Annales de la faculté des sciences de Toulouse

FRANCIS CAGNAC

Problème de Cauchy sur un conoïde caractéristique

Annales de la faculté des sciences de Toulouse 5^e série, tome 2, n° 1 (1980), p. 11-19 http://www.numdam.org/item?id=AFST_1980_5_2_1_11_0

© Université Paul Sabatier, 1980, tous droits réservés.

L'accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

PROBLEME DE CAUCHY SUR UN CONOIDE CARACTERISTIQUE

Francis Cagnac (1)

(1) Département de mathématiques, Faculté des Sciences, B.P. 812, Yaoundé - Cameroun.

Résumé: Soit V une variété de dimension 4.

Soit L un opérateur différentiel linéaire hyperbolique du 2ème ordre sur V.

Soit \mathscr{C}_0 un conoïde caractéristique de l'opérateur L.

Soit φ une fonction donnée sur \mathscr{C}_{0} .

On se propose de montrer que le problème

$$\begin{cases}
Lu = f \\
sur \mathscr{C}_{O}, u = \varphi
\end{cases}$$

a une solution et une seule sous des hypothèses assez générales.

Pour cela on utilise les résultats de Leray [1].

Le résultat essentiel de notre travail est le théorème qui est énoncé au § IV.

Summary: Let V be a 4-dimensional manifold, L a hyperbolic differential operator of order 2 on V, \mathscr{C}_0 a caracteristic conoid of L, ϕ a given function on \mathscr{C}_0 , we are showing that the Cauchy-problem:

$$\begin{cases}
Lu = f \\
u(x) = \phi(x) \text{ for } x \in \mathcal{C}_0
\end{cases}$$

has a unique solution under some conditions of differentiability. We are using the results of Leray. Our main result is the theorem stated at the end of this paper.

12 F. Cagnac

I - RAPPEL DES RESULTATS DE LERAY

Hypothèses:

- a) V est une variété de classe C³ au moins
- b) L est hyperbolique au sens de Leray, c'est-à-dire :

1) L est hyperbolique en tout point $x \in V$. Ceci signifie que :

Si dans une carte locale en x, L a pour expression :

$$Lu = A^{\alpha\beta} \frac{\partial^2 u}{\partial x^{\alpha} \partial x^{\beta}} + B^{\alpha} \frac{\partial u}{\partial x^{\alpha}} + Cu \quad (\alpha, \beta = 1, ..., 4)$$

le 2-tenseur contravariant $A^{\alpha\beta}$ définit dans $T_x^*(V)$, deux cônes réels convexes d'intérieurs non vides, opposés, Γ_x et Γ_x^- , formés des vecteurs covariants ξ_α tels que :

$$A^{\alpha\beta} \xi_{\alpha} \xi_{\beta} \ge 0.$$

2) Parmi les 2 cônes opposés définis en chaque point x par L, on peut choisir $\Gamma_{\rm X}$ de façon que $\Gamma_{\rm X}$ dépende continuement de x sur V.

On désigne par $C_\chi \subset T_\chi(V)$, le cône dual de Γ_χ .

Les vecteurs de $\boldsymbol{C}_{\boldsymbol{X}}$ sont dits temporels.

L'hypothèse 2) est équivalente à la suivante : il existe un champ continu de vecteurs temporels.

Un chemin $C:I\to V$, où I est un intervalle de R et C une application continue est dit temporel, si l'ensemble de ses demi-tangentes positives en tout point x est contenu dans C_X .

- 3) La réunion des chemins temporels joignant 2 points quelconques y et z de V est compacte ou vide.
 - c) Les $A^{\alpha\beta}$ sont de classe C^1 :

les B^{α} , et C sont continus à dérivées 1ères localement bornées. Soit K une partie de V. On désigne par $\mathscr{E}(K)$ l'émission de K, c'est-à-dire la réunion des chemins temporels issus des points de K.

d) Soit K une hypersurface lipschitzienne de V, orientée dans l'espace ou caractéristique pour l'opérateur L, telle que $\mathscr{E}(K)$ a K pour frontière. Soit w une fonctions définie sur $\mathscr{E}(K)$, telle que :

(a)
$$w \in H^3_{QoC}$$
, c'est-à-dire W a des dérivées jusqu'à l'ordre 3 qui sont des fonctions localement de carré intégrable
 β) sur K, Lw = 0.

Conclusion : Le problème de trouver une fonction u définie sur $\mathscr{E}(\mathsf{K})$ telle que :

$$\begin{cases} u \in H^2_{\text{loc}} \\ \text{dans } \mathscr{E}(K), Lu = f \\ \text{sur } K, u-w = 0 \text{ et } \nabla(u-w) = 0 \end{cases}$$

a une solution et une seule, qui est donnée par :

$$u = L^{-1} \left\{ L\overline{w} - [Lw] + f \right\}$$

où : \overline{w} est la fonction définie sur V, égale à w sur $\mathscr{E}(K)$, et à 0 sur $\left[\mathscr{E}(K)\right]$ (K) et la fonction égale à Lw sur $\mathscr{E}(K)$ et à 0 dans $\left[\mathscr{E}(K)\right]$ est l'opérateur inverse de L défini par Leray.

II - APPLICATION AU CAS D'UN CONOIDE CARACTERISTIQUE

Nous supposons que \mathscr{C}_0 est un conoide caractéristique de sommet 0 qui n'a pas d'autre point singulier que 0.

Appliquer les résultats de Leray pour résoudre le problème posé, revient à construire une fonction w définie sur $\mathscr{E}(\mathscr{C}_{\Omega})$ telle que :

1)
$$w \in H^3_{loc}$$

2) sur \mathscr{C}_0 , $w = \varphi$
3) sur \mathscr{C}_0 , $Lw = 0$

 \mathscr{C}_0 étant caractéristique les conditions 2) et 3) ci-dessus, entraînent que sur \mathscr{C}_0 , ∇w est déterminé s'il est connu en un point de chaque bicaractéristique de \mathscr{C}_0 .

En fait, nous allons montrer que la condition que w soit de classe C^1 au point 0 détermine de façon unique ∇ w sur \mathscr{C}_0 .

Soit N un champ de vecteurs temporels sur V de classe C^3 (l'hypothèse 2 sur L, entraîne l'existence d'un tel champ de vecteurs). $\forall x \in \mathscr{C}_O$, posons N_X . $\nabla w = \chi(x)$. $\forall x \in \mathscr{C}_O$, utilisons une carte locale \mathscr{U} en x, telle que en tout point :

$$\frac{\partial M}{\partial x^4} = N$$

Alors \mathscr{C}_0 admet une équation $x^4 - S(x^i) = 0$ (i = 1,...,3). Nous supposons que \mathscr{C}_0 et S sont de classe C^2 au moins, sauf au point 0.

14 F. Cagnac

Posons $q_i = -\frac{\partial S}{\partial x^i}$. Alors les conditions : sur \mathscr{C}_0 $\begin{cases} w = \varphi \\ Lw = 0 \end{cases}$ sont équivalentes à :

(1)
$$\begin{cases} \operatorname{sur} \mathscr{C}_{o}, w = \varphi \text{ et} \\ 2([A^{4i}] + [A^{ij}]q_{j}) \frac{\partial \chi}{\partial x^{i}} + [A^{ij}] \frac{\partial q_{i}}{\partial x^{j}} + [A^{ij}] \frac{\partial^{2} \varphi}{\partial x^{i} \partial x^{j}} + [B^{i}] (\frac{\partial \varphi}{\partial x^{i}} + q_{i} \chi) \\ + [B^{4}] \chi + [C] \varphi = 0 \end{cases}$$

([$A^{\lambda\mu}$], ... représente la restriction de $A^{\lambda\mu}$ à \mathscr{C}_{0}).

(1) est une équation différentielle en χ sur chaque bicaractéristique de \mathscr{C}_0 . Montrons que cette équation a une solution et une seule qui soit continue en 0. Pour cela nous utilisons une carte locale \mathscr{U}_0 en 0, du type précédent, mais telle que en outre, en 0 :

$$A^{44} = 1$$
, $A^{4i} = 0$, $A^{ij} = -\delta^{ij}$.

La singularité de \mathscr{C}_0 en 0 entraîne que $\frac{\partial q_j}{\partial x^j}$ qui figure dans (1) n'est pas borné au voisinage de 0.

D'autre part une hypothèse raisonnable à faire sur φ est qu'elle soit la trace sur \mathscr{C}_0 d'une fonction v, de classe C^2 au moins, définie sur V. Ceci entraı̂ne que φ est de classe C^2 sur $\mathscr{C}_0 - \left\{0\right\}$, mais que au voisinage de 0, les $\frac{\partial^2 \varphi}{\partial x^i \partial x^j}$ ne sont pas bornés.

Nous ferons donc sur φ l'hypothèse suivante :

Ceci étant, on a montré que l'équation (1) a une solution χ et une seule qui soit bornée au voisinage de 0. Cette solution est continue au point 0 et y prend la valeur a_4 (cf [2] p. 388 et [3]).

La fonction χ ainsi déterminée dans le domaine de la carte locale \mathcal{W}_{o} , peut ensuite être prolongée de façon unique sur toutes les bicaractéristiques de \mathscr{C}_{o} au moyen de l'équation différentielle (1).

Dans toute la suite χ désignera cette fonction unique dont nous venons de montrer l'existence.

III - CONSTRUCTION DE w

Il suffit de définir w dans un voisinage de \mathscr{C}_{0} .

Pour avoir une fonction w remplissant les conditions 1, 2, 3, du \S II, nous poserons, dans chaque carte locale \mathscr{U} :

(3)
$$w(x^{\alpha}) = \varphi(x^{i}) + (x^{4} - S(x^{i})) \chi(x^{i}) + \frac{1}{2} b(x^{4} - S(x^{i}))^{2}$$

où la constante b sera déterminée dans la suite.

Toute fonction de la forme (3) vérifiera les conditions 2, et 3, imposées à w. Il reste à voir si la condition 1) : $w \in H^3_{Qoc}$ est vérifiée.

a) Pour que $w \in H^3_{loc}$, il faut que S, φ et χ appartiennent à H^3_{loc} .

Afin que les solutions χ de l'équation (1) aient des dérivées 3èmes qui soient des fonctions, nous sommes amenés à faire les hypothèses suivantes :

$$\mathscr{C}_0 - \{0\}$$
 est de classe C^5 et φ est de classe C^5 sur $\mathscr{C}_0 - \{0\}$.

Ce qui oblige à supposer que V est de classe C⁵.

Si les hypothèses ci-dessus sont vérifiées, la fonction w définie par (3) sera de classe C^3 dans $\mathscr{E}(\mathscr{C}_0) - \Delta$, où Δ est la courbe temporelle du champ de vecteur N qui passe par 0.

b) Au voisinage de Δ , nous utilisons la carte locale \mathscr{U}_{0} .

Nous faisons l'hypothèse qu'au voisinage de 0, les dérivées de φ jusqu'à l'ordre 5 admettent les développents limités dérivés de (2). Alors on montre [3] que, au voisinage de 0, χ admet un développement limité de la forme :

$$\chi(x^{i}) = a_4 + X_1 + o(s)$$

où X_1 est une fraction rationnelle homogène de d⁰ 1 en x^i , s, dont le dénominateur est une puissance de s ; et on montre que les dérivées de χ jusqu'à l'ordre 3 admettent les développements limités dérivés. Quand on calcule les dérivées de χ on trouve :

$$\begin{cases} \frac{\partial w}{\partial x^{i}} = \frac{\partial \varphi}{\partial x^{i}} + q_{i} \chi + (x^{4} - S) \left(\frac{\partial \chi}{\partial x^{i}} + q_{i} b \right) \\ \frac{\partial w}{\partial x^{4}} = \chi (x^{i}) + (x^{4} - S)b \end{cases}$$

16 F. Cagnac

$$\frac{\partial^{2} w}{\partial x^{i} \partial x^{j}} = \frac{\partial^{2} \varphi}{\partial x^{i} \partial x^{j}} + \frac{\partial q_{i}}{\partial x^{j}} \chi + q_{i} \frac{\partial \chi}{\partial x^{j}} + q_{j} \frac{\partial \chi}{\partial x^{i}} + q_{i} q_{j} b + (x^{4} - 5)(\frac{\partial^{2} \chi}{\partial x^{i} \partial x^{j}} + b \frac{\partial q_{i}}{\partial x^{j}})$$

$$\frac{\partial^{2} w}{\partial x^{i} \partial x^{4}} = \frac{\partial \chi}{\partial x^{i}} + q_{i} b$$

$$\frac{\partial^{2} w}{(\partial x^{4})^{2}} = b$$

Ces expressions sont de la forme

$$D_{i}w = A_{i}(x^{i}) + (x^{4}-S) B_{i}(x^{i})$$

 $D_{ii}w = A_{ii}(x^{i}) + (x^{4}-S) B_{ii}(x^{i})$

et on aurait de même :

$$D_{ijk}w = A_{ijk}(x^{i}) + (x^{4}-S)B_{ijk}(x^{i})$$

avec les relations suivantes entre les fonctions A_i, B_i,...,B_{iik}:

$$\begin{cases} A_{ij} = \frac{\partial A_i}{\partial x^j} + q_j B_i \\ A_{ijk} = \frac{\partial A_{ij}}{\partial x^k} + q_k B_{ij} \end{cases} \qquad \begin{cases} B_{ij} = \frac{\partial B_i}{\partial x^j} \\ B_{ijk} = \frac{\partial B_{ij}}{\partial x^k} = \frac{\partial^2 B_i}{\partial x^j \partial x^k} \end{cases}$$

Pour que les fonctions $D_i w$, $D_{ij} w D_{ijk} w$ soient localement de carré intégrable au voisinage de tous les points de Δ , il faut et il suffit que les fonctions A_i , B_i ,..., B_{iik} le soient.

Ces fonctions admettent des développements limités en fractions rationnelles homogènes de x^i , s, de dénominateur s^p , quand $x^i \to 0$.

Pour qu'elles soient localement de carré intégrable il faut que ces développements limités commencent par un terme de $d^O \ge -1$.

Or dans B_i , figure $\frac{\partial \chi}{\partial x^i}$ dont le développement limité commence par un terme de $d^{0}0$; donc dans B_{ijk} figure $\frac{\partial^3 \chi}{\partial x^i \partial x^j \partial x^k}$ qui commence par un terme de $d^{0}-2$, et B_{ijk} ne sera donc pas en général de carré intégrable.

Il convient donc de choisir b de façon que dans le développement limité de

 $B_i = \frac{\sigma \chi}{2 i} + q_i b$, le terme de d^o0 soit une *constante* : alors le développement limité de la dérivée

 B_{ii} commencera par un terme de d^{O} 0, et celui de B_{iik} par un terme de d^{O} -1.

On peut choisir un tel b à condition que φ soit la restriction à \mathscr{C}_{Q} d'une fonction v définie dans V qui vérifie au point 0 l'équation Lw(0) = 0.

On montre [3] en effet que dans ce cas le développement limité de χ coîncide avec celui de [D₄v] jusqu'à l'ordre 1. Donc :

$$\chi(x^{i}) = a_4 + a_{4i}x^{i} + a_{44}S + o(s)$$

On choisit alors $b = a_{44}$ et on a :

$$B_i = \frac{\partial \chi}{\partial x^i} + q_i a_{44} = a_{4i} + o(1)$$

Ceci étant, on vérifie que les A_i, A_{ii}, A_{iik} sont aussi des fonctions localement de carré intégrable : en effet, le développement limité de A_i coincide avec celui de $[D_iv]$ jusqu'à l'ordre 1 ; celui de A_{ij} coincide avec celui de [Diiv] jusqu'à l'ordre 0 : Aii est donc continu au point 0 et son développement limité commence par la constante a_{ij} ; et le développement limité de A_{ijk} commence donc par un terme de d^00 et A_{ijk} est donc borné.

IV - RESULTATS

Nous rappelons les hypothèses faites et le résultat obtenu dans le théorème suivant :

THEOREME. Soit V une variété de dimension 4.

Soit L un opérateur différentiel linéaire du 2ème ordre sur V, qui, dans une carte locale s'écrit :

$$Lu = A^{\alpha\beta} \frac{\partial^2 u}{\partial x^{\alpha} \partial x^{\beta}} + B^{\alpha} \frac{\partial u}{\partial x^{\alpha}} + Cu$$

Lest hyperbolique sur V.

Soit \mathscr{C}_0 un conoide caractéristique de L de sommet 0. V, L, \mathscr{C}_0 satisfont aux hypothèses suivantes:

V est de classe
$$C^5$$

$$A^{\alpha\beta}, B^{\alpha}, C \text{ sont de classe } C^3$$

$$\mathscr{C}_{o} n'a \text{ pas d'autre point singulier que } 0$$

$$\mathscr{C}_{o} - \{0\} \text{ est de classe } C^5$$

Soit φ une fonction définie sur \mathscr{C}_0 satisfaisant aux hypothèses suivantes :

18

-
$$\varphi$$
 est de classe C^5 sur $\mathscr{C}_0 - \left\{0\right\}$

- au voisinage de 0, dans une carte locale telle que $A^{44} = 1$, $A^{4i} = 0$, $A^{ij} = -\delta^{ij}$ au point 0, et où \mathscr{C}_0 a pour équation $x^4 - S(x^i) = 0$, φ admet un développement limité :
$$\varphi(x^i) = a_0 + a_i x^i + a_4 S + \frac{1}{2} \left(a_{ij} x^i x^j + 2 a_{i4} x^i S + a_{44} S^2\right) + o\left(\sum (x^i)^2\right)$$
- les dérivées de φ jusqu'à l'ordre 5 admettent les développements limités dérivés.
$$a_{44} - \sum_i a_{ii} + B^\alpha(0) a_\alpha + C(0) a_0 = 0$$

Conclusion : Il existe une fonction u et une seule, définie dans $\mathscr{E}(\mathscr{C}_0)$ telle que :

$$\begin{cases} -u \in H^2_{QOC} \\ -dans & \mathscr{E}(\mathscr{C}_Q), Lu = 0 \end{cases}$$

$$-sur \mathscr{C}_Q, u = \varphi$$

Remarques: 1) Si l'on veut que le conoide caractéristique issu d'un point quelconque de V soit de classe C^5 , il convient de faire les hypothèses suivantes : les $A^{\alpha\beta}$ sont de classe C^5 et V doit donc être de classe C^6 .

On peut donc remplacer l'hypothèse I par :

V est de classe
$$C^6$$

les $A^{\alpha\beta}$ sont de classe C^5 ; les B^{α} et C de classe C^3
 \mathcal{C}_o n'a pas d'autre point singulier que 0

2) On peut remplacer l'hypothèse II par l'hypothèse suivante, un peu plus restrictive, mais d'expression plus simple.

II'
$$\begin{cases} \varphi \text{ est la restriction à } \mathscr{F}_0 \text{ d'une fonction v définie sur V de classe } C^5, \text{ et telle} \\ \text{que Lw}(0) = 0. \end{cases}$$

REFERENCES

- [1] J. LERAY. «Hyperbolic differential equations». Princeton 1952.
- [2] F. CAGNAC. «Problème de Cauchy sur un conoïde caractéristique». Annaldi Matematica Pura ed Applicata. Tome C V (1975), p. 355-393.
- [3] F. CAGNAC. «Condition pour un problème de Cauchy bien posé sur un conoïde caractéristique pour des équations quasi linéaires». C.R.A.S., t 285 (7 novembre 1977) p. 777.

(Manuscrit reçu le 7 janvier 1980)