IH = ~ f ~ terms in (2.3)] If a ~ we are done by setting

f p = f p + f p + f P -~- f p -f- f , and from what has been said the estimates



follow. For i E the fi’s are of the form (2.3), and one has to add to f p
the function:

J H is modified by the appropriate harmonic terms from (2.3), and we set:

Similarly,

.flog = f1 log + f2 log + f3 log’ The estimates for flog’ fp, ~ .fH and follow
directly from the estimate on f and the representations (2.3)-(2.5), the
higher order C~~~‘ estimates follow from Schauder’s theory and a scaling
argument, as in the proof of lemma 2.4.

3. An Existence Theorem

THEOREM 3.1. Let p E Ca’~2 , q > -1, let I = ~i > a~, let

.K = {0} if I = Ø or K = span{03C6i, Z E I}, and let 03C6 E Ck+2,03BB(S).
a) There exists a constant C( a, b, c, k, 03BB, a, q, Os) dnd a function

J k-~2,a t. f: 
.

f E C03B1,q+2 s a tis fying:



and satisfying:

b) If the decay exponents ±i dre all distinct (tJ i , +i ~ -i) or if
p7 = i but a ~ ~ci , then f E Ca~2’1 dnd:0 0 0 ,q+

c) If b~ i , ~ and a ~’ then f E and:

.Remark : :

1) We are not making any hypotheses about either the sign or the size of
c, which allows for many solutions with the same boundary value and

prescribed asymptotics to exist. If, however, 7i = {z :  a~ = (~,
then f is uniquely determined by (3.1) and (3.2). If q > 0 the

condition: 
,

can always be imposed and together with (3.1)-(3.2) renders f unique.

2) (3.2) guarantees the existence of a solution with reasonably well
controlled asymptotic behaviour even if we do not know anything
about the spectrum of The existence result above has also been

mentioned in [BK] (cf. remark 2 in [BK]).

3) (3.1) essentially says that we are free to specify f up to a finite

number of spherical harmonics Spi, i E I.

4) If q = -1 points a) and c) still hold, but b) needs_ not hold if

a E - in this case one can derive a 1-+ In( 1 + In r )~ weighted
estimate for f .

5) For q  -1, q ~ -2, a solution will always exist if I is replaced by
I’ = {z : > a~, (3.2) and point c) holding. If the ~C~ are distinct
(3.3) will hold as well.



6) If q = -2 theorem 3.2 still holds with 7 replaced (cf. remark 5) if
all the ±i are distinct or = in the latter case (3.2) has,
however, to be replaced by a [l +ln(l +Inr)] weighted estimate.

Proof.- Let mo be given by lemma 2.4, let {~}, z = 1,..., J be any
orthonormal basis of let:

let p = p - ~ by construction E Ur1", . Let be the

Banach space of functions satisfying:

with the norm induced from . If c  0 the problem

has a unique solution for all R > 1, where PO~ is the orthogonal projectionmo

(in L2(S)) on This is also true for c > 0 which can be established by
applying the continuity method [GT] in to:

the appropriate estimates and injectivity follow from lemma 2.4. Because
the estimates of lemma 2.4 are R independent one can construct, using the
family fR, a solution f : [ 1, oo) x ,5‘ --> R of:

which satisfies the estimates of lemma 2.4. By lemma 2.1 we can also find
functions Ji satisfying L( fiSpi) = 03C1i03C6i, i = l, ... , J, and to achieve the proof
we have to show that the fi’s can be chosen in a way consistent with (3.1 )-
(3.2). We shall analyse the terms in detail only if V z, , -i and
if q > 0, a ~ the general result is obtained along similar lines. For
i ~ J such that  a we take fj given by (2.3). We have:



If E R set f Z = 0, f z given by (3.5). If 0 the requirements
f i E iR, fj a E R and (3.5) determine uniquely. For i  J for which

> a and  a we take fj to be of the form (2.4) and the coefficient
f Z is uniquely determined by cp and p. Finally for i  J for which E R

and > a we take fi of the form (2.5) with 0 - this does not
allow us, however, to fulfill the p) = ~- The case

> a, 0 is analyzed in a similar way. The a priori
estimates on f = f -~- ~ follow from construction, the higher derivative
estimates follow again by a scaling argument.

4. An Asymptotic Estimate For p-Harmonic Functions

In this section we shall suppose that 9ij is a Riemannian metric on

Rn B B ( 1 ), asymptotically euclidean in the following sense:

When gi~ _ ~2~ the p-Laplace equation in B(l):

with the condition:

the level surfaces of f are, asymptotically, nested spheres

admits as solutions the functions:

For p = dim M = 3 it has been shown in [Chl] (cf. also ~Ch2~)~*~ that under
(4.1)-(4.2) there exists a solution f of the problem (4.3)-(4.4) satisfying:

~*~ These results are valid with no modification whatever n for p = n and in fact the

same methods lead to similar results for other values of p, cf. also [KV].



and f E Ck+1,03BB-~([R0, oo ) X Sn - 1) for some Ro. We shall show that the
estimate on the behaviour of f can be made precise. More generally let us
consider:

THEOREM 4.I. - Let f satisfying (£.5) ôe p-harmonic in R’° ) B(I), let
g; satisfy (4. 1)-(4.?).

1) if 03B1  03B2(p, n) = (p-n)2+4(p- 1)(n- 1)- n + p 2(p-1),

then  ~ Ck+1,03BB p-n p-1-03B1 , plus eventually a constant if (p - n p - 1) ) - e > 0 and

( ) - 03B1  0.

2) if a = Q(p,n), then f e C a , , plus eventually a constant if

() - e > 0 and () - 03B1  0.
3) if a > Q(p,n), then f e C, , plus eventually a constant if

_ ~ ~ ~~#() - ~ ~ 0 and () - 03B2  0.

Remarks : :

I ) In the physically relevant case n = 3 one considers a between 0 and I .
If p = 3 theorem 4.I implies:

2) The estimates of theorem 4.1, case 1), are sharp, which is seen by
considering gi~ to be the flat metric written in a non-orthonormal

asymptotically flat coordinate system, say y2 = xz + ~z, Jt e .

The functions given by (4.4), when expressed in terms of the
new coordinates, will exhibit the behaviour described in theorem 4.1.
When p = n = 3 the estimates of case 2) are sharp as well, and it
can be shown that the coeflicient of the In r /r term is the mass of the
metric.



Proof . (4.5) and the p-Laplace equation:

imply an equation of the form:

A straightforward though somewhat tedious calculation shows that:

(4.6) written in spherical coordinates gives:

the characteristic decay exponents are readily calculated to be:

(cf. [BGM]) iterating theorem 2.1 if necessary a finite number of times our
claim follows.
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