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Fusion for the Yang–Baxter equation and the braid group

LOÏC POULAIN D’ANDECY

Abstract

These are the extended notes of a mini-course given at the school WinterBraids X. We discuss
algebras simultaneously related to: the braid group, the Yang–Baxter equation and the represen-
tation theory of quantum groups. The main goal is to explain the idea of the fusion procedure for
the Yang–Baxter equation and to show how it leads to new examples of such algebras: the fused
Hecke algebras.
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The Yang–Baxter equation and the braid relation.
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Course no III— Fusion for the Yang–Baxter equation and the braid group

Introduction

The main purpose of these lectures is to discuss algebras with the following features:

• they are quotients of the braid group algebra;

• they contain abstract solutions of the Yang–Baxter equation;

• they admit representations on vector spaces of the form V⊗n.

This “wish list” of properties is fulfilled in three famous situations, the Temperley–Lieb alge-
bra, the Hecke algebra and the Birman–Murakami–Wenzl algebra. These algebras are well-
known quotients of the algebra of the braid group; in fact they are the algebras behind the
following invariants of links: the Jones polynomial, the Homfly-pt polynomial and the Kauff-
man polynomial.

It is also well-know that they contain solutions of the Yang–Baxter equation (so-called
Baxterization formulas). We call them abstract solutions, since they are solutions in some
algebras, as opposed to solutions acting on vector spaces (matrix solutions) as genuine so-
lutions of the Yang–Baxter equation should do. To obtain genuine matrix solutions, we need
to look for representations of some special form, and these three algebras indeed have such
representations on spaces V⊗n.

The third item on our wish list, the existence of representations on tensor spaces V⊗n,
is the key to unifying these examples. In fact, the Temperley–Lieb algebra, the Hecke alge-
bra and the Birman–Murakami–Wenzl algebra (through their actions on tensor spaces) can
be seen as centralisers of representations of some interesting algebras: quantum groups.
The first goal of these notes is to discuss briefly how the quantum groups (through their
centralisers) are nicely designed to produce algebras fulfilling our wish list above.

Once we know that our sought-after algebras can be found among the centralisers of
representations of quantum groups, we would like to be able to describe and study these
centralisers. The second goal of these notes is to explain how to fit the fusion procedure in
this picture. The fusion procedure was designed at the matrix level to produce new solutions
of the Yang–Baxter equation. Here we would like to use it in order to understand better the
centralisers. This leads us to introduce topological objects that we call fused braids, and to
define from them new algebras, called fused Hecke algebras.

We proceed as follows. The first two sections are introductory to the braid group and the
Yang–Baxter equation, and describe in details our favourite examples: the Hecke algebra
and the Birman–Murakami–Wenzl algebra. Sections 3 and 4 discuss quantum groups and
their centralisers. Without full details, they are intended to give an idea of how these ob-
jects (quantum groups) are constructed, how they behave and how they are relevant to our
subject.

In Section 5, we present the fusion procedure and we revert to a more rigorous presenta-
tion for this part. Finally, the last section, presents the fused Hecke algebras. After discussing
the braid-like description of these algebras, we go over our wish list, and we check that we
indeed produced algebras fulfilling every wishes on the list, and without too much surprise,
that these algebras are related to the centralisers of some quantum groups representations.

The lectures were intended to PhD students and young researchers studying braids and
their different aspects and applications. In these extended notes, more details are given than
during the lectures, but many are still omitted or hidden, and full mathematical precision
is not always the priority. Some background in basic algebra and representation theory is
assumed.

Aknowledgements. It is a pleasure to thank the organisers Paolo Bellingeri, Vincent Flo-
rens, JB Meilhan, Emmanuel Wagner of the Winterbraids series of schools and the organiser
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Filippo Callegaro of the session in Pisa, along with all participants of the tenth edition. The
work of the author is supported by Agence Nationale de la Recherche Projet AHA ANR-18-
CE40-0001.
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1. The Braid Group and the Yang–Baxter Equation

1.1. The Braid group

For precise definitions and more details on the braid group, we refer to [47]. Here is an
example of a braid (with 5 strands):

σ1

σ1

σ2

σ3

σ−14

σ2

σ−12

σ−14

σ4

σ3

We fix two horizontal parallel lines each having
5 fixed points, and we connect bijectively each
point on the top line to a point on the bottom
line by a “strand”.
This is an object in a three-dimensional space,
so the strands can pass “over” or “under”
other strands. For now, we may ignore the la-
bels σ±1 next to the crossings.
Braids are considered up to isotopy, meaning
that we can move continuously the strands
while leaving their end points fixed, and this
is still the same braid.

As shown by the example, a braid with n strands is drawn in a rectangular strip with a top
line of n fixed dots and a bottom line of n fixed dots. We connect bijectively each top dot to a
bottom dot by a strand inside the strip. A strand is a continuous line going from a top point to
a bottom point. By convention, we assume that the vertical coordinate is always decreasing
along the line (no strand is allowed to go back towards the top).

At each point of the strip at most two strands are crossing each other, and at each cross-
ing, we indicate which strand passes over the other one. We call a crossing positive (resp.
negative) when the strand coming from the left passes over (resp. under) the strand coming
from the right. Such diagram is called a braid with n strands and braids are considered up to
isotopy (continuous moves of the strands with fixed end points).

The set of all braids with n strands forms a group, denoted Bn, the multiplication being
simply the vertical concatenation of diagrams. If α, β ∈ Bn, to perform the product αβ, we
place the diagram of α on top of the diagram of β, we identify the bottom dots of α with the
top dots of β, thereby connecting the strands, and we delete these middle dots.

The identity element 1 of Bn is the braid where the n strands are vertical and parallel. It
might not be completely obvious at first sight that the braids form a group. In fact, to find
the inverse of a given braid, reflect it through the bottom horizontal line and then invert all
the crossings. Up to isotopy, the concatenation with the given braid reduces to the identity
element.

The following elements are called elementary braidings:

σ =

1

. . .

 − 1   + 1  + 2

. . .

n

 ∈ {1, . . . , n − 1};

We can see that sometimes we number the dots 1, ..., n from left to right to be able to speak
of the “-th dot” and to help visualize where a crossing is. The previous braid provides an
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example of positive crossing. As an example of the multiplication rule and of the use of
isotopy, one can check that the inverse σ−1 of σ is:

σ−1 =

1

. . .

 − 1   + 1  + 2

. . .

n

 ∈ {1, . . . , n − 1};

It is rather easy to accept that the braid group Bn is generated by the elements σ1, . . . , σn−1,
meaning that any braid can be written as a product of elementary braidings σ and their
inverses. In the braid pictured above, the elementary braiding are indicated next to each
crossing, and we see that this braid is:

σ1σ3σ
−1
4 σ1σ2σ

−1
4 σ2σ3σ4σ

−1
2 .

As we can see the decomposition of a braid as a product of generators is not unique (for
example, we could have ended the word by σ−12 σ4). This comes from the fact that some
relations are satisfied by the generators, reflecting the invariance under isotopy. Namely, in
addition to the trivial relations σσ

−1
 = σ−1 σ = 1, it is easy to see that the following relations

are satisfied:
σσj = σjσ if | − j| > 1,

since if |− j| > 1, then the pairs of strands , +1 and j, j+1 can be manipulated independently.
It is also immediate that the following relations are satisfied:

 +1 +2

=

 +1 +2

Indeed, one simply has to move the middle strand. In
algebraic terms, we have:

σσ+1σ = σ+1σσ+1 , for  = 1, . . . , n − 2.

It is remarkable that only the two sorts of relations above are enough to completely char-
acterise the braid group. This is the well known following theorem.

Theorem 1.1 (Artin [1, 2, 9]). The braid group Bn is generated by σ1, . . . , σn−1 with defining
relations:

(1.1)
σσ+1σ = σ+1σσ+1 , for  ∈ {1, . . . , n − 2} ,
σσj = σjσ , for , j ∈ {1, . . . , n − 1} such that | − j| > 1 .

The phraseology “defining relations” means that any other relation involving braids in Bn
is implied by these ones (and the trivial ones σσ

−1
 = σ−1 σ = 1). Equivalently, it means that

any other group with generators satisfying the relations (1.1) must be a quotient of the braid
group Bn.

Local representations of Bn. Let V be a vector space and form the tensor product V⊗n

of n copies of V. We take an invertible element R ∈ End(V ⊗ V) and we define elements
R1, . . . , Rn−1 like this:

Operators R1, . . . , Rn−1 on V⊗n:

R1
︷ ︸︸ ︷

V ⊗

R2
︷ ︸︸ ︷

V ⊗ V ⊗ . . .

Rn−1
︷ ︸︸ ︷

. . . ⊗ V

More precisely, for  = 1, . . . , n− 1, the operator R acts on V⊗n non-trivially only in the copies
,  + 1 of V, where it acts by R. That is, it is defined by R = IdV⊗−1 ⊗ R ⊗ IdV⊗n−−1 .

Now we say that R defines a local representation of the braid group Bn, or that the following
map

ρ : Bn → End(V⊗n)

σ 7→ R
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is a local representation of Bn on the tensor space V⊗n, if the braid relation is satisfied

(1.2) R1R2R1 = R2R1R2 on V ⊗ V ⊗ V.

This immediately implies all the other defining relations of Bn, thereby making the map ρ
to be a representation of the group Bn. Note that the other relation RRj = RjR if | − j| > 1
follows from the locality of the operators R, Rj: they do not act on the same copies of V if
| − j| > 1.

A local representation is thus a representation of Bn on a tensor space V⊗n with the special
(local) form explained above for the action of the generators σ. It depends only on the
element R ∈ End(V ⊗ V) satisfying (1.2) (and invertible in order to have a representation of a
group).

Remark 1.2. A direct, or numerical, approach to find local representation of the braid group
Bn is quite difficult. Indeed if dim(V) = n then one has to solve cubic equations in n4 variables.

Î

Example 1.3. Let P ∈ End(V ⊗ V) be the permutation operator sending  ⊗ y to y ⊗ . Then
it provides a local representation of the braid group. In fact, it factors through the natural
permutation representation of the symmetric group on V⊗n. All this amounts to the simple
facts that P2 = Id and that the following equality is true when one composes transpositions:
(1,2)(2,3)(1,2) = (2,3)(1,2)(2,3).

1.2. The Yang–Baxter equation

Let V be a finite-dimensional vector space. We introduce a bit more notations for operators
on V⊗n. If S ∈ End(V⊗V), we use the notation Sj for the operator on V⊗n acting as S on copies
 and j and trivially otherwise. More formally, write S =

∑

 s⊗ t , where s, t ∈ End(V). Then
by definition, we have:

Sj =
∑



IdV ⊗ · · · ⊗ IdV ⊗ s ⊗ IdV ⊗ · · · ⊗ IdV ⊗ t ⊗ IdV ⊗ · · · ⊗ IdV ,

where s is in position  and t is in position j. We use this notation in particular for the
permutation operator P of V ⊗ V. Explicitly, we have:

Pj(1 ⊗ · · · ⊗  ⊗ · · · ⊗ j ⊗ · · · ⊗ n) = 1 ⊗ · · · ⊗ j ⊗ · · · ⊗  ⊗ · · · ⊗ n .

The basic property about all these notations that we use repeatedly is:

SbPj = PjSπ,j()π,j(b) , where π,j is the transposition (, j).

For example, S13P12 = P12S23 or S13 = P23S12P23, etc.

Now we consider a function

R : C2 → End(V ⊗ V)

(,) 7→ R(,)
.

The Yang–Baxter equation (YB equation for short) is a functional equation for such a function
R:
(1.3)
R12(1, 2)R13(1, 3)R23(2, 3) = R23(2, 3)R13(1, 3)R12(1, 2) on V ⊗ V ⊗ V.

In this context, the variables 1, 2, 3 are often called spectral parameters, or spectral vari-
ables.

In our perspective, the so-called braided version of this equation is more relevant. From R
define another function:

Ř : C2 → End(V ⊗ V)

(,) 7→ PR(,)
,
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where P is the permutation operator sending  ⊗ y to y ⊗ . To see better the connections
with the braid relation, set Ř1(,) := Ř12(,) and Ř2(,) := Ř23(,). Then an easy ma-
nipulation shows that the YB equation is equivalent to the following equation only involving
the function Ř:

(1.4) Ř1(1, 2)Ř2(1, 3)Ř1(2, 3) = Ř2(2, 3)Ř1(1, 3)Ř2(1, 2) on V ⊗ V ⊗ V.

When precision is needed, we will refer to this version as the braided YB equation.
It happens in many situations that the function Ř (or equivalently R) depends only on the

ratio /. In this particular case (set  = 1/2 and  = 2/3), the braided YB equation
becomes:

(1.5) Ř1()Ř2()Ř1() = Ř2()Ř1()Ř2() on V ⊗ V ⊗ V.

Instead of a multiplicative version, we sometimes also have the additive one, where the
function Ř depends only on the difference  − :

(1.6) Ř1()Ř2( + )Ř1() = Ř2()Ř1( + )Ř2() on V ⊗ V ⊗ V.

Example 1.4 (constant solution, Yang solution).
• For a first encounter with the YB equation, one may ask for constant solutions. The equation
(1.4) for a constant function is simply the braid relation. Thus, a constant solution of the
braided YB equation is equivalent to a local representation of the braid group, as defined
previously.
• One can check by hand that the following function satisfies (1.3):

R(,) = IdV⊗V +
P

 − 
,

or equaivalently that the braided YB equation (1.4) is satisfied by:

Ř(,) = PR(,) = P +
IdV⊗V

 − 
.

Note that in this verification, one uses that P satisfies the braid relation (this is an example
of Baxterization, as we will see later). This solution is an example depending on the spectral
parameters only through their difference. Namely we have that Ř() = P + IdV⊗V

 satisfies
(1.6).

1.2.1. The Yang–Baxter equation in Physics

The Yang–Baxter equation is certainly one of the fundamental equations in theoretical and
mathematical physics. Its history is complex and naturally most of it requires some back-
ground in physics that we are not ready to discuss here. So let us only give some hints and
vague indications which might be enough to get a feeling of its importance and to feel a
little motivated for its study. Some references among the huge literature on this subject are
[3, 4, 7, 24, 25, 30, 39, 40, 41, 50]. Though the YB equation belongs to the theoretical and
mathematical side of Physics, it is interesting to note that connections with more experimen-
tal physics can be investigated today, see for example [5, 6, 33].

Factorization of interaction processes. Probably the most mathematicians-friendly in-
terpretation of the YB equation in physics is as a factorisation property. Let us depict the
interaction of two particles called 1 and 2 like this:

(1.7)

1 2


: space-time trajectories for the interactions of two particles,
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where we think of the vertical direction as time and of the horizontal one as space. The
parameter  is the difference of rapidity of the two particles1. If we think of the particles
as being described by a vector space V (their internal state space), the interaction is then
controlled by an operator, say S(), in End(V ⊗ V).

Now consider n particles on the line (numbered from 1 to n) and they all interact with
each other. We imagine our n particles coming closer and closer to each other, interacting
when they cross each other (controlled by the scattering operator S()), and after having all
interacted once with each other, their order is completely reversed. As an example, if we con-
sider three particles, then we find two different possibilities for ordering these interactions.
The space-time trajectories are shown below:

1 2 3

12

13

23

=

1 2 3

23

13

12

where j = −j are the differences of the rapidities. The Yang–Baxter equation is simply the
hypothesis that these two interacting processes lead to the same result. Namely, in operator
notation, we find:

S12(12)S13(13)S23(23) = S23(23)S13(13)S12(12) ,

which is the Yang–Baxter equation for the function S : (,) 7→ S( − ).
The fundamental fact about this is the following. Once we assume the YB equation for the

interaction of three particles, then it follows that the interaction of n particles, decomposed
as a sequence of 2-particles interactions, is independent of the chosen sequence. In other
words, the n particles interaction is unambiguously given by the two particles interaction.
The YB equation is a compatibility condition for the factorization of the n-body interaction in
terms of the two-body interaction. This originates in the papers [56, 69, 70, 71] and accounts
for the first half of the name of the equation.

Remark 1.5. The above interpretation of the YB equation is very similar to the following
classical fact about the braid group and the symmetric group. The longest element of the
symmetric group (reversing the order of 1, . . . , n) can be factorised in different ways as a
minimal-length product of simple transpositions, and all these different factorisations are
seen to be equal just by assuming the braid relation. The YB equation above plays the same
role as the braid equation here. Î

2-dimensional statistical physics. The YB equation has a long history in 2-dimensional
statistical models, and we shall not attempt to describe it. Suffices it to say that it seems
to have made its first apparition (somewhat hidden) in the solution of the Ising model by
Onsager in the 40’s [62] and its importance was gradually recognized, culminating in the
work of Baxter in the 70’s [7]. It is instructing to search for explicit apparitions of the YB
equation in the classical book by Baxter [7]. The first two are located near the end of the
discussions on the Ising model (§7.13) and on the ice model (§9.7). Remarkably, the next
one (§10.4) appears at the beginning of the discussion of the 8-vertex model. The meaning

1In relativity, the rapidity corresponding to the speed  is tanh−1( c ) and is additive for one-dimensional motion
(c is the speed of light).
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is clear: the decisive step of promoting the YB equation as the key to solvability of these
models was done. At that time, the YB equation was called the star-triangle relation, or the
parametrized star-triangle relation to emphasize the presence of the spectral parameter.

In these statistical models, there is a partition function which is the thing one would like to
calculate. The partition function can be expressed as the trace of some powers of an object
called the transfer matrix t() depending on a parameter. So of course, one natural approach
is to try to diagonalize this matrix. Then the key property that one wishes for this transfer
matrix is its commutation property:

[t(), t()] = 0 ∀, ,

since it provides an infinite number of commuting operators. The YB equation (for which
operator? we shall see below) was identified as a condition ensuring the commutativity of
the transfer matrices.

After this very brief summary, let us at least explain how an operator in End(V ⊗ V) arises
in this setting. A vertex model in 2-dimensional statistical physics starts with a lattice in the
plane, say a square lattice for definiteness. Each edge can be in a certain state s taken in a
given finite set S. For example S can be of cardinal 2, corresponding to the two orientations of
a spin, or two states “empty” and “occupied”. The interactions happen at the vertices (hence
the name “vertex models”) and at each vertex, there is a Boltzmann weight2 depending
on the states of the edges connected to this vertex. To define the partition function, take a
configuration of the lattice (fix a state for each edge) and take the product of the Boltzmann
weights of all vertices. Then sum over all the possible configurations of the lattice.

Thus to define the model, it suffices to give the Boltzmann weight of a vertex for each
configuration of the edges. If we organise these weights in an array as follows:

 j



k

;
�

R
j
k

�

,j,k,∈S

we realise that it is an array of numbers with 4 indices in S. Thus this can be seen as an
element of End(V ⊗ V), where V is a vector space with basis indexed by S. The appearance
of the spectral parameter  in this context is not easily explained, it can be seen as a clever
way of parametrizing the Boltzmann weights (one can start from the occurrences of the YB
equation in [7] previously indicated, and read backwards to see where the spectral parameter
came from). Some symmetries can be required, restricting the values of the various weights.
For example if dim(V) = 2, for the 6-vertex model (respectively, 8-vertex model), only 6
entries (respectively, 8 entries) of the R-matrix are non-zero.

If it happens that this operator compiling the various Boltzmann weights satisfies the YB
equation, then the commuting property of the transfer matrix is ensured.

Quantum spin chains. A quantum spin chain is a quantum-mechanical model of interact-
ing particles on a line. The Hilbert space of states is the tensor product V⊗n (n particles, each
having V as its Hilbert space of states), and there is a Hamiltonian describing the interactions.
For example, V can be C2 and the Hamiltonian can be:

n
∑

=1

(Jσ σ

+1 + Jyσ

y
 σ

y
+1 + Jzσ

z

σz
+1) ,

2In statistical physics, the Boltzmann weight of a state is equal to e−E/kBT where E is the energy, T is the
temperature and kB is the Boltzmann constant. The Boltzmann weight expresses the probability for a system to be
in a state with energy E.
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where σ, σy, σz are the famous Pauli matrices and the indices ,  + 1 indicate the positions
in the tensor product V⊗n (n + 1 is understood as 1). This is called the XYZ model. It reduces
to the XXZ model if we take J = Jy and further to the XXX model (or Heisenberg spin chain)
if J = Jy = Jz.

In quantum mechanics, the goal is clear: we want the eigenvalues and eigenvectors of the
Hamiltonian. The connections with the seemingly unrelated statistical models of the previous
paragraph is as follows. The transfer matrix of a vertex model is also an operator on some
tensor product V⊗n. And it was found that for the ice model, the eigenvectors of the transfer
matrix are the same as for the XXZ Hamiltonian. In fact, it turned out that the Hamiltonian
commutes with the transfer matrix t(), thus explaining this coincidence. Even better, it was
finally realized that the Hamiltonian is included in a sense in the transfer matrix (the Hamil-
tonian can be recovered from t()), and this already for the XYZ model (the corresponding
vertex model is the 8-vertex model). So in fact quantum spin chains also fall in the realm of
models governed by solutions of the YB equation.

Algebraic Bethe Ansatz. In the end of the 70s, a general method to construct and study
integrable systems was developed under the name of Algebraic Bethe Ansatz (see [24, 65]
and references therein). An essential ingredient taken as a starting point is an R-matrix,
namely a solution of the YB equation. Long story short, an L matrix, a monodromy matrix
and a transfer matrix are successively constructed from it, and ultimately, the commutation
relation for the transfer matrix follows from the YB equation.

This approach put forward the algebraic relations between the various operators involved
(including of course the YB equation), and it naturally led to wonder about abstract and
general algebraic structures behind all this. This was the birth of quantum groups, and the
moment in time where the YB equation started to diffuse into mathematics. Quantum groups
are one of our next subjects of discussions. It is remarkable that these structures (quan-
tum groups) originating from considerations in mathematical physics turn out to be very
important in modern representation theory, for example for the symmetric group in positive
characteristic. We will not talk about that.
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2. The Guiding Examples: Hecke and Birman–Murakami–Wenzl

2.1. The Hecke algebra

There are several possible equivalent definitions for the Hecke algebra, in quite different
contexts. The most natural here is as a quotient of the algebra of the braid group. The idea
is as follows. The braid group is a fairly complicated group algebraically since we can make
an arbitrary number of crossing between strands. There is no way to reduce this number of
crossings (except in the trivial situation when a positive crossing meets a negative crossing
on the same two strands, that is, when we can use the relation σσ

−1
 = 1). So the naive idea

is to add an algebraic relation allowing to deal with all these crossings. One of the simplest
way to do this results in the Hecke algebra.

More precisely, we add to the definition of the braid group the following relation:

(2.1)
= − (q − q−1)

where q is a parameter, which can be seen as an indeterminate or as a non-zero complex
number. This relation is a local relation, meaning that for any braid and any of its crossing,
the braid is equal to a sum of two terms: the braid obtained by replacing the crossing by
its opposite and ±(q − q−1) (depending on the sign of the original crossing) times the braid
obtained by replacing the crossing by two pieces of vertical strands. In particular this allows
one to transform all the negative crossings into positive ones.

Algebraically, the new relation is equivalent to imposing σ−1 = σ − (q − q−1) for all gener-
ators σ. Of course, if q2 6= 1 we leave the realm of groups with such a relation, and we end
up with an algebra. So the algebraic definition of the Hecke algebra Hn(q) goes by defining
it as the algebra generated by elements σ1, . . . , σm−1 with defining relations:

(2.2)

σσ+1σ = σ+1σσ+1 , for  ∈ {1, . . . , n − 2} ,
σσj = σjσ , for , j ∈ {1, . . . , n − 1} such that | − j| > 1 ,
σ2

= 1 + (q − q−1)σ , for  ∈ {1, . . . , n − 1} .

It is an algebra over C if q is a complex number, and can be defined also as an algebra over
C[q, q−1] if q is an indeterminate. Comparing with the algebraic presentation of the braid
group Bn in Theorem 1.1, we see that the Hecke algebra Hn(q) is a quotient of the group
algebra of the braid group Bn (the algebra CBn consisting of linear combinations of elements
of Bn). The characteristic equation of degree 2 for the generators is:

(σ − q)(σ + q−1) = 0 .

If q2 = 1 the relations (2.2) are defining relations for the symmetric group Sn, and the Hecke
algebra Hn(1) is thus the group algebra CSn. In this case, the generators σ correspond to the
transpositions (, + 1). It should feel natural since if q2 = 1, the local Hecke relation says that
we can forget about the signs of the crossings, and so all topological information is lost, and
what remains of a braid is simply the permutation of the n points induced by the strands.

Thus the Hecke algebra is a deformation of the group algebra of the symmetric group Sn.
The symmetric group can be seen as a “simplification” of the braid group, but it is in some
sense “too simple”. The Hecke algebra retains more information (in particular, topological)
because of the additional freedom given by the deformation parameter q.

Remark 2.1 (Jones polynomial). A breakthrough in the theory of invariants of links was the
discovery of the Jones polynomial (and its generalisation, the so-called HOMFLY-PT polyno-
mial) [27, 42, 64]. In algebraic terms, this invariant is obtained from a Markov trace on the
chain of Hecke algebras (see for example [29, §4.5]). Î

Remark 2.2. There are several related algebraic structures called Hecke algebras:
• One purely algebraic definition is as deformations of Coxeter groups. Our example corre-
sponds to a finite Coxeter group of type A, a.k.a. the symmetric group.
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• There is also a very general definition of Hecke algebras (explaining the name “Hecke”)
as endomorphism algebras of induced representations. We know of several coincidences of
the two definitions. Let us only indicate that if we take G the group of invertible matrices
over a finite field with q elements, and induce to G the trivial representation of the subgroup
consisting of upper-diagonal matrices, then the endomorphism algebra turns out to be the
Hecke algebra Hn(q).
• In our case of Hn(q), there is another possible definition as the centraliser of the action of
a quantum group in a tensor product of representations. We will come back to this later. Î

The YB equation. For any  ∈ {1, . . . , n − 1}, define the following function taking values in
the algebra Hn(q):

(2.3) σ() = σ + (q − q−1)
1

 − 1
.

Then a straightforward calculation using the relations in Hn(q) shows that:

σ()σ+1()σ() = σ+1()σ()σ+1() ,

namely, the braided YB equation is satisfied in Hn(q) by these functions.
So we have a solution of the braided YB equation inside the Hecke algebra Hn(q), given

by a rather simple formula. However this is not a genuine solution of the YB equation since it
is not yet an operator on a tensor product of vector spaces. The ingredient one has to add is
a little bit of representation theory, namely a representation of Hn(q) on a tensor space V⊗n.
More precisely, we want a local representation of Hn(q), that is, a representation of the form:

σ 7→ Ř = IdV⊗−1 ⊗ Ř ⊗ IdV⊗n−−1 ,

for some operator Ř ∈ End(V ⊗ V). Indeed, assume that we have such a representation and
set:

Ř() = Ř + (q − q−1)
IdV⊗V

 − 1
.

Then it follows from (2.3) that Ř() satisfies the braided YB equation.

This is all very nice, only if we can find local representations of the Hecke algebra Hn(q).
It turns out that there are some. In fact, take any vector space V, then we can construct
a local representation of Hn(q) on V⊗n. The rough idea is that for the symmetric group Sn,
there is one local representation which is simply by permuting the n components in the
tensor product. As the Hecke algebra Hn(q) is a deformation of Sn, one may try to deform
the permutation representation. It works.

More precisely, fix a basis (e1, . . . , eN) of V and define a linear operator on V ⊗ V by:

(2.4) Ř(e ⊗ eb) :=















qe ⊗ eb if  = b,

eb ⊗ e + (q − q−1)e ⊗ eb if  < b,

eb ⊗ e if  > b.

where , b = 1, . . . , N.

One can check by hand that this provides a local representation of the braid group: ŘŘ+1Ř =
Ř+1ŘŘ+1; and moreover, that it factors through the Hecke algebra since the Hecke relation
Ř2 = IdV⊗V + (q− q−1)Ř is satisfied. So finally we get a solution of the braided YB equation on
any vector space V by the above procedure.
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Example 2.3. For example, if dim(V) = 2, in the lexicographic ordering of the basis of V⊗V,
we find:

Ř =









q · · ·
· q − q−1 1 ·
· 1 0 ·
· · · q









, Ř() =

























q − q−1

 − 1
· · ·

·
(q − q−1)

 − 1
1 ·

· 1
q − q−1

 − 1
·

· · ·
q − q−1

 − 1

























.

The solution Ř() coming from the Hecke algebra is a deformation of the Yang solution Ř(α) =
P + Id

α from Example 1.4 in the following sense: set  = q2α and take the limit q→ 1.

2.2. The Birman–Murakami–Wenzl algebra

The Hecke algebra is more or less the most general quotient of the algebra of the braid group
by a quadratic characteristic equation for the generators. So following the idea of simplifying
the braid group, it is natural to turn our attention to quotients by a cubic characteristic
equation.

On quotients of the braid group. A naive idea for defining quotients of the braid group
algebra CBn is to add the following relations:

σm

= 0 + 1σ + · · · + m−1σm−1

for  = 1, . . . , n − 1.

In this context, we would like the generators σ to stay invertible so that, up to a renormal-
isation of the generators σ which does not change the braid relations, we can assume that
0 = 1. Note that all generators σ are conjugated in the braid group so they must satisfy the
same characteristic equation (hence the same relation for all  = 1, . . . , n− 1). If m = 2, up to
some conventions, the resulting algebra is the Hecke algebra Hn(q).

A first natural step is to look at the group we obtain if we consider the relation σm

= 1.

Then we could try to see the algebra resulting from the relations above as deformations of
these groups. This would certainly be nice if the groups (respectively, the algebras) were
finite (respectively, finite-dimensional). This question has been settled by Coxeter [17] for
the groups resulting in the following remarkable result: if we make the quotient of the braid
group Bn on n strands by the relation σm


= 1 then the resulting group is finite if and only if

1
n +

1
m > 1

2 . This gives the following possibilities:

(n,m) ∈
�

(2,m) , (n,2) , (3,3) , (3,4) , (3,5) (4,3) , (5,3)
	

.

The first two families correspond to cyclic groups and symmetric groups. Aside from these
groups, there are 5 other situations giving a finite group.

The second step is to try to deform the above finite groups by considering an arbitrary
characteristic equation as above. It turns out that there is such a deformation theory for
these groups, since they all belong to the family of finite complex reflection groups. The
resulting algebra are called cyclotomic Hecke algebras, and they are flat deformations in the
sense that their dimensions remains equal to the order of the corresponding group. We refer
to [54, 14].

An example of a cubic quotient: the BMW algebra. As we have discussed just above,
a generic cubic quotient of the braid group algebra does not have to be finite-dimensional
(as soon as n > 5). So an idea is to again add relations to make it finite-dimensional. Com-
plete study of such quotients turns out to be quite involved, and it seems to be still an open
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question what would be the most generic finite-dimensional quotient of the braid group al-
gebra including a cubic characteristic equation for the generators, see for example [55]. The
Birman–Murakami–Wenzl (BMW) algebra [8, 59] is the most well-known particular case of
such a quotient.

The topological definition of the BMW algebra uses the notion of tangles, generalising
braids. We keep the rectangular strip with the two lines of n dots, and we still connect each
dot to another dot by a strand inside the strip. However now we are allowed to connect a top
dot to another top dot (and similarly for bottom dots). An example is:

We can multiply such objects by vertical concatenation as before. The BMW algebra is gen-
erated by such objects, with an adequate notion of isotopy and adding some local relations.
Note that closed links (possibly intertwined with the strands) can live inside the rectangu-
lar strip, due to the desired stability by concatenation. One important local relation is the
Kauffman skein relation:

(2.5)
− = −(q − q−1)

�

−
�

allowing in some sense to “resolve” the crossings, in a way similar to the Hecke algebra
situation, though more involved. We will not give the precise topological definition of the
BMW algebra (see for example [58]), and we shall be happy with an algebraic description by
generators and relations.

The BMW algebra BMWn(, q) is the quotient of the braid group algebra CBn by the rela-
tions:

eσ = e for  = 1, . . . , n − 1,

eσ
±1
+1e = 

∓1e for  = 1, . . . , n − 2,

where we have set e = 1 −
σ−σ−1
q−q−1 . Here q and  are two non-zero complex numbers and

q2 6= 1. In the realisation as an algebra of tangles, the element e is

e =

1

. . .

 − 1   + 1  + 2

. . .

n

 ∈ {1, . . . , n − 1},

as can be seen from the local Kauffman relation. The first relation, when written only in terms
of σ, is:

(σ − q)(σ + q−1)(σ − ) = 0 ,

so that we have a cubic characteristic equation for the generators. The other relation involves
three different strands. It is clear from the algebraic presentation that if we set e = 0 we
recover the Hecke algebra Hn(q).

Remark 2.4 (Kauffman polynomial). The chain of BMW algebras supports a Markov trace,
different from the one on the chain of Hecke algebras, resulting in an invariant of links called
the Kauffman polynomial [48]. Î
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The YB equation. For any  ∈ {1, . . . , n − 1}, define the following function taking values in
the algebra BMWn(q, ):

(2.6) σ() = σ + (q − q−1)
1

 − 1
+ (q − q−1)

1

−1q + 1
e .

It turns out that the braided YB equation is satisfied in the BMW algebra by these functions
[43]:

σ()σ+1()σ() = σ+1()σ()σ+1() .

Following the same steps as for the Hecke algebra, it remains to discuss whether we
can find some local representation of the BMW algebra, in order to obtain genuine matrix
solutions of the YB equation. As for the Hecke algebra, it turns out to be possible. We do
not give the details and refer to [60, 67] for explicit formulas. In both cases (Hecke and
BMW), the existence of a local representation has a far-reaching significance in the context
of Schur–Weyl dualities. We will discuss this later in Section 4.

2.3. Baxterization

The two preceding subsections provide examples of Baxterization formulas (inside an alge-
bra). We will quickly review this notion, very natural in our discussion. The terminology is due
to V. Jones [44]. Some references for Baxterization are [10, 15, 18, 20, 36, 51, 72].

Start with a local representation of the braid group given by an operator Ř ∈ End(V ⊗ V).
Baxterizing this solution is, roughly speaking, to find a way to add the spectral parameters.
More precisely, one looks for an expression Ř() depending on a parameter , and built out
of the matrix Ř, such that the braided YB equation is satisfied:

Ř1()Ř2()Ř1() = Ř2()Ř1()Ř2() on V ⊗ V ⊗ V.

The expression for Ř() is seen as a function of  taking values in End(V⊗V). Typically it takes
values in the subalgebra of End(V ⊗ V) generated by Ř. For example, if Ř is diagonalisable,
one can look at an expression of the form:

Ř() =
∑



ƒ()P ,

where P are the projectors on eigenspaces of Ř, and one tries to find expressions for the
functions ƒ() such that the YB equation is satisfied. usually, there is a way ro recover the
operator Ř by taking some limiting values of the parameters .

At the level of an algebra A, a Baxterization formula often refers to the following construc-
tion. Assume for simplicity that A is generated by elements σ1, . . . , σn−1 satisfying the braid
relations. Then a Baxterization formula in the algebra A is an explicit formula for a function
σ() with values in the algebra A (or more precisely, in the subalgebra generated by σ),
such that the braided YB equation is satisfied inside A:

σ()σ+1()σ() = σ+1()σ()σ+1() .

The expression of σ() in terms of σ should be the same for every .
If we have a Baxterization for an algebra A, then we should look for local representations

of A, that is, representations of A in End(V⊗n) for some vector space V given in the form:

σ 7→ Id⊗−1 ⊗ Ř ⊗ Id⊗n−−1 ,

where Ř ∈ End(V ⊗ V). Applying the representation, the function σ() is sent to a function
with values in End(V⊗n) satisfying the YB equation for matrices.

We have already seen three Baxterizations formulas, one for the Hecke algebra (2.3), one
for the BMW algebra (2.6) and one for the symmetric group in Example 1.4. The Baxterization
formula for the symmetric group (more accurately, its group algebra) is:

Ř() = σ +
1


, (where σ = (,  + 1)).
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3. Quantum Groups

We seek for a common ground to interpret both the Hecke algebra and the BMW algebra, and
if possible explaining that both of them admit a Baxterization formula. To do so, we make a
little detour through quantum groups.

Quantum groups were introduced in the mid 80s by Drinfeld and Jimbo [21, 37]. Some
constructions in special cases were already found in [52, 66]. Some general references on
quantum groups are [12, 22, 45, 46, 49].

3.1. Some properties of quantum groups

Let g be a complex simple Lie algebra (for example, g = sN). To keep these notes reasonable
in size, we will not give the definitions of quasi-triangular Hopf algebras of which the quantum
groups are famous examples (we refer the interested reader to [12, §4], [45, §3&8], [46, §2]
and [49, §1]). We will only pick up from this whole theory the properties especially relevant for
us and briefly discuss them. This section and the following are only meant to roughly indicate,
not going into details, that there exists interesting algebraic objects (quantum groups) which
provide us with representations of the braid group and even more, with solutions of the
Yang–Baxter equation.

To get a first feeling of these objects, let us mention that the quantum group that we
denote Uq(g) is an associative algebra3, which can be defined explicitly by generators and
relations. As a vector space, it looks like the universal enveloping algebra U(g) of the Lie
algebra g. However, the way of multiplying elements is different. It is a deformation of the
multiplication in U(g), in the sense that there is a certain way to send the parameter q to
1 which recovers the algebra U(g). The example of g = s2 will be treated after the general
discussion.

To summarize, the main properties that we are going to discuss here are4:

• the fact that we can make tensor products of representations of Uq(g);

• the fact that V⊗W and W⊗ V are isomorphic as representations of Uq(g), and that the
isomorphisms provide local representations of the braid group;

• and finally, the fact that we can upgrade this picture, using affine quantum groups, to
get solutions of the Yang–Baxter equation.

Remark 3.1. From general deformation theory, it is known that there is no non-trivial defor-
mation of the algebra U(g) for a simple Lie algebra g (see [45]). It means that in a sense Uq(g)
and U(g) are isomorphic as algebras (even though the explicit isomorphism is not obvious at
all). At first, this remark can be somewhat disturbing for we realise that the new multiplica-
tion of Uq(g) is more or less equivalent to the usual one of U(g). However, one has to keep
in mind that Uq(g) and U(g) are not isomorphic as Hopf algebras, meaning that the coprod-
uct (see below) of Uq(g) is really different from the usual one of U(g). Roughly speaking, we
could say that going from U(g) to Uq(g) does not change much the algebra structure, and in
particular the representation theory, but it changes non-trivially the way to perform tensor
products of representations. Î

3Regarding the terminology “quantum group”, it may be satisfying enough to note that the quantum groups
Uq(g) are deformations of the classical objects U(g) associated to Lie groups and moreover, during the deformation,
something which was commutative (the coproduct) becomes non-commutative. More convincing explanations can
be found in [22].

4The existence of a trivial representation and of contragredient (or dual) representations are important proper-
ties of quantum groups that we omit in our discussion.
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Let V1 and V2 be two representations of Uq(g). The vector space V1 ⊗ V2 can be made a
representation of Uq(g). This is made possible by the existence of a so-called coproduct Δ,
which is a morphism of algebras:

Δ : Uq(g) −→ Uq(g) ⊗ Uq(g) .

Note that the vector space V1 ⊗ V2 naturally carries a representation of Uq(g) ⊗ Uq(g). Then
the way to construct a representation of Uq(g) on V1⊗ V2 is simply by precomposing with the
coproduct.

More explicitly, denote ρ1 the morphism Uq(g) → End(V1) and similarly for ρ2. Then, ex-
plicitly, the representation of Uq(g) on V1 ⊗ V2 is defined as:

Uq(g)
Δ−→ Uq(g) ⊗ Uq(g)

ρ1⊗ρ2−→ End(V1 ⊗ V2)

 7→ Δ() =
∑

′ ⊗ ′′ 7→
∑

ρ1(′) ⊗ ρ2(′′)

Here and in some places below, we use the useful Sweedler notation Δ() =
∑

′⊗ ′′, where
the summation index is omitted. In rigorous mathematical notations, it would have been
Δ() =

∑N
=1 

′

⊗ ′′


for some N > 0 and some ′


, ′′


∈ Uq(g).

Example 3.2. For a group algebra CG, the map Δ from CG to CG⊗CG defined by Δ(g) = g⊗g
for any g ∈ G extends to a morphism of algebras and leads to the standard way of performing
tensor products of representations of a group.

For a Lie algebra g, the map Δ from U(g) to U(g) ⊗ U(g) defined by Δ() =  ⊗ 1 + 1 ⊗  for
any  ∈ g extends to a morphism of algebras and leads to the standard way of performing
tensor products of representations of a Lie algebra.

Not any morphism of algebras Uq(g) → Uq(g) ⊗ Uq(g) will work as a nice coproduct. One
property which is usually required is the coassociativity property. In formulas, it reads

(Δ ⊗ Id) ◦ Δ = (Id⊗ Δ) ◦ Δ .

This is an equality for applications from Uq(g) to Uq(g)⊗3. Its meaning is the following. At
this point, there are two ways of performing the tensor product of three representations:
(V1 ⊗ V2) ⊗ V3 and V1 ⊗ (V2 ⊗ V3) and the resulting representations on V1 ⊗ V2 ⊗ V3 do not
have to be isomorphic. The coassociativity property ensures that the two representations in
fact simply coincide. Thanks to the coassociativity, we do not need to worry about putting
parentheses in a tensor product, since every possible ways of performing it lead to the same
result.

It might be worth emphasizing that, in general, for an arbitrary associative algebra, there is
no natural coproduct and no natural way of performing tensor product of representations (for
example, for the Hecke algebra Hn(q)). So the existence of a coproduct is a first remarkable
property of quantum groups.

Now, for our discussion, one crucial property of tensor products of representations of Uq(g)
is the following: for any two representations V,W of Uq(g), the representations V ⊗ W and
W ⊗ V are isomorphic, that is, we have an invertible linear operator ŘV,W between V ⊗W and
W ⊗ V which commutes with the action of Uq(g):

ŘV,W : V ⊗W ∼→ W ⊗ V , isomorphism of Uq(g)-representations.

Remark 3.3. The permutation operator PV,W sending  ⊗  to  ⊗ , is the natural isomor-
phism of vector spaces between V ⊗ W and W ⊗ V. For U(g), the permutation provides the
isomorphism of representations. This is not so for Uq(g) (that is, ŘV,W 6= PV,W) and this is one
of the important points about quantum groups. Î

The existence of the isomorphisms ŘV,W is not enough for our purpose, we need moreover
the fact that these isomorphisms satisfy a compatibility condition when considering a tensor
product of three representations:
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V1 ⊗ V2 ⊗ V3

V2 ⊗ V1 ⊗ V3

V1 ⊗ V3 ⊗ V2

V2 ⊗ V3 ⊗ V1

V3 ⊗ V1 ⊗ V2

V3 ⊗ V2 ⊗ V1

This diagram shows the two possible paths from V1 ⊗ V2 ⊗ V3 to V3 ⊗ V2 ⊗ V1 by applying
the isomorphisms ŘV,Vj . The compatibility condition is that these two paths coincide. This
condition writes as an equality of linear operator from V1 ⊗ V2 ⊗ V3 to V3 ⊗ V2 ⊗ V1:
(3.1)
�

ŘV1,V2 ⊗ IdV3
�

◦
�

IdV2 ⊗ ŘV1,V3
�

◦
�

ŘV2,V3 ⊗ IdV1
�

=
�

IdV1 ⊗ ŘV2,V3
�

◦
�

ŘV1,V3 ⊗ IdV2
�

◦
�

IdV3 ⊗ ŘV1,V2
�

.

As we will see just below, this is at this step of the story that the braid group makes its
appearance.

3.2. Local representations of the braid group

If we consider the situation where V1 = V2 = V3 = V and we denote simply by Ř the iso-
morphism ŘV,V which is an invertible element in End(V ⊗ V), then the compatibility condition
above becomes simply the braid relation:

Ř1Ř2Ř1 = Ř2Ř1Ř2 on V ⊗ V ⊗ V.

The operator Ř on V ⊗ V is called the R-matrix associated to the representation V of the
quantum group Uq(g).

Conclusion 1. For any quantum group Uq(g) and any representation V of Uq(g), we have a
local representation of the braid group on V⊗n.

Explicitly, that is to say that we have elements Ř1, . . . , Řn−1 in End(V⊗n), which are con-
structed from the element Ř ∈ End(V ⊗ V) like this:

Ř1
︷ ︸︸ ︷

V ⊗

Ř2
︷ ︸︸ ︷

V ⊗ V ⊗ . . .

Řn−1
︷ ︸︸ ︷

. . . ⊗ V

and which satisfy the braid relations.

Universal R-matrix. For an algebra A admitting a coproduct Δ, we denote Δop the com-
position of Δ with the permutation of A ⊗ A ( ⊗ b 7→ b ⊗ ). We say that the coproduct is
cocommutative when the images Δ() are invariant under the transposition of the two com-
ponents, that is, when Δ = Δop. Note that the two classical examples of coproducts for groups
and for Lie algebras (Example 3.2) are cocommutative. For an algebra with a cocommutative
coproduct, it is easy to see that the permutation operator from V ⊗ W to W ⊗ V provides
an isomorphism of representations. So in this case, the obtained local representation of the
braid group is always the trivial one given by the permutation operator.

One of the main interest of quantum groups is that their coproduct is not cocommutative,
and thus the obtained local representations of the braid group are not trivial. So regarding
the construction of local representations of the braid group, the quantum groups Uq(g) are a
considerable improvement compared to their classical analogue U(g).

For a non-cocommutative coproduct on an algebra A, there is a natural condition weaken-
ing the cocommutativity that ensures the isomorphisms of representations V ⊗W and W⊗ V.
This is the existence of an invertible element R in A ⊗ A such that:

(3.2) R · Δ() = Δop() ·R ∀ ∈ A .

It follows immediately from this that the following element provides an isomorphism ŘV,W of
representation between V ⊗W and W ⊗ V:

ŘV,W = PV,W · ρV⊗W(R) ,
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where ρV⊗W(R) is the image of the element R of A ⊗ A in the representation on V ⊗ W; it
belongs to End(V ⊗W). And PV,W is the permutation operator from V ⊗W to W ⊗ V.

At this point, there is no reason for the compatibility condition (3.1) to be satisfied. A way
to get it is obtained through the so-called quasitriangularity conditions, which read as:

(3.3) (Δ ⊗ IdA)(R) =R13R23 and (IdA ⊗ Δ)(R) =R13R12 .

These two conditions, which are equations in A ⊗ A ⊗ A, imply in particular the constant YB
equation R12R13R23 =R23R13R12 directly in A⊗A⊗A. From this, the compatibility condition
for all representations as in (3.1) is ensured, and in particular the local representations of the
braid group as in Conclusion 1 are obtained.

Such an element R satisfying (3.2) and (3.3) is called a universal R-matrix. It turns out that
the quantum group Uq(g) admits a universal R-matrix satisfying all the required properties.
We note that an appropriate definition of Uq(g) and Uq(g)⊗ Uq(g) is needed, involving formal
power series and suitable completions (see the example of s2 below).

3.3. Solutions of the YB equation

The quantum groups were originally designed for being useful in the study of the YB equa-
tion, but so far we have only discussed how they are related to local representations of the
braid group. In short we must explain how to add the spectral parameters. This requires in-
creasing by one (rather big) step the technical difficulties by going to the so-called “affine”
Lie algebras. We are thus going to be even more sketchy than before. We note that the use
of affine quantum groups for the YB equation was present since the origin of the theory of
quantum groups [38]. References for this section are [11, 12, 23, 26, 30]. The YB equation is
now connected with many more mathematical structures than only quantum groups, see for
example [34] and references therein.

The property we would like to discuss is the existence of solutions of the YB equation on
representations of Uq(g). We will only try to convey the idea that this remarkable property
comes from the existence of affine quantum groups with good properties. We organise the
discussion in a series of steps towards the main conclusion.

• The affine Lie algebra ĝ is a central extension of the Lie algebra g ⊗ C[t, t−1] of Laurent
polynomials with coefficients in g (we will forget the central extension in our discussion). If V
is a representation of g then for any non-zero  ∈ C, there is a representation V() of ĝ called
evaluation representation. As a representation of g, V() is simply V, while the generator t
is evaluated to the number . The new parameter  in the fixed representation V of g will
play the role of the spectral parameter in the YB equation. Only problem is we need to do the
same thing for representations of Uq(g). This is where a quantum version of ĝ is required.

• The affine Lie algebra ĝ is not a simple Lie algebra. However, it belongs to the family
of Kac–Moody Lie algebra. In a few words, if we cast the algebraic definition of g such that
it depends only on its Cartan matrix, then we realise that we can use a similar definition
for generalised Cartan matrices. This results in the Kac–Moody Lie algebras, including the
affine Lie algebras. It turns out that the definition of the quantum group Uq(g) that we have
avoided to give also only depends on the Cartan matrix. And thus it is perfectly generalisable
to the generalised Cartan matrices leading to quantum groups associated to Kac–Moody Lie
algebras. The point is that there is a definition of affine quantum groups Uq(ĝ) similar to
the definition of quantum groups Uq(g) (the resulting algebras are quite more complicated
though).

As in the preceding discussion for Uq(g), there is an analogous story for tensor products of
representations of Uq(ĝ). The algebra Uq(ĝ) still admits a coproduct, so we can make tensor
products of representations, and there is in some completion a universal R-matrix allowing,
roughly speaking, to reproduce the discussion before Formula (3.1).
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• Generalising the natural embedding of g in ĝ, one may regard Uq(g) as a subalgebra
of Uq(ĝ). This allows to restrict representations of Uq(ĝ) to representations of Uq(g). Let us
assume for now that for a representation V of Uq(g), there exists an analogue of evalua-
tion representations. Namely that we have representations V() of Uq(ĝ), depending on a
parameter , such that the restriction to Uq(g) is the representation V we started with.

For two “evaluation” representations V() and V(b) of Uq(ĝ), we can find for generic values
of  and b an operator intertwining the representations V() ⊗ V(b) and V(b) ⊗ V(). This
operator, denoted Ř(, b), thus lives in End(V ⊗ V) since the vector space underlying both
representations V() and V(b) is V. In fact, it turns out that it can be seen as a rational
function in the parameters , b:

Ř : C2 → End(V ⊗ V)

(, b) 7→ Ř(, b)
,

The compatibility condition applied to V() ⊗ V(b) ⊗ V(c) looks like this:

V() ⊗ V(b) ⊗ V(c)

V(b) ⊗ V() ⊗ V(c)

V() ⊗ V(c) ⊗ V(b)

V(b) ⊗ V(c) ⊗ V()

V(c) ⊗ V() ⊗ V(b)

V(c) ⊗ V(b) ⊗ V()

For the function Ř(, b), this reads:

Ř12(b, c)Ř23(, c)Ř12(, b) = Ř23(, b)Ř12(, c)Ř23(b, c) on V ⊗ V ⊗ V.

This is the braided YB equation. Note that in the end the spectral parameters came from a
family of representations of Uq(ĝ) extending the given representation of Uq(g). So it would
not be too far from truth to say that the YB equation is the braid relation applied to some
representations of affine quantum groups.

At last we can draw our second conclusion regarding the uses of quantum groups in our
context.

Conclusion 2. For a quantum group Uq(g) and some of its representations V, we have a
solution of the YB equation on V ⊗ V.

Let us admit for the sake of simplicity that the function Ř(, b) depends only on the ratio
of the two parameters, and therefore is equivalent to a function of one parameter Ř(). The
conclusion says that we have functions Ř1(), . . . , Řn−1() taking values in End(V⊗n), which
are constructed from the function Ř() like this:

Ř1()
︷ ︸︸ ︷

V ⊗
...

︷ ︸︸ ︷

V ⊗ V ⊗ . . .

Řn−1()
︷ ︸︸ ︷

. . . ⊗ V

and which satisfy the braided YB equation:

Ř()Ř+1()Ř() = Ř+1()Ř()Ř+1() .

On the validity of Conclusion 2. In the above statement we had to reduce the generality
by writing “some of its representations”. This is because we have assumed that for a rep-
resentation V of Uq(g), we had a family of “evaluation” representations V() of Uq(ĝ). This
assumption is not always satisfied and we will discuss briefly its validity.

First, for the simplest situation g = sN, this assumption is valid for any representation V of
Uq(g). Indeed, for g = sN, there is a morphism from Uq(ĝ) to Uq(g) depending on a parameter
, which is the analogue of the evaluation morphism from ĝ to g. This allows immediately to
construct the “evaluation” representations V() of Uq(ĝ) from a representation V of Uq(g).
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For other simple Lie algebras g, such an analogue of evaluation morphism does not exist.
However, what is true in general is that there is a family of automorphisms of Uq(ĝ) depend-
ing on a parameter . So assume that a representation V of Uq(g) can be extended to a
representation of Uq(ĝ). Then by twisting this representation by the automorphisms, one get
a family of representations V() of Uq(ĝ) extending V (they do not come anymore from a
morphism Uq(ĝ)→ Uq(g) but they still serve for finding solutions of YB equation on V).

This leaves us with the following conclusion: we have a solution of the YB equation on
representations V of Uq(g) which can be extended to Uq(ĝ). To insist once more, for g = sN,
all representations can be extended but for arbitrary g this is not true. This leads to the
natural concept of “minimal affinization” of a representation [13]. Note that reversing the
point of view, one could also say: we have a solution of the YB equation on representations
V of Uq(g) which can be obtained from restrictions of representations of Uq(ĝ).

Remark 3.4. Example 2.3 is associated to Uq(s2) and the fundamental representation.
However, before that, we had the example 1.4, the Yang solution, which is a certain limit
of the one from Uq(s2). In fact, this example also comes from an algebra, sharing many
properties with Uq(ĝ), which is called the Yangian Y(g) (see [12]). This algebra, with no pa-
rameter q, can be seen a certain limit of Uq(ĝ) and also provides solutions of the YB equation
along the same lines as outlined above. Î

3.4. Example of Uq(s2)

This is about time for an explicit example, so we will take the simplest situation g = s2, see
[45]. As a vector space, s2 is generated by:

h =
�

1 0
0 −1

�

,  =
�

0 1
0 0

�

, y =
�

0 0
1 0

�

.

Its Lie algebra structure is given by:

(3.4) [h, ] = 2 , [h, y] = −2y , [, y] = h .

Thus, as an algebra, U(s2) is generated by elements h, , y with relations (3.4) as defining
relations. Note that we abuse notations by keeping the same names , y, h for the generators
of U(s2). In U(s2), the bracket [, b] simply means b − b.

The algebra Uq(s2). The quantum group Uq(s2) is often defined as the algebra generated
by X, Y, K with K required to be invertible, and with defining relations:

(3.5) KXK−1 = q2X , KYK−1 = q−2Y , XY − YX =
K − K−1

q − q−1
.

In this version, it is not so clear how to relate it to U(s2) (at this point, the limit q→ 1 does not
really make sense) and it would also require some completions to be able to find a universal
R-matrix.

The alternative standard definition of Uq(s2), the one which we are going to consider from
now is the following one. As a vector space, we define Uq(s2) to be

U(s2)[[α]] = {c0 + c1α + . . . , c ∈ U(s2)} ,

the vector space of formal power series in α with coefficients in U(s2). We abuse again
notation and keep the names , y, h for the generators of U(s2) but we insist that we mean
here only the vector space U(s2); the multiplication will be different. The multiplication of
elements of Uq(s2) is the usual multiplication of formal series, together with the following
(new) defining relations between the elements , y, h:

(3.6) h − h = 2 , hy − yh = −2y , y − y =
eαh − e−αh

eα − e−α
.
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One has to notice that the right hand side of the last relation is indeed a power series in α. We
should insist that as a vector space, U(s2)[[α]] is not the same as U(s2) with coefficients in
C[[α]]. This is because U(s2) is not finite dimensional. For example, eαh is in U(s2)[[α]].

One can see the connections with the previous definition of Uq(s2) as follows: if one
sets q = eα and K = eαh then Relations (3.5) are satisfied. One advantage of the definition of
Uq(s2) involving power series in α is that the connection with U(s2) is quite transparent. The
limit α = 0 is well-defined and one recovers the algebra U(s2) as can be seen immediately
in the defining relations.

Coproduct and R-matrix for Uq(s2). We define the tensor product Uq(s2)⊗̂Uq(s2) as
follows (and similarly for Uα(s2)⊗̂L for any L). As a vector space, this is:

�

U(s2) ⊗ U(s2)
�

[[α]] .

The power series are multiplied as usual, and the elements , y, h still satisfy the relations
(3.6) in each factor of the tensor product; moreover elements in different factors commute.

Then, the coproduct is defined on the generators by:

(3.7) Δ() =  ⊗ e−αh/2 + eαh/2 ⊗  , Δ(y) = y ⊗ e−αh/2 + eαh/2 ⊗ y , Δ(h) = h ⊗ 1 + 1 ⊗ h ,

and extended to Uq(s2) by Δ(
∑

cα) =
∑

Δ(c)α. One can check that Δ extends to an algebra
homomorphism from Uq(s2) to Uq(s2)⊗̂Uq(s2). It is immediate to see that the limit α = 0
gives back the usual coproduct on U(s2).

Note that Uq(s2)⊗̂Uq(s2) is not the same vector space as Uq(s2) ⊗ Uq(s2). For example
eα(h⊗h) is in the former but not in the latter. At this point, it may seem superfluous to consider
the completed tensor product ⊗̂, since the coproduct takes values in the usual tensor product.
However, the completed tensor product is relevant because it turns out that there is an
universal R-matrix R with the required properties in Uq(s2)⊗̂Uq(s2). An explicit formula is:

(3.8) R = eα(h⊗h)/2
∑

n≥0

(q − q−1)n

[n]q!
qn(n−1)/2

�

e−αh/2y ⊗ eαh/2
�n
,

where we have set q = eαh, [n]q! = [2]q · [3]q . . . [n]q where [k]q =
qk−q−k

q−q−1 . The term in
the sum being a multiple of αn, it follows that the element R is a well-defined element of
Uq(s2)⊗̂Uq(s2).

Example of representations of Uq(s2). By checking directly the defining relations, we
find that:

h 7→
�

1 0
0 −1

�

,  7→
�

0 1
0 0

�

, y 7→
�

0 0
1 0

�

,

defines a representation of Uq(s2) on a vector space V of dimension 2. It is called the vector
representation (it looks exactly the same as the natural representation of s2, but look at the
next example). To calculate the R-matrix for this representation, one notes that the images
of  and y are nilpotent of index 2, and thus it is enough to take only n = 0,1 in the sum
in (3.8). Say (1, 2) was the basis of V used to give the matrices above, then in the basis
(⊗j),j=1,2 ordered lexicographically, we easily find the image of R and in turn the R-matrix:

ρV⊗V(R) =









eα/2 · · ·
· e−α/2 · ·
· e−α/2(q − q−1) e−α/2 ·
· · · eα/2









⇒ ŘV,V = e−α/2









q · · ·
· q − q−1 1 ·
· 1 0 ·
· · · q









,

where we recall that the matrix Ř is obtained by multiplying by the permutation operator. Up
to a global factor, we recover the solution in Example 2.3 coming from the Hecke algebra for
a vector space of dimension 2.
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As a first instance of a procedure whose generalisation we are going to discuss later,
we note that the R-matrix ŘV,V commutes with the action of Uq(s2) on V ⊗ V. Namely, it
commutes with the image of Δ(h),Δ(),Δ(y) in End(V ⊗ V). This can be easily checked here
with a direct calculation, but as we will see, it follows by construction of R-matrices.

Therefore, the action of Uq(s2) leaves invariant the eigenspaces of ŘV,V . A basis of the
eigenspace for the eigenvalue q is (1 ⊗ 1, e−α/21 ⊗ 2 + eα/22 ⊗ 1, 2 ⊗ 2). This is the
deformation of the symmetric square of V. On this subspace, we find the following represen-
tation of Uq(s2):

h 7→





2 0 0
0 0 0
0 0 −2



 ,  7→





0 q + q−1 0
0 0 1
0 0 0



 , y 7→





0 0 0
1 0 0
0 q + q−1 0



 .

This is the deformation for Uq(s2) of the three-dimensional representation of s2. The R-
matrix associated to this representation can also be calculated directly from the formula
(3.8), we leave the details for the reader.

We note that the R-matrix for this representation does not come anymore from the Hecke
algebra, and one goal of these notes is to discuss the algebras controlling this solution and
the analogues for higher symmetric powers.
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4. Centralisers of Tensor Representations of Quantum Groups

4.1. Properties of centralisers

Generalities. Let ρ : A→ End(E) be a representation of an algebra A on a vector space E.
The centraliser of the representation is a classical object in linear algebra. In words, it is the
commutant in End(E) of the family of endomorphisms {ρ()}∈A . More formally, we define:

EndA(E) := { ∈ End(E) | ρ() = ρ() , ∀ ∈ A} .

The meaning of the centraliser in representation theory is quickly understood when one
considers a semisimple representation E, that is a representation E which decomposes as a
direct sum of irreducible representations:

E =
⊕



E
⊕m
 ,

where m ∈ Z>0 are the multiplicities of the irreducible representations E in E. Using Schur
Lemma, the centraliser EndA(E) is described as follows. First it leaves invariant the subspaces
E
⊕m
 . Besides, for a given , choose a basis for the representation E and denote by ρ() the

matrices of elements of A acting in this basis of E. Form a basis of E⊕m
 by concatenating

m times this same basis. Then on E
⊕m
 , the operators of A and of the centralisers look as

follows:

A 3  7→













ρ() 0 . . . 0

0 ρ()
. . .

...
...

. . .
. . . 0

0 . . . 0 ρ()













, EndA(E) 3  7→













11Id 12Id . . . 1m Id

21Id 22Id
...

...
...

. . .
. . .

...
m1Id . . . . . . mm Id













,

as block-matrices with m×m blocks. Thus we see that the centraliser EndA(E) is isomorphic
to a direct sum of matrix algebras:

EndA(E) ∼=
⊕



Matm (C) ,

the sizes of which correspond to the multiplicities.
One can go further and note that E can also be seen as a representation of the centraliser

EndA(E), and that for this representation, the centraliser is the image of A in End(E). This is an
instance of a double centralising theorem (note that the assumption that the representation
of A we started with is semisimple is important). Finally, as the images commute, E can
also be seen as a representation of the algebra A ⊗ EndA(E) (the multiplication is performed
independently in each factor).

To summarise, we have the following decompositions of E as a representation, respec-
tively, of A, of EndA(E) and finally of A ⊗ EndA(E):

(4.1) E =
⊕



E
⊕m
 , E =

⊕



�

Cm
�⊕ dim(E) , E =

⊕



E ⊗ Cm .

Centralisers of Uq(g). Now, we are mainly interested here in the case of A = Uq(g) a quan-
tum group as in Section 3 and E is a tensor product of representations. More precisely, we
take a representation V of Uq(g) and we form the tensor product V⊗n. We have explained the
fundamental property of quantum groups that this tensor product V⊗n is also a representa-
tion of Uq(g). The objects of main interest to us are the centralisers of such representations:

EndUq(g)(V
⊗n) .

Now it is time to draw on our previous discussion on quantum groups and fulfill the objec-
tive set up in the introduction. Recall from Section 3.2 (Conclusion 1) that we have elements
Ř1, . . . , Řn−1 of End(V⊗n), satisfying the braid relations.
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Moreover recall from Section 3.3 that, assuming the representation V is such that Conclu-
sion 2 is valid, we have functions Ř1(), . . . , Řn−1() taking values End(V⊗n) satisfying the
braided YB equation. The quantum groups are so cleverly designed that the following holds.

Conclusion 3.

1. The elements Ř1, . . . , Řn−1 belong to the centraliser EndUq(g)(V
⊗n).

2. The functions Ř1(), . . . , Řn−1() take values in the centraliser EndUq(g)(V
⊗n).

Proof of Conclusion 3. The facts stated above being clearly fundamental in our discussion,
this is a good point to give one proof in these notes. It may help to see a little bit better how
the subtle machinery of quantum groups works. So let us prove item 1.

Denote ρ : Uq(g)→ End(V) the representation. Let  be an arbitrary element of Uq(g) and
denote Δ() =

∑

′ ⊗ ′′ its coproduct.
We discussed in Section 3 the coassociativity property of the coproduct and how it allows

to make tensor products without worrying about parentheses. Let us see more explicitly how
this happens. Recall that the representation ρ(2) : Uq(g) → End(V ⊗ V) is constructed using
the coproduct and is given by

ρ(2)() = (ρ ⊗ ρ)
�

Δ()
�

=
∑

ρ(′) ⊗ ρ(′′) .

To construct a representation on V⊗n, one should first put parentheses in V⊗n and then per-
form a sequence of tensor products of two spaces. For n = 3, we have two possibilities:

V ⊗ (V ⊗ V) or (V ⊗ V) ⊗ V .

These two possibilities correspond to representations on V⊗3 given by:

applying ρ ⊗ ρ ⊗ ρ on:
�

(Id⊗ Δ) ◦ Δ
�

() or
�

(Δ ⊗ Id) ◦ Δ
�

() .

The coassociativity condition (Id⊗Δ)◦Δ = (Δ⊗ Id)◦Δ ensures that these two possibilities give
the same representation. Now, similarly, any way of putting parentheses on V⊗n also corre-
sponds to a certain composition of coproducts. For example, if n = 5, here is one possibility:

V ; V ⊗ V ; (V ⊗ V) ⊗ V ; (V ⊗ (V ⊗ V)) ⊗ V ; (V ⊗ (V ⊗ V)) ⊗ (V ⊗ V) ,

corresponding to the following composition: (Id ⊗ Id ⊗ Id ⊗ Δ) ◦ (Id ⊗ Δ ⊗ Id) ◦ (Δ ⊗ Id) ◦ Δ. So
to check that we really obtain always the same representation on V⊗n, we first consider one
way of doing it, for example by defining Δ(2) = Δ and for n > 2:

Δ(n) := (Δ ⊗ Id⊗ · · · ⊗ Id) ◦ Δ(n−1) ,

which corresponds to the parenthesized product
�

...
�

(V ⊗ V)⊗ V
�

⊗ · · · ⊗ V
�

. And then it is easy
to check by induction on n that it coincides with any other possibilities:

Δ(n) = (Id⊗ · · · ⊗ Id⊗ Δ ⊗ Id⊗ · · · ⊗ Id) ◦ Δ(n−1) , for any position of Δ among the Id’s .

So finally there is only one representation on ρ(n) : Uq(g) → End(V⊗n), and it is given by the
following recursive formula for any choice of :

ρ(n)() =
∑

ρ(n−)(′) ⊗ ρ()(′′) for  ∈ {1, . . . , n − 1}.

• n = 2: After all this preparation, we are ready for the proof at last. Consider the element R
in Uq(g) ⊗ Uq(g) satisfying:

RΔ() = Δop()R ,

and recall that the element Ř ∈ End(V ⊗ V) comes from R in the sense: Ř = Pρ⊗ ρ(R) (where
P is the permutation operator of V ⊗ V). So applying the representation ρ ⊗ ρ to the equality
above, we find:

PŘ
�∑

ρ(′) ⊗ ρ(′′)
�

=
�∑

ρ(′′) ⊗ ρ(′)
�

PŘ .

Now it is clear that, moving the permutation operator to the left and removing it, we have:

Řρ(2)() = ρ(2)()Ř ,
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which is the statement that Ř belongs to EndUq(g)(V ⊗ V).
• n > 2: By induction on n, using respectively the formulas:

ρ(n)() =
∑

ρ(n−1)(′) ⊗ ρ(′′) and ρ(n)() =
∑

ρ(′) ⊗ ρ(n−1)(′′) ,

we obtain first that Ř1, . . . , Řn−2 commutes with ρ(n)() and second that Řn−1 commutes with
ρ(n)() as well.

For item 2, we can follow the same reasoning for Ř() in the suitable tensor product of
“evaluation” representations V() of the affine quantum group Uq(ĝ). Restricted to Uq(g),
the dependance on the “evaluation” parameter disappears and the tensor product is simply
V⊗n. We skip the details here. �

Example 4.1. Let us discuss a classical example of centralisers. Consider the universal
enveloping algebra U(sN) (so this is the classical limit of the preceding situation). The Lie
algebra sN is the Lie algebra of N × N matrices with zero trace. As such there is a natural
representation of dimension N (send a matrix to itself). Call it V and construct the represen-
tation V⊗n. Recall that for a Lie algebra, the action of an element g on V⊗n is the sum of the
action on each factor:

g ⊗ Id⊗ · · · ⊗ Id+ Id⊗ g ⊗ Id⊗ · · · ⊗ Id+ · · · + Id⊗ · · · ⊗ Id⊗ g .

Now it is clear that any permutation of the factors in V⊗n commutes with the action of
U(sN). In particular, take P to be the transposition of positions  and  + 1, then we have
that P1, . . . , Pn−1 belong to EndU(sN)(V

⊗n). These operators satisfy the braid relations, so we
just described the analogue of item 1 of Conclusion 3 in this case. Concerning item 2, the
solutions of the braided YB equation (with additive spectral parameters) are given by the
Yang formula, and they obviously take values in EndU(sN)(V

⊗n):

Ř = P +
dV⊗n


.

Moreover, in this case, we can obtain a complete description of the centraliser EndU(sN)(V
⊗n)

since we can show that it is actually generated by the permutations (so it is a quotient of
the algebra of the symmetric group). This is the classical Schur–Weyl duality, which we will
describe for Uq(sN) in the next subsection.

4.2. Schur–Weyl duality

At this point, we should be convinced that the centralisers EndUq(g)(V
⊗n) are the algebras we

were looking for, in the sense that they satisfy the properties discussed in the introduction:
they contain a quotient of the braid group algebra and they contain solutions of the YB equa-
tion. About a representation on a tensor space V⊗n, well, they are defined as subalgebras of
End(V⊗n), so they admit one by definition.

However, we are far from an explicit algebraic (or any other) description of EndUq(g)(V
⊗n)

for any g and V. So the conclusion above is more a general statement indicating that this
should be very interesting for us to study these algebras. Moreover, the claimed objective
that we were going to “explain” why the Hecke (and BMW) algebras fit so nicely in our picture
is still not achieved. This is what we are going to do now.

Quantum group Uq(sN). So we take g = sN for some N > 0 and, for the representation
V, we take the analogue for Uq(sN) of the natural representation of sN. From the general
representation theory of quantum groups, we know that any (finite-dimensional irreducible)
representation of g can be deformed to a representation of Uq(g). However, let us be more
explicit than that.

First, the quantum group Uq(sN) should be described a bit more. We build on our previous
description of Uq(s2) in Section 3.4 involving power series in α and so on, so we do not
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repeat our discussion (q is still eα). Natural generators of sN are the elements h, , y, with
 = 1, . . . , N − 1. The triplet of elements h, , y corresponds to the following matrices of sN:

take the matrices
�

1 0
0 −1

�

,
�

0 1
0 0

�

,
�

0 0
1 0

�

as for s2 and plug them in lines and

columns  and  + 1.
The multiplication is deformed as follows. First each triplet h, , y satisfies the relations

of Uq(s2) in (3.6), replacing  to , y to y and h to h. Then we keep the following usual
relations of matrices:

[h, ±1] = −±1 , [h, y±1] = y±1 , [h, j] = [h, yj] = 0 (| − j| > 1) ,

[h, hb] = 0 (∀, b) , [, yj] = 0 ( 6= j) .
And finally we add the deformation of the so-called Serre relations (which is really the new
ingredient compared to s2):

j
2

− (q + q−1)j + 2 j = yjy

2

− (q + q−1)yyjy + y2 yj = 0 if | − j| = 1 .

For each triplet h, , y, the coproduct is given by the same formulas as for Uq(s2) in (3.7).
That is it, we have defined Uq(sN) and how to make tensor products of its representations.

As for s2, the standard representation V of Uq(sN) is simply given by assigning to each
h, , y its natural N× N matrix, as if we were dealing with sN. One can be surprised maybe,
but all defining relations of Uq(sN) are indeed satisfied. So again, and especially in the stan-
dard representation, we are not changing much the algebra structure, but the “quantum”
novelty of Uq(sN) compared to classical U(sN) is that we have a different way to construct
a representation on V⊗n. Comparing to Example 4.1, now the permutations do not belong to
the centraliser EndUq(sN)(V

⊗n). This is where we meet again, at last, with the Hecke algebra.

Hecke algebra Hn(q) and Jimbo–Schur–Weyl duality. Informations on the classical Schur–
Weyl duality can be found in [28, 31, 68], and on the quantum version in [12, 38, 49]. Recall
that we have a representation of the Hecke algebra Hn(q) on the tensor product V⊗n. This
was given explicitly in (2.4). So our situation is that we have two algebras represented on the
same vector space, and we can picture it like this:

Uq(sN)
ρ(n)
−→ End(V⊗n)

π←− Hn(q)

Now we can state the (first part of) the Schur–Weyl duality.

Theorem 4.2 (Schur–Weyl I). The centraliser EndUq(sN)(V
⊗n) is the image of the Hecke al-

gebra Hn(q):
EndUq(sN)(V

⊗n) = π
�

Hn(q)
�

.

Since we are in the semisimple situation, from the general consideration on centralisers
sketched above, we have actually that π

�

Hn(q)
�

and ρ(n)
�

Uq(sN)
�

are the mutual centralisers
of each other. This is why we call it a duality.

From the generalities discussed above, see around Formulas (4.1), we know that the cen-
traliser is related to various decompositions of the representation V⊗n into irreducible sum-
mands. To describe this in our particular situation, we need some notations about irreducible
representations of Uq(sN) and of Hn(q).

A partition λ of n is a family of integers λ = (λ1, . . . , λ) such that λ1 ≥ λ2 ≥ · · · ≥ λ ≥ 0 and
λ1 + · · · + λ = n. We note λ ` n and we say that λ is a partition of size n. The number ℓ(λ) of
non-zero parts is called the length of λ. Then we have:

• The quantum group Uq(sN) has irreducible representations indexed by highest weights,
which are here identified with partitions λ such that ℓ(λ) ≤ N. Let us denote them by
LN
λ
. Note that here the size of λ can be arbitrary. We put a N in the notation because

the same partition can index a representation of Uq(sN) for various N. The standard
representation V corresponds to λ = (1).
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• The Hecke algebra Hn(q) has irreducible representations indexed by partitions λ of
size n. Let us denote them by Sλ (our convention is such that S(n) is the one-dimensional
representation σ 7→ q).

Now the decomposition of V⊗n, respectively, as a representation of Uq(sN), as a representa-
tion of Hn(q) and finally as a representation of Uq(sN) ⊗ Hn(q) is:

(4.2) V⊗n =
⊕

λ`n
ℓ(λ)≤N

(LN
λ
)⊕ dim(Sλ) , V⊗n =

⊕

λ`n
ℓ(λ)≤N

S
⊕ dim(LNλ )
λ , V⊗n =

⊕

λ`n
ℓ(λ)≤N

LN
λ
⊗ Sλ .

The duality here is apparent. Note that the knowledge of the representations Sλ of Hn(q) can
be used to construct the representations LN

λ
of Uq(sN) (this is the natural point of view in

these notes), or the other way around.

Kernel in the Schur–Weyl duality. The first step of the Schur–Weyl duality is a great
step in the understanding of EndUq(sN)(V

⊗n). Indeed Theorem 4.2 asserts that it is generated
by the elements Ř1, . . . , Řn−1, and that these elements, in addition to satisfying the braid
relations, also satisfy the Hecke relations. However, we can not say that the centraliser is the
Hecke algebra Hn(q). It only says that the centraliser is the image of the map π, and this map
may have a kernel. So the second part of the Schur–Weyl duality shall be the description of
this kernel. It turns out that there is a quite simple description of the kernel. The kernel was
actually implicitly described in (4.2) but let us not worry about that and just give directly its
algebraic description.

We need to go a little bit into the algebraic structure of the Hecke algebra Hn(q). For any
element  of the symmetric group Sn, let  = s1 . . . sk be a reduced (i.e. minimal length)
expression for  in terms of the generators s = (,  + 1), and denote ℓ() = k. Then define
σ := σ1 . . . σk ∈ Hn(q). This definition does not depend on the reduced expression for 
and the set {σ}∈Sn forms a basis of Hn(q).

For L ∈ Z≥0, we define the q-numbers as follows:

(4.3) [L]q :=
qL − q−L

q − q−1
= qL−1 + qL−3 + · · · + q−(L−1) and [L]q! := [1]q[2]q . . . [L]q .

Then the q-symmetriser in Hn(q) is the following element:

(4.4) Pn =

∑

∈Sn
qℓ()σ

∑

∈Sn
q2ℓ()

=
q−n(n−1)/2

[n]q!

∑

∈Sn

qℓ()σ .

and the q-antisymmetriser in Hn(q) is the following element:

(4.5) P′
n
=

∑

∈Sn
(−q−1)ℓ()σ

∑

∈Sn
q−2ℓ()

=
qn(n−1)/2

[n]q!

∑

∈Sn

(−q−1)ℓ()σ .

We take this opportunity to emphasize the nice formula
∑

∈Sn
q2ℓ() = qn(n−1)/2[n]q!.

Remark 4.3. For q = 1, the q-symmetriser becomes the usual symmetriser in the group
algebra CSn: the sum of all elements of Sn divided by n!. Similarly, the q-antisymmetriser
becomes the usual antisymmetriser: the sum of all elements of Sn multiplied by their signa-
ture and divided by n!. Î

We remark that up to now the description of the centraliser does not explicitly depend
on the dimension N of V, since the Hecke algebra does not depend on N. Of course, this
dependence is hidden in the map π and in its kernel. So it is only natural that it appears
explicitly now.

Theorem 4.4 (Schur–Weyl II). • If n ≤ N then the kernel of the map π is {(0)}

• If n > N then the kernel of the map π is generated in Hn(q) by the element P′
N+1.
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Note that we see the element P′
N+1 as an element of Hn(q) by the natural inclusion of

HN+1(q) in Hn(q) (if n > N). In words, to obtain the complete description of the centraliser,
we start from the Hecke algebra Hn(q) and, if n > N, we cancel the q-antisymmetriser on
N + 1 letters.

Explicitly, the centraliser EndUq(sN)(V
⊗n) is isomorphic to the algebra generated by ele-

ments σ1, . . . , σn−1 with defining relations:

σσ+1σ = σ+1σσ+1 , for  ∈ {1, . . . , n − 2} ,
σσj = σjσ , for , j ∈ {1, . . . , n − 1} such that | − j| > 1 ,
σ2

= 1 + (q − q−1)σ , for  ∈ {1, . . . , n − 1} ,

P′
N+1 = 0 if n > N.

Example 4.5 (Temperley–Lieb algebra). Let N = 2. In this case, the centraliser EndUq(s2)(V
⊗n)

is called the Temperley–Lieb algebra. The additional relation P′3 = 0 reads:

1 − q−1(σ1 + σ2) + q−2(σ1σ2 + σ2σ1) − q−3σ1σ2σ1 = 0 .

One can show that it implies the same relation with indices ,  + 1 for all  = 1, . . . , n − 2.
Then setting τ := σ− q, one recovers the other standard presentation of the Temperley–Lieb
algebra:

τ2

= −(q + q−1)τ , ττ+1τ = τ , τ+1ττ+1 = τ+1 and ττj = τjτ if | − j| > 1.

And the BMW algebra? Now we explained, at length, how the Hecke algebra fits in the
story of centralisers of quantum groups representations. This beautiful story has its counter-
part for the BMW algebra. Indead instead of sN we can consider the other classical Lie alge-
bras soN or spN. We can form the quantum groups Uq(soN) or Uq(spN), and we can consider
the tensor product V⊗n, where V is the (analogue of the) vector representation for Uq(soN)
or Uq(spN). Then the centralisers of V⊗n are described in a way similar to above, where the
Hecke algebra is replaced by another algebra. This other algebra is the BMW algebra (with
the parameter  specialised to a power of q depending whether we have soN or spN). For
details about that along the same lines as above, we refer for example to [49, §8.6]. This
concludes our discussion on the interpretation of Hecke and BMW algebras as centralisers of
representations of quantum groups.
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5. Fusion Procedure for the Yang–Baxter Equation

The fusion procedure was designed very early in the history of the YB equation [38, 39, 53].
It consists in a general procedure to construct new solutions starting from a known one. This
procedure can be split in two steps and presented schematically like in the following table:

Vector spaces Matrices Algebras

V basic solution on V ⊗ V ←- Hecke algebra Hn(q)

(generic fusion) ↓ ↓

V⊗k solution on V⊗k ⊗ V⊗k ←- (bigger) Hecke algebra Hkn(q)

(projection) ↓ ↓

Pr(V⊗k) solution on Pr(V⊗k) ⊗ Pr(V⊗k) ←- ?? fused Hecke algebra ??

To give a rough idea of what is going on, the first two columns describe the fusion pro-
cedure that was originally designed, for matrix solutions of the YB equation. Starting from
a known solution on V, an explicit formula builds a new solution on the much larger vector
space V⊗k. This is the first step. The second step identifies invariant subspaces in V⊗k for
this new solution. This is quite general and valid for any solution R() of the YB equation.

It is important to indicate that we have some free parameters in the fusion procedure, and
it turns out that for some specific choices of these free parameters, the invariant subspaces
can be especially interesting. To give at once the explicit example we will be interested in,
say the solution on V comes from the Hecke algebra and look at the tensor product V⊗n as a
representation of sN (or Uq(sN)), where N = dim(V). Then it decomposes as:

V⊗k = Sk(V) ⊕ . . . ,

where Sk(V) is the k-th symmetric power of V (or its analogue for Uq(sN)). If we choose
wisely and precisely the parameters in the fusion procedure, then the big solution R(k)()
restricts to a solution on the subspace Sk(V). This is for the matrix side of the picture.

The third column intends to indicate what should be the “algebra” counterpart of this.
Well it turns out that the first step of the fusion procedure can be carried out directly in the
algebra. So if we started in Hn(q), we end up in the larger Hecke algebra Hkn(q). The number
of strands has been multiplied by k, this is called cabling from the point of view of braids.

It also turns out that the projector, denoted here Pr, on the subspace Sk(V), can be seen
directly in the Hecke algebra Hk(q). In fact this is part of the statement of the Schur–Weyl
duality, and it turns out that in this case Pr is simply the (image of the) q-symmetriser of
Hk(q). With a little algebraic thinking on how to project a representation, we realise that the
algebra controlling the new fused solution on Sk(V) should be:

“fused Hecke algebra” = Pk,n.Hkn(q).Pk,n ,

where the idempotent Pk,n in Hkn(q) is made up by plugging the q-symmetriser on the first
k strands, and also on the next k strands and so on up to the last k strands. If we want to
conclude this section now, we can sum up the algebraic procedure like this:

Conclusion 4. The fused Hecke algebra is obtained with the following two steps:

Hn(q)
“cabling”
−→ Hkn(q)

“projecting”
−→ Pk,n.Hkn(q).Pk,n (= fused Hecke algebra)

If one is satisfied enough with this brief description, one can proceed directly to Section 6
for a description of the fused Hecke algebra (and should not be surprised to find a solution of
the YB equation in there). Otherwise, in the present section, we shall present more precisely
the machinery of the fusion procedure. More details can be found in [63].
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5.1. Fusion procedure for matrix solutions

In what follows, we make the choice to work with multiplicative spectral parameters in the
YB equation. This is more adapted to the Hecke algebra situation. Of course, everything is
also valid in the additive case with suitable modifications.

First step. We start with an arbitrary solution of the YB equation on a vector space V. Here
we use the following form of the YB equation:

R12()R13()R23() = R23()R13()R12() on V ⊗ V ⊗ V.

Let c := (c1, . . . , ck) be a k-tuple of non-zero complex parameters. We consider the space
V⊗k ⊗ V⊗k and we find it convenient to label the copies of V by 1, . . . , k,1, . . . , k (from left to
right). For example, the operator R,b() stands for the operator R,k+b() with the notation
used before.

Then we define the following operator in End(V⊗k ⊗ V⊗k).

(5.1) R(c)() :=
←
∏

=1,...,k

R1,(
c1

c
)R2,(

c2

c
) . . . . . . Rk,(

ck

c
) ,

where the arrow means that the product is taken from left to right in decreasing order in the
index  (the first factor is R1,n(

c1
ck
) and the last is Rn,1(

ck
c1
)).

By a direct calculation using repeatedly the YB equation for R(), one can check that this
new operator also satisfies the YB equation:

R
(c)
12 ()R

(c)
13 ()R

(c)
23 () = R

(c)
23 ()R

(c)
13 ()R

(c)
12 () on V⊗k ⊗ V⊗k ⊗ V⊗k,

where now the indices 1,2,3 refer to the new vector space V⊗k.

Example 5.1. Within the “space-time trajectories” interpretation of the YB equation in (1.7),
this first step of the fusion procedure is easy to understand. The new solution, given by
Formula (5.1), corresponds to interactions of multiplets of k particles. We have a “beam”
of k particles crossing another beam, and the operator R(k)() describes this interaction,
factorised as a product of 2-particles interaction. For example, for k = 2, the operator R(2)()
corresponds to:

1 2 1 2

21

11 22

12
: R(2)() = R12(12)R22(22)R11(11)R21(21) ,

where j := 
c

cj
. The parameters c = (c1, . . . , ck) accounts for the different rapidities of

the particles. Note that we should have taken in general a different set c = (c1, . . . , ck) of
parameters for the particles 1, . . . , k. For simplicity, and as it is enough for what follows, we
took the same set c twice.

So this first step amounts to the remarkable property that if the one-particle interaction
satisfies the YB equation then so does the k-particles interaction.

Remark 5.2. The extension from one particle to k particles is reminiscent in braid theory
of a particular case of what is called cabling. Start from a braid, and duplicate all strands,
replacing a strand by k new strands. This gives a new braid. For example, on the elementary
braiding for k = 2:
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It is immediate that the new braids obtained from the elementary braidings also satisfy the
braid relations. This is the analogue of the first step of the fusion procedure. Î

Second step. Now we consider the following operator on V⊗k:

(5.2) F(c) :=
→
∏

1≤<j≤k
Rj,(

cj

c
) ,

where the arrow indicates that the product is taken from left to right in increasing order
for the lexicographic order: F(c) = R21(

c2
c1
)R31(

c3
c1
) . . . Rk1(

ck
c1
) · R32( c3c2 )......Rk,k−1(

ck
ck−1
) . The

subspace we are interested in is the image of this operator F(c):

(5.3) Wc := Im(F(c)) ⊂ V⊗k .

We note that F(c) may not be defined for any value of the parameters c, since the function
R() can have singularities (for example, the solution coming from the Hecke algebra can not
be evaluated at  = 1). Nevertheless, we assume in our discussion that the set of parameters
c is such that the operator F(c) is a well-defined element of End(V⊗k).

So now we have a subspace Wc ⊗ Wc of V⊗k ⊗ V⊗k. The main fact about it is that it is an
invariant subspace for the operator R(c)(). In other words, the operator R(c)() restricts to
Wc ⊗Wc and provides a solution of the YB equation on this subspace.

Conclusion 5. For any set of parameters c = (c1, . . . , ck) such that the subspace Wc ⊂ V⊗n

is defined, we have a solution Rƒs() of the YB equation on Wc ⊗Wc.

We denoted by Rƒs() the restriction to Wc ⊗ Wc of R(c)(), and we call this element
Rƒs() a fused solution.

We should note that for parameters c such that the operator F(c) is invertible then the
subspace Wc is in fact V⊗k and the second step has given us nothing new. Of course, if we
went into all this trouble, it is because we hope to find more interesting subspaces than that.
We will show convincing examples below, in the Hecke algebra situation.

5.2. Fusion procedure, the braided version

Recall from Section 1.2 that the YB equation for R() is equivalent to the braided YB equation
for Ř(), where both are related by the permutation operator P of V ⊗ V:

R() = PŘ() .

In our setting, it is the braided version Ř() which can be seen as coming from a Baxteriza-
tion formula of an algebra. While R() a priori can not be expressed directly in the algebra,
because the permutation operator P may have no meaning in the algebra. So our goal should
be first to express the fusion procedure using only the “braided” operator Ř(). It turns out
to be possible.

In what follows, we use indices 1, . . . ,2k to label the factors in V⊗k ⊗ V⊗k = V⊗2k. For the
first step of the fusion procedure, a direct calculation shows that

R(c)() = PV⊗k ,V⊗k ·
←
∏

=1,...,k

Ř(
c1

c
)Ř+1(

c2

c
) . . . . . . Ř+k−1(

ck

c
) ,

where PV⊗k ,V⊗k is the permutation operator on V⊗k ⊗ V⊗k. But of course, multiplication on the
left by PV⊗k ,V⊗k is just a way to go the braided YB equation. So we conclude that we could
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just have started with the following definition5:

(5.4) Ř(c)() =
←
∏

=1,...,k

Ř(
c1

c
)Ř+1(

c2

c
) . . . . . . Ř+k−1(

ck

c
) .

And the first step of the fusion procedure asserts that the operator Ř(c)() satisfies the
braided YB equation:

Ř
(c)
1 ()Ř

(c)
2 ()Ř

(c)
1 () = Ř

(c)
2 ()Ř

(c)
1 ()Ř

(c)
2 () on V⊗k ⊗ V⊗k ⊗ V⊗k.

Now for the second step, we should try to express the operator F(c) also in terms of the
braided element Ř(). This is indeed possible, a direct calculation showing that:

F(c) =
�

→
∏

=1,...,k−1
Ř(

c+1

c1
)Ř−1(

c+1

c2
) . . . . . . Ř1(

c+1

c
)
�

· P0 on V⊗k,

where P0 is the operator on V⊗k permuting the factors according to the permutation com-
pletely reversing the indices: (1, . . . , k) goes to (k, . . . ,1). The map P0 is invertible so it
sends V⊗k ot itself, and therefore the image of F(c) is the same as the image of the element
in the big parenthesis just above. Thus we conclude that we could just have started with the
following definition:

(5.5) F̌(c) =
→
∏

=1,...,k−1
Ř(

c+1

c1
)Ř−1(

c+1

c2
) . . . . . . Ř1(

c+1

c
) ,

and define

(5.6) Wc := Im(F̌(c)) ⊂ V⊗k .

We have explained that this definition of Wc coincides with the original one in (5.3). The
second step of the fusion procedure asserts that the operator Ř(c)() leaves the subspace
Wc ⊗Wc invariant. In fact, we can show that:

Ř(c)() commutes with F̌(c) ⊗ F̌(c) .

We denote by Řƒs() the restriction to Wc ⊗ Wc of Ř(c)(), and we also call this element
Řƒs() a fused solution. At the end of the day, of course we have:

Řƒs() = PWc⊗WcR
ƒs() on Wc ⊗Wc ,

but our point in this subsection was mostly to express Řƒs() and F̌(c) in terms of Ř().

5.3. Fusion procedure in the Hecke algebra

We will now describe the procedure directly in the Hecke algebra. We deal with the example
of the Hecke algebra to simplify the discussion, but part of it, especially the beginning, can be
formulated for an arbitrary algebra with a Baxterization formula and a local representation.

So we assume now that the solution Ř() comes from the Hecke algebra. It means that
Ř() is the image of σ() = σ+ (q−q−1) 1

−1 in the local representation of the Hecke algebra
Hn(q) on V⊗n, see Section 2.1.

The first step of the fusion procedure is easy to formulate in the algebra. From its definition
in (5.4), it is immediate that the new solution Ř(c)() in End(V⊗k ⊗ V⊗k) is the image of the
following element of H2k(q):

(5.7) σ
(c)
1 () =

←
∏

=1,...,k

σ(
c1

c
)σ+1(

c2

c
) . . . . . . σ+k−1(

ck

c
) .

5However, the nice interpretation with interacting particles would have been less apparent.
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By shifting the indices by k, we can easily define σ
(c)
2 (), and in turn σ

(c)
3 () and so on. The

elements σ(c)1 (), . . . , σ
(c)
n−1() satisfy the braided Yang–Baxter equation

σ
(c)
 ()σ

(c)
+1()σ

(c)
 () = σ

(c)
+1()σ

(c)
 ()σ

(c)
+1() ,

directly in the algebra, which is here Hkn(q) (the number of strands has simply been mul-
tiplied by k). The local representation of the algebra Hkn(q) is naturally on (V⊗k)⊗n, so we
have interpreted the solution Ř(c)() as coming from an algebra with a local representation.

Then we note that from its definition (5.5), the operator F̌(c) in End(V⊗k) is the image of
the following element of Hk(q):

(5.8) (c) =
→
∏

=1,...,k−1
σ(

c+1

c1
)σ−1(

c+1

c2
) . . . . . . σ1(

c+1

c
) .

What does it mean in the Hecke algebra that Ř(c)() leaves invariant the subspace Wc ⊗Wc?
Well, first we have to note that Hk(q)⊗Hk(q) is included in H2k(q). The first factor is generated
by σ1, . . . , σk−1, the second factor is generated by σk+1, . . . , σ2k−1. So we have an element
(c)⊗(c) in H2k(q). Then the second step of the fusion procedure, directly inside the Hecke
algebra is that:

(5.9) [σ(c)1 (),(c) ⊗ (c)] = 0 in H2k(q).

This formula can be obtained directly from a straightforward calculation using repeatedly the
Yang–Baxter equation for σ().

To conclude and summarize the description of the fusion procedure inside the algebra:

Algebra Representation

1st step σ
(c)
 (): satisfies YB in Hkn(q) Ř

(c)
 (): satisfies YB on (V⊗k)⊗n

2nd step σ
(c)
1 () commutes with (c) ⊗ (c) Ř(c)() commutes with F̌(c) ⊗ F̌(c)

⇓
Ř
(c)
 () leaves invariant (Wc)⊗n

Interesting subspaces Wc. Finally, we are ready to study explicit examples of interesting
subspaces Wc. To do so, we have to study the function (c) and to find particular specialisa-
tions of the parameters c which makes it remarkable.

First, a tiny bit of combinatorics notations. A pair (, y) ∈ Z2 is called a node. The q-content
of the node θ = (, y) is c(θ) = q2(y−).

We have already defined the notion of a partition λ ` k. The Young diagram of λ =
(λ1, . . . , λ) is the set of nodes (, y) such that  ∈ {1, . . . , } and y ∈ {1, . . . , λ}. The Young
diagram of λ will be seen as a left-justified array of  rows such that the j-th row contains λj
nodes for all j = 1, . . . ,  (a node will be pictured by an empty box).

A standard Young tableau of shape λ ` k is an assignment of a number from {1, . . . , k}
to each node of the Young diagram of λ, such that the numbers are strictly ascending along
rows and down columns of the Young diagram. It is represented by filling the nodes of the
Young diagram of λ with the numbers from {1, . . . , k}. Here is an example

t = 1 2 4

3
: c1(t) = 1 , c2(t) = q2 , c3(t) = q−2 , c4(t) = q4 .

The partition is λ = (3,1). Next to the Young tableau t is its sequence of q-contents, where
c(t) is the q-content of the node of t with number .

Here is the result providing nice specialisations of (c). Below, σ−1
0

is the element of the
standard basis of the Hecke algebra corresponding to the longest element 0 of the sym-
metrix group Sk. Its presence here is harmless to us since, being an invertible element, in
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a representation it will not change the subspace obtained as the image of (c). Classical
versions for the symmetric group can be found in [16, 57, 61].

Theorem 5.3 ([35]). Let t be a standard Young tableau of shape λ ` k. The element obtained
by the following consecutive evaluations

(5.10) (c)σ−1
0

�

�

�

c1=c1(t)

�

�

�

c2=c2(t)
. . .
�

�

�

ck=ck(t)

is non-zero and proportional to an idempotent Et of Hk(q).

In fact, we can say more about Et. The idempotent Et is a primitive idempotent corre-
sponding to the irreducible representation Sλ of Hk(q). That is equivalent to say that the
action of Et in an irreducible representation of Hk(q) is as follows:

Et(Sλ) is a one-dimensional subspace and Et(Sμ) = {0} if μ 6= λ.

So finally, take the parameters c as the sequence of contents of a standard Young tableau
of some shape λ ` k. Recall from the Schur–Weyl duality that the tensor product V⊗k decom-
poses as follows:

V⊗k =
⊕

μ`k
ℓ(μ)≤N

LN
μ
⊗ Sμ ,

as a representation of Uq(sN) ⊗ Hk(q). To determine the subspace Wc, we need to calcuate
the image in this representation of (c), which is the same as the image of the idempotent
Et. From what we have said above, we can conclude:

Et(V⊗k) =
⊕

μ`k
ℓ(μ)≤N

LN
μ
⊗ Et(Sμ) = LNλ .

Conclusion 6. If the parameters c correspond to a standard Young tableau of shape λ ` k,
then the subspace Wc coincides with the irreducible representation LN

λ
of Uq(sN).

; The fused solution Řƒs() is thus a solution on LN
λ
⊗ LN

λ
.

What is the algebra for Řƒs()? We still have to understand what could be the algebra
controlling the fused solution Řƒs() on LN

λ
⊗LN

λ
. So we need to find an algebra with a solution

of the YB equation and a representation on (LN
λ
)⊗n which recovers Řƒs(). This is all implicit

in what was said above, so let us make it explicit.

Consider first the algebra Hkn(q) in which the “big” solution R(c)() lives. In the representa-
tion, this solution was projected on an invariant subspace to obtain R(ƒs)(). This projection
corresponds to the following algebraic construction.

There is a subalgebra Hk(q)⊗ · · · ⊗ Hk(q) (n factors) in Hkn(q). The first factor is generated
by σ1, . . . , σk−1, the second factor is generated by σk+1, . . . , σ2k−1, and so on. So we use the
idempotent Et of Hk(q) to define the following element of Hkn(q):

Pt,n = Et ⊗ · · · ⊗ Et .

This is clearly an idempotent of Hkn(q). Then consider the subset

H
ƒs
t,n (q) = Pt,nHkn(q)Pt,n = {Pt,nPt,n |  ∈ Hkn(q)}

Let us say a few words about subsets of this form. First, this subset is obviously stable by
linear combinations and by multiplication. Moreover, since Pt,n is idempotent, then Pt,n is the
unit element for this multiplication. So H

ƒs
t,n (q) is in fact an associative unital algebra; it is a

subalgebra of Hkn(q) but its unit element is the idempotent Pt,n.
Algebras like Pt,nHkn(q)Pt,n (a two-sided multiplication by an idempotent) are classical ob-

jects in representation theory, see for example in [32, §6.2]. Their main property for our story
is the following. Consider any representation ρ : Hkn(q) 7→ End(M) and set N := ρ(Pt,n)(M)
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the image of the idempotent in the representation M. The subspace N is naturally a represen-
tation of the algebra H

ƒs
t,n (q). Indeed N is obviously invariant under the action of any element

of the form ρ(Pt,nPt,n), and thus the action of Hƒst,n (q) on N is given simply by restriction:

(5.11)
H
ƒs
t,n (q) = Pt,nHkn(q)Pt,n → End

�

N
�

Pt,nPt,n 7→ ρ(Pt,nPt,n)|W
.

It only remains to apply this to the representation V⊗kn of Hkn(q). Write the vector space like
V⊗kn = V⊗k ⊗ · · · ⊗ V⊗k. From the definition of the idempotent Pt,n, it is clear that its image on
V⊗kn is the tensor product of the images of Et on V⊗k. But this is LN

λ
as we already explained

above. So we conclude that we have a representation:

H
ƒs
t,n (q) → End

�

(LN
λ
)⊗n

�

.

Now about a solution of the YB equation, recall that we have constructed a solution σ
(c)
 ()

inside Hkn(q) (this was the first step of the fusion procedure). If the parameters c correspond
to a standard Young tableau of shape λ ` k, then the second step (5.9) asserts that this
solution σ

(c)
 () commutes with the idempotent Pt,n. Thus and finally, we can send σ

(c)
 ()

inside H
ƒs
t,n (q) and define:

(5.12) σ
ƒs
 () = Pt,n σ

(c)
 ()Pt,n in H

ƒs
t,n (q).

The function σ
ƒs
 () satisfies the braided YB equation directly in H

ƒs
t,n (q), since σ

(c)
 () com-

mutes with Pt,n and already satisfies YB in Hkn(q). We happily conclude this general study
before plunging deep into an example.

Conclusion 7. The fused Hecke algebra is:

H
ƒs
t,n (q) := Pt,nHkn(q)Pt,n .

• It contains a solution σ
ƒs
 () of the braided Yang–Baxter equation.

• It has a representation on (LN
λ
)⊗n and the image of σ

ƒs
 () recovers the fused solution

Ř
ƒs
 ().

5.4. An example

Now we discuss the example which is behind the construction in the next section. Take the
simplest partition λ = (k) and the only standard Young tableau of shape λ with its associated
sequence of contents:

t = 1 2 . . . . . . k ; c = (1, q2, . . . q2(k−1)) .

The idempotent Et. In this case, the idempotent Et obtained through the general Theorem
5.3 is simply the q-symmetriser of Hk(q):

Et = Pk =

∑

∈Sk
qℓ()σ

∑

∈Sk
q2ℓ()

=
q−k(k−1)/2

[k]q!

∑

∈Sk

qℓ()σ .

The two equalities are just different expressions for the normalisation factor. It might be
profitable to see directly that Et = Pk in this case, since this is an easy particular case of
Theorem 5.3.

Let us define the q-symmetriser Pk directly by the property we actually want: it is the
element of Hk(q) projecting onto the representation S(k) in any representation of Hk(q). In
other words (from general considerations in representation theory) the q-symmetriser Pk is
characterised, up to a normalisation factor, by being a non-zero element satisfying either one
of the two properties:

σPk = qPk , ∀ = 1, . . . , k − 1 , or Pkσ = qPk , ∀ = 1, . . . , k − 1 .
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It is rather easy to be convinced that these properties are satisfied with the defining formulas
above for Pk (and now it is clear that the normalisation is such that P2

k
= Pk). Let us see if this

is also true for the following element Et:

Et = (1, q2, . . . , q2(k−1)) =
→
∏

=1,...,k−1
σ(q2)σ−1(q2(−1)) . . . . . . σ1(q2) ,

thereby verifying the particular case of Theorem 5.3. It is in fact not very difficult. For k = 1
we have the easily verified fact: σ(q2)σ1 = qσ1(q2). Then we remark that σ−q = σ(q−2) and,
for  > 1, in the product Etσ(q−2) we use the braided YB equation σ(q2)σ−1()σ(q−2) =
σ−1(q−2)σ()σ−1(q2) to move σ(q−2) to the left. It is changed into σ−1(q−2) and reached
the idempotent corresponding to k− 1 boxes, so we conclude using the induction hypothesis.

The idempotent Pt,n. The idempotent Pt,n of Hkn(q) in this case is:

Pt,n = Pk ⊗ · · · ⊗ Pk ,

or said differently, the product of the q-symmetriser on σ1, . . . , σk−1, with the q-symmetriser
on σk+1, . . . , σ2k−1, and so on until the q-symmetriser on the k − 1 last generators of Hkn(q).
An equivalent expression is:

Pt,n =
�q−k(k−1)/2

[k]q!

�n ∑

∈Sk×···×Sk

qℓ()σ .

The subspace LN(k) (the q-symmetrised power Sk
q
V). We will call the irreducible repre-

sentation LN(k) of Uq(sN) the q-symmetrised power of V and denote it by Sk
q
V, since from the

Schur–Weyl duality, we have (this can be taken as the definition of Sk
q
V):

Sk
q
V = Pk(V⊗k) .

To describe Sk
q
V explicitly, take (e1, . . . , eN) the basis of V that was used for defining the

action of Hk(q) in (2.4). The usual symmetrised power Sk(V) (for q = 1) has the following
basis:

(5.13) e(1,...,k) =
∑

∈Sk

e(1) ⊗ · · · ⊗ e(k) , where N ≥ 1 ≥ · · · ≥ k ≥ 1 .

For the q-symmetrised power Sk
q
(V), the basis is quite similar:

(5.14) e
(q)
(1,...,k)

=
∑

∈Sk

qℓ(1 ,...,k )()e(1) ⊗ · · · ⊗ e(k) , where N ≥ 1 ≥ · · · ≥ k ≥ 1 ,

where ℓ(1,...,n)() is a modified length: it is the number of inversions of different indices , b.
More precisely, in formulas, it is given by:

ℓ(1,...,n)() = Card{ < b such that () > (b) and  > b} .

One can check that e(q)(1,...,k) is simply Pk(e1⊗ · · ·⊗ek ), and this is where the decreasing order
on the indices 1, . . . , k is slightly more convenient.

In both formulas (5.13) and (5.14), the sum does not have to be taken over the whole
symmetric group Sk. It can be taken over the orbit of (1, . . . , k) under the action of Sk to
avoid repetitions. That is to say, it can be taken over the symmetric group Sk modulo the
stabiliser of (1, . . . , k).

As an example, take k = 3 and N = 2, then a basis of Sk
q
(V) consists of the vectors:

e1 ⊗ e1 ⊗ e1 ,

e2 ⊗ e1 ⊗ e1 + qe1 ⊗ e2 ⊗ e1 + q2e1 ⊗ e1 ⊗ e2 ,

e2 ⊗ e2 ⊗ e1 + qe2 ⊗ e1 ⊗ e2 + q2e1 ⊗ e2 ⊗ e2 ,

e2 ⊗ e2 ⊗ e2 .
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6. Fused Braids and the Fused Hecke Algebra

We fix an integer k > 0. We took a long detour through quantum groups and the fusion
procedure and we have reached a point where we know which algebras we are interested in.
So we can forget for a while the preceding discussions, and only remember that we have an
interest in the algebras:

(6.1) H
ƒs
k,n(q) := Pk,nHkn(q)Pk,n ,

that we call the fused Hecke algebras, and that are obtained from the construction of the
preceding section applied to the q-symmetrised power Sk

q
(V) of the vector representation

of Uq(sN) (where N = dim(V)). The idempotent Pk,n and the space Sk
q
(V) were described

explicitly in Section 5.4.
The goal of this final section is to give a braid-like or diagrammatic description of Hƒsk,n(q),

which can be read independently of the preceding considerations. We leave to the read-
ers to convince themselves that this is really the same algebra. All details can be found in
[19]. Finally, we will conclude that the fused Hecke algebra H

ƒs
k,n(q) meets our expectations

described in the introduction.

6.1. Objects and multiplication

Objects: fused braids. We consider the following objects, which are generalisations of
usual braids. We keep the rectangular strip with a top line of n fixed dots and a bottom line
of n fixed dots. And we put strands connecting dots but now we require the following: Each
strand still connects a dot from the top line to a dot on the bottom line, but now, for each
dot, there are k strands attached to it. So in total there are kn strands.

To be more precise, it is better if we replace the dots by small ellipses, and we will do
so from now on. Then the strands which are attached to the same ellipse are not really
attached to the same point of the ellipse. Instead they are attached next to each other at
the same ellipse. As before we require that at each point inside the strip at most two strands
are crossing and we keep the same terminology of positive and negative crossings. Again
as before we consider such diagrams up to isotopy, namely up to continuously moving the
strands while leaving their end points fixed.

Such an object we call a fused braid. Needless to insist that for k = 1, a fused braid is a
usual braid. Some examples of fused braids can be found below.

The vector space. We consider the vector space Vect
ƒs
k,n of formal linear combinations

of fused braids (in other words, a vector space with basis indexed by fused braids and we
identify the basis vectors with their indices).

Definition 6.1. The vector space Hƒsk,n(q) is the quotient of Vectƒsk,n by the following relations:

(i) The Hecke relation for all crossings:

= − (q − q−1)

(ii) The idempotent relations for crossings near the ellipses:

= q and = q−1

= q and = q−1
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The first relation (the Hecke relation) is valid locally for all crossings as in the situation
of classical braids and Hecke algebra. The idempotents relations are also local relations. In
words, they impose the following: if two strands start from the same ellipse and their first
crossing is crossing each other, then the original fused braid is equal to the fused braid
obtained by removing this crossing and multiplying by q±1 depending on the sign of the
crossing; and similarly for two strands arriving at the same ellipse.

Note that the Hecke relation for a crossing near an ellipse is recovered as the difference
of two idempotent relations, so that imposing these idepotent relations is quite compatible
with the Hecke relation.

Multiplication. Now we define a product on the vector space H
ƒs
k,n(q), which makes it an

associative unital algebra. Let b, b′ be two fused braids. We define bb′ as the result of the
following procedure:

• (Concatenation) We place the diagram of b on top of the diagram of b′ by identifying
the bottom ellipses of b with the top ellipses of b′

• (Removal of middle ellipses) For each ellipse in the middle row, there are k strands
incoming and k strands leaving. We remove this middle ellipse and replace it by the
q-symmetriser Pk of the Hecke algebra Hk(q).

More explicitly, recall again the formula for the q-symmetriser in Hk(q):

Pk =
q−k(k−1)/2

[k]q!

∑

∈Sk

qℓ()σ .

So in order to remove a middle ellipse, we take  ∈ Sk and we first construct the diagram
where this middle ellipse is replaced by the element σ connecting the k incoming strands
with the k outgoing ones. Then we make the sum over  ∈ Sk of the resulting diagrams,
each with the coefficient qℓ() (that is, multiplied by q to the power the number of crossings
we just added). Finally, we normalise as in the formula above.

The fused braid with only non-crossing vertical strands is the unit element of Hƒsk,n(q). For
example, for k = 2, it is:

. . . . . .

The reason is the following. Say we plug this element on top of another fused braid, and we
replace a middle ellipse by a certain σ in Hk(q). Then the whole lot of crossings added by
σ can be moved up along the parallel strands, and will thus hit an ellipse of the top row.
Thus we can use the idempotent relation. Therefore, we see that replacing a middle ellipse
by σ will be the same as replacing the middle ellipse by the trivial braid, except for a factor
qℓ(). It remains only to perform the (normalised) sum and we conclude that multiplying by
the above element does nothing.

Example 6.2. We illustrate below the procedure to remove a middle ellipse:
• For k = 2, two strands are incoming at each middle ellipse and two strands are leaving.

There are two terms in the sum for the q-symmetriser: 1
1+q2

(1 + qσ1). So each ellipse is
replaced by a sum of two terms:

→ 1
1+q2

+ q
1+q2
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Note then that if we are making a product in H
ƒs
2,n(q), there are n middle ellipses, and thus

we have a sum of 2n terms.

• For k = 3, each middle ellipse has three strands arriving and leaving: ; each one is
replaced by the following sum divided by 1 + 2q2 + 2q4 + q6 = (1 + q2)(1 + q2 + q4):

+ q + q + q2 + q2 + q3

• Here is an example of a product of two elements of Hƒs2,2(q):

. =
1

(1 + q2)2

�

+q +q +q2
�

=
1

(1 + q2)2

�

+(q − q−1 + 2q3) +q2
�

For the four diagrams obtained after the first equality, we can proceed as follows. For the
first diagram, we apply the Hecke relation and this results to the identity term and the term
with coefficient (q−q−1). For the second diagram, we take the strand connecting the first top
ellipse to the first bottom ellipse, and we move it on the left of the diagram, then we apply
the idempotent relations; this results with one term with coefficient q3. We proceed similarly
for the third diagram. We do almost nothing except moving the strands in the fourth diagram.

6.2. Fused permutations and standard basis

The fused Hecke algebra involves “topological objects” having strands which can cross by
passing over or below each other. For q = 1, all topological information disappears and we
obtain an algebra defined purely combinatorially. This is another example of a classical sit-
uation as shown in the following table (unfortunately, we have not discussed the Brauer
algebra; it is a q = 1 limit of the BMW algebra).

Topological Algebras Combinatorial Algebras

Hecke algebra Symmetric group

BMW algebra Brauer algebra

Fused Hecke algebra Algebra of fused permutations

The connections between the two columns of the table is that the algebras on the left are flat
deformations of the algebras on the right. Here “flat” means that the vector space remains
the same while the multiplication is modified (with a parameter q). One interest is that we
obtain a natural, or standard, basis for algebras on the left indexed by combinatorial objects
(coming from the algebras on the right). Let us see how it works for the fused Hecke algebras.

Fused permutations. We give a diagrammatic definition of fused permutations. On one
hand, they generalise obviously the usual permutations of Sn (which correspond to k = 1).
On the other hand, they are the combinatorial shadow of fused braids, meaning that they are
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obtained from fused braids if we forget all topological information (namely, the dots are not
connected anymore by strands from a 3-dimensional world).

So, we place two horizontal rows of n dots, one on top of another. And we connect the dots
of the top row to the dots on the bottom row. We require the following: there are k edges
which start from each dot on the top row and there are k edges which arrive at each dot on
the bottom row. Again, as for fused braids, it is better to see the dots as small ellipses and
edges are attached to nearby points on the ellipses.

The only information that matters is the following: which ellipse is connected to which
other ellipse and by how many edges. More rigorously, take a diagram as above and let
 ∈ {1, . . . , n}. There are k edges starting from the -th ellipse on top and we denote by 
the multiset {1, . . . , k} indicating the bottom ellipses reached by these edges. This is indeed
a multiset, meaning that repetitions are allowed since several of these edges can reach the
same bottom ellipse. We consider two diagrams equivalent if their sequences of multisets
(1, . . . , n) coincide.

Definition 6.3. A fused permutation is an equivalence class of diagrams as explained above.
We denote by S

ƒs
k,n the set of fused permutations.

Remark 6.4. The set of fused permutations S
ƒs
k,n is in bijection with:

• (by definition) the set of sequences (1, . . . , n) of multisets such that:

|1| = · · · = |n| = k and 1 ∪ · · · ∪ n = {1, . . . ,1
︸ ︷︷ ︸

k

, . . . . . . , n, . . . , n
︸ ︷︷ ︸

k

} ,

where the union is understood as concatenation of multisets;
• the set of n by n matrices with entries in Z≥0 such that the sum of the entries in each row

and each column is equal to k. The bijection is such that the entry in position (, b) indicates
how many times the -th top ellipse is connected to the b-th bottom ellipse;
• the set of double cosets in Skn modulo the subgroup Sk × · · · × Sk (n factors). Î

Example 6.5. • Let n = 2 and take k = 2. We show below the three elements of S
ƒs
2,2. For

each element, we give a diagram, the corresponding sequence of multisets, the correspond-
ing matrix, and the corresponding double coset modulo the subgroup H = S2 × S2:

({1,1},{2,2})
�

2 0
0 2

�

H

({1,2},{1,2})
�

1 1
1 1

�

H(2,3)H

({2,2},{1,1})
�

0 2
2 0

�

H(1,3)(2,4)H

Algebra of fused permutations. We will denote at once by H
ƒs
k,n(1) the algebra of fused

permutations, since it will become clear that this is the fused Hecke algebra for q = 1. The
algebra H

ƒs
k,n(1) is the vector space with basis indexed by S

ƒs
k,n , and with the multiplication

given as follows. Let d, d′ ∈ S
ƒs
k,n .

• (Concatenation) We place the diagram of d on top of the diagram of d′ by identifying
the bottom line of ellipses of d with the top line of ellipses of d′.
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• (Removal of middle ellipses) For each ellipse in the middle row, there are k edges
incoming and k edges leaving. We delete this ellipse and sum over all possibilities of
connecting the k incoming edges with the k leaving edges (there are k! possibilities).

• (Normalisation) We divide the resulting sum by (k!)n.

At the end of the procedure described above, we obtain a sum of diagrams representing a
sum of fused permutations (with rational coefficients). This is what we define to be dd′ in
H
ƒs
k,n(1).

Example 6.6.
• Of course H

ƒs
1,n(1) coincides with the group algebra of the symmetric group Sn.

• Here is an example of a product of two elements of Hƒs2,2(1):

. = = 1
4

�

+ + +
�

= 1
4 + 12 + 14

It is the analogue for fused permutations of an example we gave earlier for the fused Hecke
algebra. We can appreciate that the multiplication is much simpler for fused permutations.

Standard basis of the fused Hecke algebra. By construction, the algebra of fused per-
mutations has a (diagrammatic) basis indexed by fused permutations, namely by the set
S
ƒs
k,n . Let us see how to “lift” this basis as a basis of the fused Hecke algebra. There is an

interpretation (or a more precise formulation) of this basis in terms of distinguished repre-
sentatives of double cosets. We only give here a rough description in diagrammatic terms.

Take an element of Sƒs
k,n . This is an equivalence class of diagrams so let us choose a canon-

ical representative. Recall that the only information which defines the equivalence class is
which ellipse is connected to which one, the way in which an edge connect an ellipse to an-
other does not matter. To define a canonical representative, first we forbid that three different
edges intersect at the same point. Second, we require that the number of intersections (we
do not want to call them crossings at this point, because the word is reserved for braid-like
pictures) between edges is minimal.

So for each  ∈ S
ƒs
k,n , we have fixed a canonical representative diagram. Now in this

diagram, promote each intersection between edges as a crossing, and we decide that all
these crossings are positive (the edges coming from the left passes over the other one). We
obtain the diagram of a fused braid, and thus an element of the fused Hecke algebra H

ƒs
k,n(q).

Denote it T. All these elements together form the standard basis of the fused Hecke algebra:

{T ,  ∈ S
ƒs
k,n} is the standard basis of Hƒsk,n(q).

So we can say that the fused Hecke algebra H
ƒs
k,n(q) is a (flat) deformation of the algebra of

fused permutations H
ƒs
k,n(1) since they both have bases indexed by the same set, and the

multiplication in H
ƒs
k,n(1) is a particular case (q = 1) of the one in H

ƒs
k,n(q).

Example 6.7. • Here is the standard basis of Hƒs2,2(q):
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• There are 21 distinct fused permutations in S
ƒs
2,3 and here are three examples. In each

case, we draw a diagram in a canonical form, and the associated standard basis element of
H
ƒs
2,3(q) below it:

6.3. Conclusion

Braid group. We denote by  the fused braid in H
ƒs
k,n(q) for which all strands starting from

ellipse  pass over the strands starting from ellipse  + 1 and all other strands are vertical. A
picture is better here, so for example, for k = 2:

 =

1

. . .

 − 1   + 1  + 2

. . .

n

These elements satisfy the braid relation in H
ƒs
k,n(q):

+1 = +1+1 .

Recall that the multiplication in the fused Hecke algebra H
ƒs
k,n(q) is quite intricate due to the

appearances of the q-symmetriser replacing the middle ellipses each time we concatenate
two fused braids. However, in the particular situation as for , where the strands arriving
at an ellipse are all coming from the same ellipse and are not intertwined with anything,
then the q-symmetriser that will appear in place of this ellipse can be moved up along these
strands and sent into an ellipse on top. Due to the idempotent relations in H

ƒs
k,n(q), it will

disappear. In other words, when we multiply various  following the multiplication rule for
the fused Hecke algebra, it reduces to simple concatenations. So the braid relations for the
generators  follows from the following kind of obvious relations in the usual braid group6

(here k = 2, but simply add more parallel strands for arbitrary k):

=

6The picture looks like some kind of tubes, but we really mean a relation for usual braids (here with 6 strands)
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In addition to the braid relations, the elements 1, . . . ,n−1 must also satisfy some charac-
teristic equation since the algebra H

ƒs
k,n(q) is finite-dimensional. In fact, for n = 2, it is easy

to see that the dimension is k + 1 (we have k + 1 different fused permutations) and that
the element 1 generates Hƒsk,2(q). So the characteristic equation will be of degree k + 1. To

calculate the eigenvalues directly from the defining multiplication in H
ƒs
k,2(q) seems to be a

little intricate, but we can use the representation of Hƒsk,2(q) on the tensor product SkV ⊗ SkV
of representations of Uq(sN) (for any N). In this representation, the element 1 corresponds
to the R-matrix, and from this, one can obtain the characteristic equation.

To summarize, the elements 1, . . . ,n−1 of Hƒsk,n(q) satisfy the following relations:

+1 = +1+1 , for  ∈ {1, . . . , n − 2} ,
j = j , for , j ∈ {1, . . . , n − 1} such that | − j| > 1 ,
∏k

=0

�

 − (−1)k+q−k+(+1)
�

= 0 , for  ∈ {1, . . . , n − 1} .

So inside the fused Hecke algebra H
ƒs
k,n(q) the elements 1, . . . ,n−1 generate a subalge-

bra which is a quotient of the algebra of the braid group. In this quotient, the elementary
braidings satisfy a characteristic equation of order k + 1.

It is important to note that these elements do not generate the whole algebra Hƒsk,n(q) when
n > 2 and k > 1. This is a striking difference compared to the usual Hecke algebra. We also
note that other relations than the ones above (and not implied by the ones above) must be
satisfied by the elements 1, . . . ,n−1 since the algebra they generate is finite-dimensional,
and we know that relations above are not enough to define a finite-dimensional algebra. A
description of the subalgebra generated by 1, . . . ,n−1, such as a set of defining relations,
is an interesting open question.

Remark 6.8. The fact that 1, . . . ,n−1 satisfy the braid relations in H
ƒs
k,n(q) is reminiscent

of what happened in the fusion procedure (in fact it is really the fusion procedure without
spectral parameters). Indeed, 1, . . . ,n−1, seen as elements of Hkn(q), satisfy the braid
relation (first step of the fusion procedure). And it turns out that they commute with the
idempotent Pk,n (second step of the fusion procedure) so they still satisfy the braid relation
in H

ƒs
k,n(q) = Pk,nHkn(q)Pk,n. Î

YB equation. Having identified the realisation of the braid group inside the fused Hecke
algebra, now we go on in our wish list of the introduction, and ask for a solution of the YB
equation. The main result is that the fused Hecke algebra admits a Baxterization formula. Of
course, if one follows the fusion procedure of the preceding section, we already know that
there must be a solution of the YB equation somewhere in H

ƒs
k,n(q). The point here is to give

this solution with an explicit Baxterization formula.
First, we introduce some natural elements in the algebra H

ƒs
k,n(q): the partial elementary

braiding is denoted (p) and corresponds to the fused braid for which the p rightmost strands
starting from ellipse  pass over the p leftmost strands starting from ellipse +1, and all other
strands are vertical. Again a picture is better (here k = 3):

(1) = . . .

  + 1

. . . , (2) = . . .

  + 1

. . . , (3) = . . .

  + 1

. . . ,

where all strands starting from ellipses 1, . . . ,  − 1,  + 2, . . . , n are vertical. The element (0)

is the identity element, while (k) are the elements called  satisfying the braid relations in
the previous paragraph.
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In addition to the q-numbers [L]q :=
qL−q−L

q−q−1 and the q-factorial [L]q! := [1]q[2]q . . . [L]q,
we also define the q-binomials and the q-Pochhammer symbol:

�

L
p

�

q

:=
[L]q!

[L − p]q![p]q!
, ( ; q)p =

p−1
∏

r=0

(1 − qr) .

By convention, we have [0]q! =
�

L
0

�

q

= ( ; q)0 = 1.

Theorem 6.9 ([20]). The following function taking values in H
ƒs
k,n(q)

(6.2) Ř() =
k
∑

p=0

(−q)k−p
�

k
p

�2

q

(q−2 ; q−2)k−p
(q−2p ; q−2)k−p

(p) ,

satisfy the braided Yang–Baxter equations:

Ř()Ř+1()Ř() = Ř+1()Ř()Ř+1() .

Note that the (rational) dependence on the spectral parameter  is clearly visible from this
formula in H

ƒs
k,n(q).

Example 6.10. For k = 1, the formula above is the usual Baxterization formula of the Hecke
algebra. For k = 2, the formula is:

Ř() = 
(2)
 − (q + q−1)

(q2 − q−2)

1 − q−2
(1) + q2

(1 − q−2)(1 − q−4)

(1 − )(1 − q−2)
.

Representation theory. Let W = Sk
q
(V) be the q-symmetrised power of the vector repre-

sentation of Uq(sN). From the construction of Hƒsk,n(q), it can be represented on W⊗n. So our
situation again is that we have two algebras represented on the same vector space:

Uq(sN)
ρ(n)
−→ End(W⊗n)

π←− H
ƒs
k,n(q) ,

With the formulation of Hƒsk,n(q) using the idempotent as in (6.1), the next result follows almost
by construction.

Theorem 6.11 (Schur–Weyl duality for symmetrised power [19]).
The centraliser EndUq(sN)(W

⊗n) is the image of the fused Hecke algebra H
ƒs
k,n(q):

EndUq(sN)(W
⊗n) = π

�

H
ƒs
k,n(q)

�

.

It turns out that one may study directly (without assuming any knowledge on Uq(sN)-

representations) the representation theory of Hƒsk,n(q) and recover the well-known decompo-
sition of the Uq(sN) representation on W⊗n:

W⊗n =
⊕

λ`kn
ℓ(λ)≤N

�

LN
λ

�⊕Kλ,(kn) ,

where Kλ,(kn) is the Kostka number counting the number of semistandard Young tableaux of
shape λ containing k times each number 1, . . . , n. This is a particular case of the Littlewood–
Richardson rule. These Kostka numbers are recovered as the dimensions of the irreducible
representations of Hƒsk,n(q).

To describe fully the centraliser EndUq(sN)(W
⊗n), we need to understand the kernel of the

representation π of Hƒsk,n(q). More details are in [19].

We conclude with the following summary:
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Conclusion 8 (Final). We have constructed an algebra H
ƒs
k,n(q) called the fused Hecke alge-

bra:

• it contains elements 1, . . . ,n−1 satisfying the braid relations;

• it admits an explicit Baxterization formula;

• it has representations on vector spaces W⊗n, where W = Sk
q
(V), and through such

representations it is in Schur–Weyl duality with Uq(sN), where N = dim(V).
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