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Some 2-type submanifolds and applications (1) (2)

BANG-YEN CHEN(3) and HUEI-SHYONG LUE(4)

Annales Faculte des Sciences de Toulouse Vol. IX, n°1, 1988

Dans cet article nous demontrons que une sous-variete de type
2 avec Ie champ de vecteurs de courbure moyenne parallele dans l’espace
euclidien est spherique ou nulle. En utilisant le resultat nous donne une
classification des surfaces de type 2 avec le champ de vecteurs de courbure
moyenne parallele dans l’espace euclidien. De plus nous etudions les sous-
varietes de type 2 et nulle.

ABSTRACT. - In this article we prove that a 2-type submanifold M in a
Euclidean space with parallel mean curvature vector is either spherical or
null. By applying this result we obtain a complete classification of 2-type
surfaces with parallel mean curvature vector. We also study null 2-type
submanifolds.

1. Introduction

Let M be a connected (not necessary closed) n-dimensional submanifold
of a Euclidean m-space E"~. Then we have the Laplacian operator A of
M (with respect to the induced metric) acting on the space of smooth
functions. By applying the Laplacian operator, we have the notion of finite
type submanifolds introduced by the first author (cf. [3,4]). The Laplacian
operator A can be extended to an operator, also denote by A, acting on
Em-valued smooth functions on M in a natural way. For a submanifold M
in Em, the submanifold M is said to be of k-type if the position vector x of
M can be expressed in the following form :
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for some natural number k where c is a constant map, and a~,’ " , are

non-constant maps. A submanifold M is said to be of finite type if it is of
k-type for some natural number k. Otherwise, M is said to be of infinite
type. A k-type submanifold is said to be null if one of the a=t ; t = 1, ~ ~ ~ , k,
is null.

A submanifold M is a minimal submanifold of Em if and only if M is of
null 1-type, that is, the position vector x of M takes the following form:

Moreover, by a result of Takahashi, a submanifold M in is a minimal
submanifold of a hypersphere of Em if and only if the submanifold M is of
non-null 1-type, that, is, we have 

’

It is well-known that 1-type submanifolds in Em have parallel mean curva-
ture vector.

In section 2 we prove that if a 2-type submanifold M in Em has parallel
mean curvature vector, then either (a) M is spherical or (b) M is of null
2-type, i.e., the position vector x of M takes the following form :

In particular, this result shows that every closed 2-type hypersurface in
a Euclidean space has non-constant mean curvature. In this section, we
also show that a closed 2-type surface in E"’ is the product of two plane
circles with different radi if and only if it has parallel mean curverture
vector. In section 3, we prove that every null 2-type submanifold in E"~ with
parallel mean curvature vector is an a-submanifold. By applying this result
we obtain a complete classification of 2-type surfaces with parallel mean
curvature vector. In the last section, we will apply our previous results to
show that a surface in E3 is an open portion of a circular cylinder if and
only if it is of flat null 2-type.

2. 2-type submanifold in Em

For an n-dimensional submanifold M in Em, we denote by h, A, H, V
and D, the second fundamental form, the Weingarten map, the mean



curvature vector, the Riemannian connection and the normal connection of
the submanifold M, respectively. A submanifold M is said to have parallel
mean curvature vector if DH = 0 identically. For a hypersuface M, : the
parallelism of mean curvature vector equivalent to the constancy of mean
curvature a = If the submanifold M is closed (I.e.,M is compact and
without boundary), then every eigenvalue At of A is > 0 and the only
harmonic functions on M are constant functions. In this case, the constant

vector c in the spectral decomposion (1.1) is nothing but the center of mass
of M in E"’. A submanifold M of a hyperphere sm-l of E"~ is said to
be mass-symmetric if the center of mass of M in Em is the center of the
hyperphere in E"~. In this section we study 2-type submanifolds in a
Euclidean space with parallel mean curvature vector.

THEOREM 1. - Let M be a ,~-type submanifold of Em. If M has parallel
mean curvature vector, then one of the following two cases occurs :

(a ) M is spherical;

(b ) M is of null ,~-t ype.
In particular, if M is closed, then M is spherical and mass-symmetric.

Proo f . Let X Y be two vector fields tangent to M. Then, for any fixed
vector a in E"~, we have

where , > denotes the inner product of Em. Let ei," -, en be an ortho-
normal local frame field tangent to M. Then equation (2.1) implies

where

is the Laplacian of H with respect to the normal connection D. Regard
VA H and ADH as (I,2)-tensors on M and we set

Then we have



Let en+1, ..., em be an orthonormal normal basis of M such that is

parallel to H. Then we have - - - - - . -

where

and

is called the allied mean curvature vector of M in E"’. Combining (2.2),
(2.4), (2.5) and (2.6), we have the following useful formula [3, p.271] :

Moroever, we also have the following [4,5]

Therefore, if DH = 0, then we have d D H = tr(V AH) = 0 which implies

Now, assume that M is of 2-type in E"B Then the position vector x of Af
in E"~ has the following spectral decomposition:

From (2.10) we have

On the other hand, we also have

Therefore, by using (2.9),(2,11),(2.12), we obtain



From (2.13) we have either 03BBp03BBq = 0 or x - c is normal to M at every point
in M. If ApB = 0, then M is of null 2-type . If x~ - c is normal to M,
then  x - c, x - c > is a positive constant. In this case, M is contained
in a hypersphere centered at c. In particular, if M is closed, then
because Ap and Aq are positive, M cannot be null. Moreover, in this case,
because c is the center of mass of M in Em, M is mass-symmetric in 

(Q.E.D.)

Remark 1. For a closed n-dimensional 2-type submanifold M in E"~
with X = c + xp + xq, ~p  aQ, the first author had shown that if M lies
in a unit hypersphere of E~", then the mean curvature function satisfies
a2 > moreover, if a2 = ap/n at a point u E M, then DH = O at u
and M is speudo-umbilical at u (i.e., the Weingarten map with respect to
H is proportional to the identity map).

COROLLARY 2. Every ,~-type closed hypersurface of has non-
constant mean curvature.

This corollary follows immediately from Theorem 1, since for a hypersu-
face the constancy of mean curvature is the same as the parallelism of mean
curvature vector.

Remark 2. This corollary was also obtained independently by Garay.

THEOREM 3. Let M be a closed ,~-type surface in Then M has
parallel mean curvature vector if and only if M is the product of two plane
circles with different radii.

Proof. - If M has parallel mean curvature vector, then M is one the
following surfaces (cf.[2,p.106]): (i) a minimal surface of a minimal
surface of a hypersphere of Em, (iii) a surface in a 3-dimensional linear
subspace E3 or (iv) a surface in a 3-sphere S3 in a 4-dimensional linear
subspace. For the first two cases, M is of 1-type which contradicts to the
hypothesis. If M lies in a 3-dimensional linear subspace, then, by Theorem
1, M is a 2-sphere which is of 1-type again. If M lies in a 3-sphere, then
by parallelism of H, we see that the mean curvature is constant and so M
is mass-symmetric. Consequetly,according to Theorem 4.5 of [3,p.279], we
know that M is the product surface of two plane circles with different radii.

(Q.E.D.)



3. Null 2-type submanifolds in Em

Let M be an n-dimensional null 2-type submanifold of Em. Then we have
the following spectral decomposition of the position vector x of M in E’’~ : :

where c is a constant vector, and zo and rq are non-constant maps from M
into Em.

LEMMA 4. - If M is a null 2-type submanifold in then we have

(~~ tr(VAH) = 0,

Proof . Since M is of null 2-type, equation (3.1) implies

Therefore, by applying formula (2.7), we obtain

Because is tangent to M and all other terms in (3.3) are normal
to ~, formula (3.3) implies the lemma.

From Theorem 1 and Lemma 4 we have the following.

THEOREM 5. - Let M be a ,~-type submanifold in E"z with parallel mean
curvature vector. Then either (a) M is spherical and non-null or (b ) M is
a 2-type a-submanifold with ~An+1~2 = 03BBq which is a nonzero constant.

Proof . This lemma follows form Theorem 1 and statement (2) of lemma
4 , since the parallelism of H implies = 0.

Now, we apply Theorem 1 and Lemma 5 to obtain the following generali-
zation of Theorem 3 which gives a complete classification of 2-type surfaces
with parallel mean curvature vector.

THEOREM 6. - Let M be a surface in E~ with parallel mean curvature
vector. Then M is of 2-type if and only if M is one of the following two

surfaces:

(a) an open portion of the product surface of two plane circles with

different radii ;



(b) an open portion of a circular cylinder.

Proof . Let M be a 2-type’ surface in E’n with. parallel mean curvature
vector. Then M must lies either in a 3-dimensional linear subspace with
constant mean curvature or in a hyperphere S3 in a 4-dimensional linear
subspace of Em with constant mean curvature (cf.[2,p.l06]). According to
Theorem 1, M is either spherical or null. We consider these two cases
separately.

Case (1~: M is null. In this case, Theorem 5 implies that is a

nonzero constant. Since M either lies in a 3-dimensional linear subspace or
lies in a 3-sphere ,S’3r the constancy of is equivalent to the constancy
of the length of the second fundamental form Because the mean
curvature is also constant, the equation of Gauss implies that M has
constant Gaussian curvature. Consequetly, by applying Proposition 3.2 of
[2,p.ll8], we conclude that M is either an open portion of the product of
two plane circles or an open portion of a circular cylinder. In the first case,
the radii of the two plane circles must be different, since M is of 2-type.

Case (2): M is non-null and M lies in a 9-sphere 83. Without loss of
generality, we may assume that 53 is of radius one and centered at the origin.
Since the mean curvature vector H of M in Em and the mean curvature
vector H’ of M in 53 are related by H = H’ - x, formula (2.13) gives

Because M is non-null, this implies that  ~, c > is a constant function
on M. If c ~ 0, then M is a small hyperphere of 83 which is a contradiction.
So we obtain c = 0. Consequently, by (3.4), we find

Thus, by the constancy of the mean curvature and the equation of
Gauss, the Gaussian curvature of M is also constant. Hence, by applying
Proposition 3.1 of [2, p.116], we know that the surface M is flat. From these
we may conclude that M is an open portion of the product of two plane
circles with different radii.

The converse follows from Theorem 4.5 of [3,p.279] and Lemma 2 of [6].



From Theorem 6, we obtain the following new characterization of circular
cylinders..

LEMMA 7. Let M be a surface in ~3. Then M is an open portion of
a circular cylinder if and only if M has constant mean curvature and is of
2-type.

4. Null 2-type surfaces.

In this section we study null 2-type surfaces in E3. Let M be a null 2-type
surface in E3. According to Lemma 4 we know that for such surfaces we
have

Assume that the mean curvature of M is non-constant. We put U = {u E
M : graded =~ 0 at u~. Then U is non-empty open subset of M. By formula
(2.8) and condition (4.1), we have

where V f denotes the gradient off. Let H = ae, where a = is the mean
curvature and e a unit normal vector of M in E3. Then, by the definition,
we have tr ADH = A(Va), A = Ae Therefore, (4.2) implies the following.

LEMMA 8. - If M is a null 2-type surface in E3, then, on U, ~03B1 is an

eigenvector of the Weingarten map A with eigenvalue add a.

From Lemma 8, we see that A has eigenvalues add a and 3a on U. Let
e}, e2 be an orthonormal local frame field on U such that ei is parallel to
Va. Then we have

Since we have Aee = -aei and Ae2 = 3ae2, (4.3) and Codazzi’s equation
imply

where we put

On the other hand , Lemma 4 implies



By using (4.4) we may obtain

Thus, by applying (4.7) and (4.8), we may obtain

From (4.4) we also have

Combining (4.9) and (4,10), we find

Now, we need another expression of the last term of (4.11 ). By the definition
of the curvature tensor R of M and the connection form, we may obtain

where we have used formula (4.4). By using the definition of Lie braket
and (4.4), we may show that the last term of (4.12) is equal to (c,~2 (e2 )) 2.
Therefore, from (4.12), we may get

Combining (4.11 ) and (4.13) we find

From (4.6) and (4.14) we obtain

If the closure of U is a proper subset of M, then, according to Corollary
7, a connected component, say V, of MBclosure (U) is an open portion
of a circular cylinder. And hence the mean curvature a on V is nonzero
constant. Moreover, according to Lemma 5, a2 = Aq on V. On the other



hand, when a point in U is approaching to V, the mean curvature function
a is approaching to 03BBq which is nonzero. Therefore, we also.have a2 = 03BBq/14
on M~closure (U) by virtue of (4.15). This is impossible unless either U is
empty or closure (U) = M. Consequently, by applying Theorem 6, we have
obtain the following.

LEMMA 9. Let M be a null 2-type surface in E3. Then either (a) M
is an open portion of a circular cylinder or (b) cx2 is non-constant almost

everywhere, i. e., closure (U) = M.

By applying Lemma 9 we way obtain the following.

LEMMA 10. Let M be a null 2-type surface in E3. If M is not an open
portion of a circular cylinder, then the Gaussian curvature G = -3a2  0

and G ~ 0 almost everywhere.

Proof . Let M be a null 2-type surface in E3 and M is not an open
portion of a circular cylinder. Then, by Lemma 9, the mean curvature
function is non-constant almost everywhere. Moreover, from Lemma 8, we
know that the Gaussian curvature G of M is equal to -3  H, H > on U.
So, by continuity, we obtain G = -3a2  0 on the whole surface M and

G ~ 0 almost everywhere.

By applying Lemma 10 we have the following characterizations of circular
cylinder.

THEOREM 11. Let M be a complete null 2-type surface in E3. . Then M
is a circular cylinder if and only if one of the following conditions holds :

(a ) ~ q > 0

(b ) a2 > const > 0 ;

(c ) a2 has a relative maximum;

(d) G has a relative minirnum;

Proof . If M is a circular cylinder. Then it is easy to verify that M
is a null 2-type surface with zero Gaussian curvature G, non-zero constant
mean curvature, and positive aq (cf. ~6~ ). Now, we prove the converse.

(a) Let M be a complete null 2-type surface in E3 with ~q > ©. If M is not
a circular cylinder, then, according to Lemma 10, the Gaussian curvature
G of M satisfies
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Since a is non-constant almost everywhere, formula (4.15) implies

From (4.16) and (4.17) we obtain G  -3aq/14  0. On the other hand,
a well-know result of Efimov [7] (see also [8]) says that no surface can be
immersed in a Euclidean 3-space so as to be complete in the induced metric
with Gaussian curvature G ~ const.  0. And hence we conlude that this

is impossible. Consequently, M must be a circular cylinder in E3.

(b) Assume that M is a complete null 2-type surface with Ac2 > const. >
0. Then, from Lemma 10, we see that either M is a circular cylinder or
G  const.  0. Hence, by applying Efimov’s theorem, we see that the
later case is impossible.

(c) Let M be a complete null 2-type surface such that a2 has a re-
lative maximum at a point u in M. If a # 0 at u, then formula

(4.15) implies that 14a2 = Aq > 0. Thus M is a circular cylinder by
part (a). The remaining part of this theorem follows from Lemma 10.

(Q.E.D.)
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