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A nonlinear evolution equation
modelling the Marangoni effect :

existence of solution and numerical methods

ALFREDO BERMUDEZ(1) AND CARMEN RODRIGUEZ(1)

Annales Facu1té des Sciences de Toulouse Vol. VIII, n°2, 1986-1987

Dans cet article on démontre un théorème d’existence et
unicité pour une equation d’évolution abstraite, avec un operateur non-
linéaire dependant du temps. Le résultat s’applique à une equation aux
dérivées partielles modelisant l’effet Marangoni pour un fluide non-new-
tonien. On présente aussi une méthode de resolution numérique qui est
appliquée à des exemples tests.

ABSTRACT.-Existence and uniqueness of solution of an evolution equa-
tion with a nonlinear operator depending on time is proved. The result is
applied to a boundary value problem modelling the Marangoni effect in a
non-newtonian fluid. Numerical solution is also considered.

1. Introduction

In this paper we prove an existence and uniqueness theorem for a
nonlinear evolution equation in a Hilbert space of the type

where A is a nonlinear monotone operator, p is a lower semi-continuous
convex function, B is a bounded linear operator and F is a function.

This type of equations appears when considering a mathematical model
of the Marangoni effect in a non newtonian viscous fluid.

(1) Departamento de Matematica Aplicada, Facultad de Matematicas, Universidad de
Santiago de Compostela, Santiago de Compostela - Espagne



Evolution equations with nonlinear operators depending on time have
been studied in many articles : KATO [9], CRANDALL and PAZY [8], WAT-
ANABE [14], PERALBA [12], KENMOCHI [10]; ATTOUCH and DAMLAMIAN
[1], [2], BERMUDEZ, DURANY and SAGUEZ [6].

However, the results given in these papers cannot be applied to our situa-
tion. In particular, the assumptions required in ATTOUCH and DAMLAMIAN

~1~ are not satisfied in the case of the Marangoni effect.
In the present paper we. first recall a mathematical model for the

Marangoni effect in a non-newtonian viscous fluid and obtain a variational
formulation which corresponds to a particular case of (1.1).

Then we prove an existence and uniqueness theorem. For this particular
case we approximate the problem and use existence results from ATTOUCH
and DAMLAMIAN [1]. Some a priori estimates allow passing to the limit.

2. The physical problem

If a small drop of a soluble or partially soluble liquid having a smaller
surface tension than that of water is put on a free water-air interface, a

velocity field develops because of the surface tension gradient. This is the
most simple manifestation of the Marangoni effect.

From the mass and momentum conservation equations, assuming cylin-
drical symmetry and after some simplifications, RUCKENSTEIN, SMIGELSCH I
and SUCIU [13] obtained the following mathematical model for the radial
velocity u :

where v and p are given constants, and F is a given function all depending
on the fluid (the case p = 2 corresponds to a newtonian fluid) .

Note that if u is a solution of (2.1), -1£ is ’also a solution. Hence, we do
not have uniqueness.

On the other hand and from the physical point of view we are interested
in positive solutions, and any positive solution of (2.1) is a solution of the

problem :



Find a function u such that

Where G is the maximal monotone operator (see for instance BREZIS [7])
in R given by 

" ...

Conversely, any solution of (2.2) is a positive solution of (2.1). .

Multiplying by test functions and integrating by parts, the following
variational formulation can be obtained.

Find u such that

where

The variational inequality (2.4) is a week formulation of problem (2.2). .

3. A nonlinear differential equations : :
. existence of solution .

Let V be a reflexive separable Banach space. Let E and H be Hilbert
spaces. We shall assume that V is dense in H and that the inclusion of V



in H is compact. If we identify H with its topological dual, we have the
following classical inclusions :

Denote by ~~ ~~ and ~~ ~~# the norms of V and Y~, respectively, and by ~ ~ [
the norm in H.

In addition, we shall suppose :

(Hl) B E L(E,V’)
(H2) cp : E -. is a lower-semicontinuous (l.s.c.) proper and

, . convex function.

(H3) ~ : : V -i R is a differentiable functional in the Gateaux sense.

We consider in V a seminorm [ ] that satisfies

(H4) There exists a > 0 and /~ > 0 such that

(H5) There exists a > 0 such that

(H6) f E and uo E H

(H7) 1m dom (~p) # 0

(H8) F E with F(t) > 0 Vt > 0 and F(0) = o.
We now consider the following problem : find a function u such

that

where B* is the adjoint operator of B and A E the canonical isomorphism
from E into E’.

Remark 1.2014 If we take V = ~x E W l~p(~), = 0~ with f~ =

(0, L), , H = LZ (~), E = R, B given by : :



f = 0, uo = 0, and p and § defined as in (2.5) and (2.6) respectively, then
the problem (3.I) becomes the variational inequality (2.4) .
We shall prove the following result.

- 

" ’ 

...... ,

THEOREM I. - Under the hypothesis (Hl ) - (H8), there exists a unique
element u solution of (8.I ) such that

Moreover if uo E dom (~p~, then du~dt E L2(O,T;H). .

To prove this theorem, we will use the following result from ATTOUCH
and DAMLAMIAN [1] : :

THEOREM 2.- Let H be a real Hilbert space and .)) a family
of I.s.c. proper convex functions from H in (-oo, satisfying :

Then, given uo E D and f E LZ (0, T; H~, , there ezists a unique classical
solution of 

.

Moreover

If no E D then

and the map t --~ ~ (t, u(t)) is absolutely continuous on ~0, T ~ .

Remark 2. In (3.2), ~03C8 denotes the subdifferential of 03C8 with respect
to the second variable. Recall that



Remark 3.- Notice that the assumption (II) is not satisfied by the
functional

because F(0) = 0. Therefore, theorem 2 cannot be directly applied to the
variational inequality (3.1~.

Proof of Theorem 1. - Existence Let D be defined by

If uo E D then there exists a sequence of elements in D such that

uon = uo. .

We define the function F~ by

and the functional ~"’ by

From (H5) we have

Thus, hypothesis (II) of theorem 2 holds and we can conclude that there
exists a unique classical solution u" of

Moreover

and the map t -~ r/~" (t, u" (t)) is absolutely continuous on ~0, T~. .

A priori estimates I. - We first give the following.

LEMMA 1.- Let v E Im dom (cp) (v exists by (H7)). Then,
the function



where y E is I.s.c. proper and convez.

Moreover Sp > 0, = 0, and ~ is given by

Since un is a solution of (3.10), we have

Let z E V such that = v. For z = z, add to both sides of the

inequality (3.12) the term - z~. Since - z~ =
0, we can add it to the left hand side of (3.12). .

Then we integrate betwen 0 and s > 0. According to lemma 1 and taking
into account and (H5), we obtain

From (3.13) and H4 taking into account that F~ E C1 ~O, T~, and using
Holder’s inequality, we can write :

where cl, c2, c3, c4 and cb are positive constants.



Now, by Young’s inequality, we obtain :

From this and using again Young’s inequality we have

because Fn > 0.

Now, by Gronwall’s inequality we can conclude

which together with (3.15) implies

From (3.17), (3.18) and (H4) we deduce that

and then

Finally, by using (3.19) and Lemma 1 for (3.12), we obtain

and then

A priori estimates II. - Multiplying (3.10) by Fn(t) we obtain



On the other hand we have

Integrating (3.23) between 0 and T and using (3.24) we deduce

Now, using lemma 1, (H8) and the a priori estimates I (note that

F" (0~~" (0, uo")  C7), we obtain

where di and d2 denote positive constants. By using (H4), (H5) and Young’s
inequality we get

Finally choosing a suitable E, we obtain

.. Passing to the limit (n ~ oo).-By (3.17), (3.19) and (3.28), the
sequence has a subsequence {uk} such that



From (3.10) we get

Moreover, we have

by using the lower-semicontinuity of ~ and Sp.

To prove (3.34) we consider the equality

Moreover, we have the following facts :

i) is bounded in since (3.17) and (H8)
hold. From (3.28) and (H8) we derive that is bounded in

LZ (0, T; H) and then we have

ii) From f 3:13} and- (H8) we can conclude that



Now, taking into account (3.36) and (3.37) and using a theorem on
compact imbeddings (see for instance [11] p. 57) we have

From (3.35), (3.31) and (3.38) we can conclude (3.34).
Integrating (3.32) between 0 and T and taking the lim sup, k - oo, we

can pass to the limit in (3.32). Next, by classical arguments we obtain the
corresponding pointwise inequality a.e. on (0, T). Finally we can eliminate
the term F(t)2, because F(t) ~ 0 a.e and we can conclude that u is a

solution of (3.1). .

Uniqueness. - It follows from the monotonicity of ~~ and ap in a classical
way.

4. Numerical solution

In order to solve the inequality (3.1) we shall make two discretizations,
one the variable t and another one in the spaces V, H, R.

Discretizations sn t. - Let M be a natural number and k = T/M. We
denote by u" the "approximation" of u at time tn = n k.

Introduce

We obtain un as the solution of the following problem (pic) Find {u" E
V : : 0~Af-l} such that

It is known that this problem has a unique solution.

Discretization in space. We solve the problem for the particular
case of the Marangoni effect (see Remark 1). .

For the discretization V and H, we use picewise linear Lagrange Finite
elements, more precisely we replace V and H by the following



where rh is a mesh of H, with h = L/(N + 1), N E N.

We consider the following discrete problem Find {uh 
n  M - 1} such that

For problem (Pn~, we also have existence and uniqueness of solution. 
‘

Let 03B3 be the operator in Hh defined by

Note that 7 and G given by (2.3) are maximal monotone operators in
R 2 and R respectively.

From (4.1) we deduce the existence of E R and E Hh such

where wi and w2 are arbitrarily given positive constants.

. On the other hand, from (4.3) and (4.4) (see [4], [5]) we deduce

where and G~~ denote the Yosida approximations. wiI and.

G - w2I respectively. They are given by the following expressions



where J03B303BB1 1-03BB1=1 and JG ,, are the resolvents of the operators 03B3 and G

respectively.

For 03B3 and G given by (4.2) and (2.3), we have

where a is a solution of the equation + a = 0 (we can compute
a by Newton’s method), and .

The formulation (4.5), (4.6) and (4.7) leads to the following algorithm
E R and E Hh arbitrarily chosen,

Note that (4.12) is a linear problem with a constant matrix which is
computed and factorized only once.

The convergence of (4.13) and (4.14) is proved in Bermudez [4]. .
The following figures show the numerical results optained for the test

examples

Test 1



exact solution : u(x, t) = e-x(e-~t-1~~ - em)
Test 2

exact solution : u(z,t) = 1)
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