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CRITICAL EXPONENT OF GRAPHED TEICHMULLER
REPRESENTATIONS ON H? x H?

Olivier Glorieux

ABSTRACT. — In this note we survey different results on critical exponent. After
giving the general setting and classical known results we study critical exponent
associated to a pair of Teichmiiller representations acting on H? x H? by diagonal
action. We will give new examples of behaviour of this critical exponent. We finally
explain the link of this invariant with Anti-De Sitter geometry.

1. Introduction

Let G be a countable group acting on a metric space X. We are inter-
ested in, the critical exponent of G acting on X which is defined as the
exponential growth rate of an orbit in X. For this notion to be interesting,
one has to make some hypothesis on the group, the action and the space.
For example the action of G on X should be discrete, and the space X
should have a kind of exponential growth property (like the volume of the
balls if X is a simply connected Riemannian manifolds). The typical set-
ting where this invariant has been widely studied is the fundamental group
of a hyperbolic manifold acting on its universal cover, identified with the
hyperbolic space. This is linked to many other invariants as the topological
entropy of the geodesic flow, Hausdorff dimension of the limit set, or to the
bottom of the spectrum of the Laplacian on X/G.

In Section 2, we will define the critical exponent. We will survey some
known results in different settings and explain what are the classical ques-
tions associated to this invariant. At the end of this introduction we will
describe the one we are interested in: a surface group acting on a product
of hyperbolic spaces.

In Section 3, we review various examples of the behaviour of this crit-
ical exponent §(+,-) in the product of Teichmiiller spaces. Proofs of most
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of them can be found in [13]. We present two new results, one concerns
the behaviour of ¢ along a Teichmiiller ray, the other concerns its random
behaviour when travelling along random walks on Teichmiiller space. As a
bypass we explain how a Theorem of A. Karlsson on random behaviour of
the length of geodesics, [15], can be generalized without technical difficul-
ties.

Section 4 is devoted to the main result in [13], which is an isolation the-
orem for §. We give insights on the proof, based on the previous examples.

Finally, Section 5 is widely independent of the other and concerns Anti-
De Sitter geometry. We will not enter into the details of Lorentzian ge-
ometry but try to explain how our results can be applied to the Anti-De
Sitter world and are in some sense equivalent to previous known results for
hyperbolic manifolds.

Sections 2 and 5 are intended for non specialists. Section 3 and 4 are
more demanding and a background in Teichmiiller geometry via geodesic
currents (cf. [6]) would be useful, however we try to explain every used
objects.

Except for new results, we will not give complete proofs, our aim is to
give ideas on how the proofs work. The interested reader can find them in
the given references.

2. Critical exponent

The aim of this section is to recall definitions and classical results on crit-
ical exponent. A good reference for this notion are the articles of M. Peigné,
T. Roblin and S. Tapie, and F. Paulin [27, 28, 32] (all in French) and the
text of K. Matsuzaki [22] (in English). We finish by defining the critical
exponent we are looking at in the rest of the paper.

2.1. Definitions

Let (X,d) be a locally compact, metric space. The reader should think
to the usual setting when X is a simply connected Riemannian manifold
of non positive curvature. However we will consider in Section 3 and 4,
H? x H? endowed with the distance defined by the sum of the distance
on each factor, instead of the Riemannian product. Therefore we give a
slightly general definition.
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GRAPHED TEICHMULLER REPRESENTATIONS ON H? x H? 117

DEFINITION 2.1. — Let o be a point in (X,d) and T' a countable sub-
group of isometries of X. We call Poincaré series the function:

P(s) := Z e~ sd(v0.0),

yel’

The critical exponent is the number é > 0 defined by
(I ~ X) :=inf{s > 0| P(s) < +o0}.

The critical exponent ¢ does not depend on the base point thanks to the
triangular inequality. Moreover, when there will be no doubt on the group
I' (resp. the space X, resp both) we are considering, we will write §(X)
(resp. §(T"), resp. §) instead of §(I' ~ X).

A simple computation on power series [28] shows that the critical expo-
nent corresponds to the exponential growth rate of points of an orbit, that
lies in a ball of radius R:

(2.1) 0= limsupélog CardI'.oN Bx (o, R).

R—o0
We can deduce from this fact that for cocompact action the critical
exponent is equal to the volume entropy h(X) defined as the exponential
growth rate of the volume of balls:

h(X) := limsup 1 log Vol Bx (o, R).
Roo I
PROPOSITION 2.2 ([28]). — Let (X, g) be a simply connected Riemann-
ian manifold. Let T' < Isom(X) be a discrete group, such that X/G is
compact. Then
0T ~ X) = h(X).

The proof consists in covering Bx (o, R) by translates of a fundamental
domain and then compare the volume of the balls and the union of the
translates. It cannot be generalized to non-uniform lattice ; when X/G is
not compact but of finite volume where §(I' ~ X) < h(X) might happened.
A counter-example can be found in [28].

We give a first example where it is easy to compute the critical exponent
thanks to the previous proposition. Let S be closed surface of genus g > 2
and denote by T' := m1(S) its fundamental group. By the uniformisation
theorem, S admits a hyperbolic metric g or, in other words, there exists
a faithful and discrete representation p of T' into Isom™ (H?) such that
(S,g) ~ H?/p(T'). We then have

5T ~, H?) = h(H?) =1,

VOLUME 32 (2014-2015)
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since we have By (0, R) := 27 cosh(R).
More generally, if M is a compact hyperbolic manifolds of dimension n
and I' := 71 (M) acts on H" then 6 =n — 1.

2.2. Classical results

There are essentially two ways to generalize this result. We can fix H"
and play with smaller groups, or fix the group and play with other spaces.
The first question has been intensively studied, let us cite at least [3, 23,
25, 26, 28, 36, 37]. One of the main result of these papers is the relation
between ¢ and the hausdorff dimension of the limit set. The limit set of
a group I' ~ X is the set A defined by A := T-0\T' -0 C 9X. The
boundary of H” is the sphere 9H"™ = S"~!, the limit set does not depend of
the base point o € H". For example the limit set of a cocompact group is
the whole boundary. We will not give a precise definition of the Hausdorff
dimension. Let us still give a very rough (and not exact) definition: let N (r)
be the number of balls of radius r that are necessary to cover a subset A
of a metric space, then when r is very small N(r) behaves more or less as
1/r® where « is the Hausdorff dimension of A. The most evolved result
in this direction [3] says that for discrete non-elementary isometry group
I of H* (ie. Card Ar = +00), the critical exponent §(I' ~ H?) is equal
to the Hausdorff dimension of the conical limit set. Without being precise
the conical limit set is a subset of A, whose points are well approached by
elements of the group.

Another classical question is what can we say of the critical exponent
of a subgroup of I'. M. Peigné [28] showed that if H < T is such that
A # Ag and if the Poincaré series associated to I' diverges at §(T"), then
d(H) < o(T"). However, if H <« T is a normal subgroup of I, Ay = Ar
and we cannot say much. A result of Falk and Strattmann [12] says that
0(H) =2 @, and if the Poincaré series associated to I' diverges at §(I")
then the inequality is strict 6(H) > @ [31].

The fact that the divergence of the Poincaré series appears as a hypoth-
esis is due to the use of Patterson—Sullivan theory of conformal density on
the boundary, which works in the divergence case. A precise statement of
this remark can be found in the book of T. Roblin [30].

Let us say a few words on an example at the edge of the two way to
generalize the study of critical exponent. Let T" be a surface group, that is
the fundamental group of a compact surface of genus at least two. By the
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uniformization Theorem, there are discrete and faithful representations of
I' into Isom™ (H?). These representations are called Teichmiiller represen-
tations. The set of Teichmiiller representations up to conjugacy is called
the Teichmiiller space of S and denoted by Teich(S). As we remarked, in
that case 6(I' ~ H?) = 1. However, H? embedded as a totally geodesic
subspace of H?, and the isometry group of H? is a subgroup of Isom(H?).
A Teichmiiller representation py : I' — Isom(H?) can then be seen as a
representation in Isom(H?®), p : T' — Isom(H?) — Isom(H?). In this case, it
is called Fuchsian. Its critical exponent 6(I' ~ H?) is still equal to 1, since
H? is totally geodesic in H. But in the group Isom(H?) we can modify the
representation such that it does not factor anymore by Isom(H?). These
representations are called quasi-Fuchsian representations and we have the
following rigidity result due to R. Bowen

THEOREM 2.3 ([7]). — 8(T' ~ H3) > 1 with equality if and only if the
representation is Fuchsian.

Critical exponent of quasi-Fuchsian representations has also been in-
tensively studied. L. Bers exhibed a parametrization of the set of quasi-
Fuchsian representations by the product of two Teichmiiller spaces[1]. Many
authors have been interested by the relation between the critical exponent
of the quasi-Fuchsian representation and the two Teichmiiller representa-
tions coming from the Bers parametrization. For example, J. Brock [8]
looked at large scale behaviour. He proved that the critical exponent is
closed to 2 if and only if the two underlying hyperbolic surfaces coming from
the two Teichmiiller representations are far away (for the Weil-petterson
distance).

C. McMullen [23] studied the behaviour of critical exponent in various
examples when one of the two surfaces goes to infinity in Teich(S).

A. Sanders [33], studied the behaviour of critical exponent near the Fuch-
sian locus, and showed an isolation theorem for the critical exponent.

Finally, let us give a famous result where the group is fixed and we play
with the space. Let M be a compact hyperbolic manifold of dimension
n > 3. Let I' be its fundamental group. Then G. Besson, G. Courtois
and S. Gallot [2] showed that for any other Riemannian simply connected
manifold X such that T' ~ X cocompactly, then Vol(X/T")é(T" ~ X)™ >
Vol(M)§(T' ~ H™)", with equality if and only if X is homothetic to H3.

VOLUME 32 (2014-2015)
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2.3. Diagonal action on H? x H?

This paper intends to study the critical exponent for the diagonal action
of two Teichmiiller representations.

Let p1, p2 be two Teichmiiller representations, they acts on H? x H? by
the diagonal action: Vy € T, Vo = (21, 22) € H? x H%:

v -2 = (p1(v)z1, p2(7)T2)-

Since H? x H2/T" is topologically a H? bundle over S, this action is not
cocompact.

In order to define the critical exponent of I' ~ H2 x H?, we need to
choose a metric on H? x H?. We will use the Manhattan metric, which is
defined by d((x1,z2), (y1,y2)) = du(x1,y1) + du(ze, y2). Since the critical
exponent does not depend on the base point, it neither depends on the
conjugacy class of the representation, hence it defines a function on the
product of the Teichmiiller spaces. The choice of the Manhattan metric is
motivated for two reasons.

The first one is the simplicity of Busemann compactification for this
metric, compare to the Riemaniann metric, which is useful for Patterson—
Sullivan theory, as in [9].

The second motivation for the choice of Manhattan metric is its link
with Anti-de Sitter geometry. Indeed, even though Anti-de Sitter is not a
metric space, we can define a distance between some pairs of points. For
globally hyperbolic Anti-de Sitter manifold, the natural critical exponent
that arises with this definition, coincides (up to a factor 2) with the critical
exponent on H? x H? endowed with the Manhattan metric. I will give more
details on this link in Section 5.

From now on 4(+,-) will stand for the function defined on H? x H? by
6 ((p1,p2) ~H? x H?), that is the critical exponent for

P(S1, Sp;5) = Y e U matdlpa() o),
el

where S; := H?/p;(T), i € {1,2}.

There was a series of papers during the 90’s which studied this critical
exponent or some related quantities, by C. Bishop, T. Steeger, M. Burger,
R. Schwartz and R. Sharp [4, 9, 34, 35]. More generally critical exponent
and Patterson—Sullivan theory for product of Hadamard spaces has been
studied latter by J-F. Quint, G. Link, F. Dal’bo and I. Kim [11, 20, 29].

The first cited series of papers obtained similar result as the quasi-
Fuchsian setting. For example, it is proven in [4] that §(S,S’) > 1/2 with
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equality if and only if S = S’ in the Teichmiiller space of S. In [9] there is
a result which related the critical exponent to the Hausdorff dimension of
a subset of the limit set. Finally in [34, 35] critical exponent is related to
the repartition of the number of closed geodesics.

I followed this path and looked at the behaviour of §(-,-) when the pa-
rameters range over the Teichmiiller space. I obtained the counter part of
the examples of C. McMullen, and of the isolation result of A. Sanders.
The next two sections are devoted to explain these results.

Before starting to exhibit examples, let us explain how critical exponent
can be interpreted geometrically. As we said, the critical exponent ¢ does
not depend on the conjugacy classes of p; and py. Let S; := H?/T;, i €
{1,2} be the underlying marked hyperbolic surfaces homomorphic to S.
Let C be the set of free homotopy classes of closed curves on S. Since S;
are hyperbolic surfaces, for every ¢ € C, there is a unique geodesic in its
homotopy class. The length of this geodesic will be denoted by ¢;(c). Let
us insist on the fact that S; are marked surfaces, meaning they come with
a homomorphism f; : § — 5;, or equivalently we keep the knowledge of
the image of the generators of I' by the representations. This allow to know
which curve is send on which one.

Let us explain the difference in the genus 1 case. The fundamental group
of a torus is isomorphic to I' = Z? generated by a meridian a and a longitude
b. Now the two representations

{ ' — Isom(R?)
P1
(a,0) — (ta0)5t0,1))
and

{ I — Isom(R?)

P2 )
(a,b) — (t1,0)5t1,1))

where 7, 3 is the translation by the vector (a, b). Those two representations

give two isometric torus, but the curve b has length 1 in T} := R?/p;(T),
and length v/2 in Ty := R?/p,(T).

In my Ph.D thesis I showed using similar arguments as in [19] that the
critical exponent 6(S1, S2) is equal to the exponential growth of the number
of closed geodesics in the pair “(S7 + S2)”. By this we mean:

1
0(51,52) = limsupﬁ log Card {c € C|{¢1(c) + ¢2(c) < R}.

R—o0

Therefore we can see ¢ has a measure of how the geodesics on S; and S,
are different from each other. This will be our point of view from now on.

VOLUME 32 (2014-2015)
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3. Examples of behaviour

This section is devoted to the asymptotic behaviour of §(-,-) on the
product of Teichmiiller spaces on some particular cases.

3.1. Iteration of Mapping class group

The mapping class group MCG of S is the space of diffeomorphisms of S
modulo the following relation: f ~ ¢ if and only if fog~! is isotopic to the
identity. It acts on marked hyperbolic surfaces, by changing the marking.
Elements of MCG are classified in three types: finite order, reducible, or
pseudo-Anosov. Finite order ones are not interesting for us, since their
orbits are bounded.

3.1.1. Dehn twist

Dehn twists are diffeomorphism which makes a full turn along a simple
closed curve. They can be generalized to countinuous time parameter and
are then called Fenchel-Nielsen twists (they are not elements of the map-
ping class group). We will study the behaviour of § along Fenchel-Nielsen
twists in Section 3.4. These Fenchel-Nielsen twists can also be generalized
by twisting along measured geodesic laminations instead of simple closed
curves. These transformations are named after Thurston terminology earth-
quakes. A geodesic lamination is a closed subset of S foliated by geodesics.
A measured geodesic lamination is a geodesic lamination endowed with a
transverse measure, invariant by the holonomy consisting of moving along
the leaves. A simple closed curve can be seen as a measured geodesic lam-
ination by considering the Dirac measure on it.

Finally we will also use the notion of geodesic currents [5, 6]. Roughly,
the set of geodesic currents is a completion for the intersection form of
the set of all closed geodesics. We will denote it by Curr(S). With this
terminology, the set of measured geodesic laminations is identified with the
set of geodesic currents of 0 self intersection.

PRrOPOSITION 3.1. — Let o be a simple closed curve on S and T be the
Dehn twist along . Then

n— 8(r2"S, S),

is decreasing in m. In particular lim,, ., §(72"S,S) exists and is strictly
less than 1/2.
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The idea for this simple case is to “symmetrize” the function using pre-

composition by 77":

5(72"8,8) = 6(r"S, 7 "S).

This relation uses intrinsically that 7 is an element of the mapping class
group, it comes from a change of variable in the Poincaré series, that can
only be done since the mapping class group acts as change of markings.

Then we can show using the convexity of length along Fenchel-Nielsen
twist (or more generaly earthquakes [17]), that

n — L(1t"c) + (77 "¢c),

is increasing. Which in turns implies that the Poincaré series P,(s) =
Y oecc e 8T HUT7") i a decreasing sequence of functions, which by
definition says that 0(7™S,77"5) is decreasing.

3.1.2. Pseudo Anosov

A very useful notion to estimate the length of a curve is the intersection.
The geometric intersection between two curves, «, 8 is the number of in-
tersections of their geodesic representatives. We denote it by i(«, 5). We
say that a closed curve or a union of closed curves « fills the surface if for
every geodesics ¢ we have i(«,c¢) > 0. As we said, this notion generalizes
to the set of geodesic currents, see [6] for more details. One of the nice
property of a curve « (or current ) that fills S is that the projective set of
curves that intersects o a bounded number of time is compact [6]. From
this we can deduce

LEMMA 3.2. — Let « be a union of closed curves (or a geodesic current)
that fills S. Then there is K > 0 such that for all closed curves ¢ (for all
geodesic currents)

i(a,c) = Kl(c).

An example of geodesics which fills S is the union of two transverse
decomposition of S in pair of pants. A non-example is a geodesic lamination
since they have 0 self intersection.

We recall the definition of pseudo-Anosov diffeormophism.

DEFINITION 3.3 ([10, Section 13]). — A diffeomorphism A : S — S
is said pseudo-Anosov if there exists two measured geodesic laminations
(L4, u4), (L_,p_),0one transverses to the others, and a constant k > 1

VOLUME 32 (2014-2015)



124 OLIVIER GLORIEUX

such that:

(1) Ly UL fills S;

(2) A(Ls) = L

(3) A*uy = k:u+ (inverse image of u4 by A);
(4) A*u_ = fp_ (inverse image of u_ by A).

DEFINITION 3.4. — Let R be a subsurface of S, with geodesic boundary.
We say that a diffeomorphism A is R-pseudo-Anosov, if A is the identity
on S\ R and pseudo-Anosov on R.

Remark that a S-pseudo-Anosov is a pseudo-Anosov diffeomorphism.

PRrROPOSITION 3.5. — Let R be a subsurface of S with geodesic bound-
ary (possibly R = S). Let A be a R-pseudo-Anosov diffeomorphism. Then
ILm 0(A™S,S)=0(S\ R,S\ R).

We showed this proposition for R = S in [13]. The proof follows the same
lines in this case. Since we iterate an element of the mapping class group,
we can symmetrize §(A?"S,S) = §(A™S, A~"S) as we did for Dehn twits
to obtain global behaviour on every curves. Then from the definition of

R-pseudo-Anosov diffeomorphism we can estimate the lengths of geodesics
for the pair (A™S, A~™S):

L(A"e) +L(A7"¢) = Ci(pg + p—, ) \™.

Since (p4, p—) are the laminations of a R-pseudo-Anosov: i(pus + p—,c) >
Clr(c). Hence if r(c) # 0, £(A"c) + (A~ "¢) tends to infinity uniformly.
If £r(c) = 0 then the R-pseudo-Anosov does not act on c. We divide the
Poincaré series:

Ze—s(é(A”c)—i-é(A"”c))
ceC
_ Z e—s(é(A"c)—&-Z(A’"c)) + Z e—s([(A"c)-i—Z(A’"c))

¢, i(c,R)#0 c,i(c,R)=0
< Z e~ sKA R (e) 4 Z e—s(E(e)+£(c))
¢, i(c,R)#0 ¢, i(c,R)=0

The critical exponent for the first sum of the right hand side tends to O.
The critical exponent for the second sum of the right hand side is equal to
§(S'\ R, S\ R). The result follows.
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COROLLARY 3.6. — Let X : R — Teich(S) be a Teichmiiller geodesic
ray whose endpoint is a fixed point of a pseudo-Anosov diffeomorphism.
Then

lim (X (), S) = 0.

Proof. — Let A be the pseudo-Anosov whose attractive fixed point is the
endpoint of X. From the previous result §(A™S,S) — 0. Let Sy be a point
in Teich(,S) on the geodesic axis of A, and let us call A : R — Teich(S) this
geodesic axis parametrized in such a way that A™Sy; = A(n). Remark that
by a simple calculation we have

(3.1) §(X,Y) < exp(max(dy (X, X'),dp(Y,Y"))s(X',Y"),

where dj, is the Lipschitz asymetric distance, introduced by W. Thurston

in [38] and defined by dy, (X, X') := logsup,.¢ fg{’(%). It follows that

S(A(t), So) < exp(dr(Alt], A(t)))d(Alt], So),

where [t] is the floor of t.

A classical result following from the work of S. Kerchoff and
S. Wolpert [16, 40] says that the lipschitz distance is smaller than the
Teichmiiller distance, therefore

3(A(t), So) < exp(A[[t] = #))5(A" Sy, Sp).

Here A is the translation distance of the pseudo-Anosov diffeomorphism, it
appears because of our parametrization: dr(A(0), A(1)) = A.

Since §(AMSy, Sp) — 0 it follows that 6(A(t), Sp) — 0.

Applying again Equation (3.1) we have that for all S

6(A(2), ) < exp(dr(S, So))d(Alt], So)-

Once more, it implies that 6(A(¢),S) — 0.

Finally, we used a deep result of H. Masur, [21] classifying Teichmiller
rays staying at bounded distances. Since the stable foliation of a pseudo-
Anosov is uniquely ergodic, it follows that any geodesic ray X : RT —
Teich(S) whose endpoint is equal to A(+00), stay at bounded Teichmiiller
distance to A. Using one more time the estimates of Kerchoff and Wolpert,
and the Equation (3.1), we conclude there exists K > 0 such that

5(X(t),S) < KO6(A(t), S). O

VOLUME 32 (2014-2015)
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3.2. Random walk on mapping class group

We present in this section some results on the behaviour of critical expo-
nent along random walks paths. Let v be a probability measure on M CG(S)
of finite first moment (with respect to Teichmiiller distance) and whose
support generates a non-elementary subgroup. We consider the random el-
ement f, = gngn_1...g1 where g; are chosen independently and distributed
with v. Then we can look at the random path f,S € Teich(S). From
the work of V. Kaimanovich and H. Masur, this path a.s. converges to a
point of uniquely ergodic measure foliation on the Thurston boundary of
Teichmiiller space. We want to study the behaviour of §(f,S5,S) and of
5(fnS, f1S) where f], is another random path independent of f,,.

Using the Busemann compactification of C. Walsh [39], A. Karlsson
proved the following

THEOREM 3.7 ([15]). — There exists a (random) measured foliation (i
and a constant C' depending on S and p such that for any € > 0 there is a
number N for which

Ci(p, ) (A = €)" <Ls(fnc) < LA+ €)",
holds for all simple closed curves ¢ and any n > N.

In fact, it is possible using his proof to show that it holds for any closed
curve (any geodesic current) ¢, not necessarily simple. Let us explain why.
As we just said, the proof of A. Karlsson relies on the fact that the random
walk converges in the Busemann compactification defines by C. Walsh.
Walsh defined a horofunction of the (projective) class p by

v, (2) :10g< sup i(um)/ sup i(u,n))_

nemr Lax(n) ! pemr €o(n)

In this formula, ML stands for the set of measured geodesic laminations.
£.(n) is the length of the measured lamination in the hyperbolic surface.
For our purpose there is no need to know the exact definition, let us say
that for a measured geodesic lamination which is a simple closed curve,
this is equal to its geodesic length and it is continuous on Teich(S) x M L.
Finally b € Teich(S) is a base point.

Let dy, be the Lipschitz (or Thurston) asymmetric distance. This is often
defined as we previously did by the following formula:

ty(n)
dp(z,y) :=log sup -L-<.
u{@y) nemr Lz (n)
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However this is not the original definition in [38]. Indeed, in this article
W. Thurston defined dj, by

dr(z,y) (log(L(9))),

= inf

~Id
where the supremum is taken over all Lipschitz map ¢ between z and
y isotopic to the identity and L(¢) is the Lipschitz constant defined by
L(¢) = sup,4, (M) . He then showed that

dg (u,v
Ly (n)
dr(z,y) := logsup -2,
L( y) chC Em(n)

where the supremum is taken over C the set of all closed curves. He finally
proved that the supremum is attained along geodesic laminations. That is

Ly(n) Ly (n)
su = Su .
ceg gm (77) neML g:r (77)

Now we define

T 'L( ) ) Z( ) )
Tt = s (e 5 e )

where this time the supremum is taken over all closed curves. By the work
of F. Bonahon, the set of closed curves is dense in Curr(S) the set of
geodesic currents on S, we hence have also

o i(p,m) i(p,m)
v, (x) = log sup sup .
“( ) (nECurT(S) 51(77) /nECuTT(S) gb(n)

From the previous remarks, when u = z correspond to the Liouville

current associated to a point of the Teichmiiller space, the two functions
coincides:
\Iju(x) = \Iju(x) = dL('ra Z) - dL(ba Z)

C. Walsh proved that the function z — W, is continuous in the Thurston
compactification of the Teichmiiller space. In his proof, he used the com-
pactness of {n € ML |{,(n) < 1} which can be extended to geodesic current
by the work of F. Bonahon: {¢ € Curr(S)|¢(c) < 1} is also compact in
Curr(S). Therefore his proof can be followed step-by-step to show that the
map U : Teich(S) — C(Teich(S)) : z — U is continuous.

Hence ‘i,: also coincides with ¥, on the boundary of the Teichmiiller
space. In other words:

= log ( su g, m) su dy)
o) = (s L0 )
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Then we follow the proof of A. Karlsson and find the more general state-
ment:

THEOREM 3.8. — There exists a (random) measured foliation p and a
constant C' depending on S and p such that for any € > 0 there is a number
N for which

Cip, ) (A — €)™ < Ls(fnc) LA+ €)",

holds for all closed curves (all geodesic currents) ¢ and any n > N.

PROPOSITION 3.9. — For a.e. independent random paths f, = gngn—1
v and fi, = g,9, ... 9,
0(faS, f1,8) — 0.

Proof. — Using 3.8, we have that for all curves and n big enough that

U(fnc) = Cilp, c)(A = €)™
Ufhe) > Clild, )N — )"
Let C" = min(C,C") and X = min(\, \'). We then have

U(fac) + ) = CMil+ 1, )N — ™.
From the work of Kaimanovich Masur p and p' are uniquely ergodic, in
particular it implies that if a geodesic «, satisfies i(u, o) = 0 then « is in
the support of . Moreover a.s. u # p’ since the Poisson boundary is non
atomic. Hence if a geodesic « satisfies i(u, @) = 0 then i(y/, ) > 0. In
particular, p+ p' satisfies the condition of Lemma 3.2. There exists K > 0
such that

U(fuc) + U(fLc) = C"KL(c) (N — €)™ 0

3.3. Pinching curves

PROPOSITION 3.10. — Let P, P’ be two transverse pair of pants decom-
positions of S. Let Sy, S/, be the sequences of surfaces obtain by pinching
P and P’ by a factor €, — 0. Then

lim §(S,,S5,) =

n—oo

The so-called “collar lemma” said that on a hyperbolic surface when a
curve c intersects a very small curve then it has to be very long [14]. So we
can show that there exists C' > 0 such that for all closed curves ¢

ls, (c)+ Ls: (¢) = C|log(ey)|i(c, PUP")
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Then since P U P’ fills the surface we can conclude by Lemma 3.2.

This previous example gives an obstruction to produce a distance directly
from § with nice properties.

PROPOSITION 3.11. — There is no function f :]0,1/2] — R" such that

e f is continuous.

o lim, o f(x) = 400

e The function d defined on Teich(S) x Teich(S) by d(Sp,S1) =
f(6(So, S1)) satisfies the triangular inequality.

Indeed suppose by contradiction there is such a distance. We can show,
since there exists some curves whose length does no go to infinity that
0(S, Sy) does not go to 0 (take any pair of curves on S which generate a
free group in the fundamental group and whose length is bounded in S,
then the critical exponent associated to these free groups is strictly bigger
than e > 0). The same applies to §(S, SJ,). Since f is continuous, we have
that there exists K > 0 such that d(S,S,) < K and d(S,S]) < K. But
0(Sh,Sl) — 0hence by the second hypothesis on f we have d(S,, S;,) — cc.
Hence it cannot satisfy the triangular inequality.

If we pinch the same set of geodesics then the previous behaviour does
not happen. In fact, this is the only example, we know where the critical
exponent goes to 1/2 although the surfaces goes to infinity in Teich(.S).

PROPOSITION 3.12. — Let ¢, and €, be two sequences going to 0. Let
Sy, and S!, be the surfaces obtained by pinching P of a factor €, and €,
respectively. Then

lim 6(S,,S),)=1/2.
n—oo

This follows from the fact that Weil-Petersson distance between .S,, and
S/ goes to 0 and the relation between Weil-Petersson distance and the
intersection of two Liouville currents.

3.4. Fenchel Nielsen twists

This example is the basic idea for the isolation Theorem that we will
explain in Section 4. Let a be a simple closed curve and & () the Fenchel-
Nielsen twist along a. This is a time continuous version of the Dehn twist
around a, ie 7 := Eﬁo(a)() is the Dehn twist around «. Let Sy be a hyper-
bolic surface and defined S; := ! (Sy). Fix t € [0, 2¢y(v)), then as the first

VOLUME 32 (2014-2015)



130 OLIVIER GLORIEUX

example we can show that 0(Sp, Sonte) = 0(77™Sp, 7™S;) is decreasing,
using convexity of length function. Hence the following limit exists:

5(t) = nlL)H;C 5(50, S2n+t>~

It is clear that ¢t — 6(¢) is 2¢p(«)-periodic. Moreover we can show, using
one more time convexity of length function along Fenchel-Nielsen twists
and a compactness argument of “bounded length” geodesic currents, that

PROPOSITION 3.13. — The function t — §(Sy, St) is uniformly contin-
uous.

This shows in one hand that ¢t — §(¢) is continuous and in other hand
that limg_, o [6(So, St) — 6(t)| = 0.

It is clear from the first example on Dehn twists that §(¢) < 1/2. Then
we have

COROLLARY 3.14. — For any Fenchel-Nielsen twist along a simple
closed curve:
lim sup 0(Sp, S) < 1/2.

4. Isolation theorem

We exhibited various examples where we can estimate the limit of
5(Sn, S) as Sy, — 0 Teich(S). Noticing that the limit is never equal to 1/2,
it is natural to ask if it is always the case. We answered by the affirmative
at this question.

THEOREM 4.1. — Let S,, be a sequence in Teich(S) going to infinity.
Then
limsup §(Sp, S) < 1/2.

n—oo

or equivalently

THEOREM (reformulation of 3.1). — Let S,, be a sequence in Teich(S).
Then

limd(S,,S) =1/2 iff limS, =S in Teich(S)

Even if the result seems to be very natural, the problem is there is no
easy way to reach the boundary knowing the length of all closed curves.
From the previous examples, we see there are (at least) two natural ways to
go to infinity on Teich(.9): following a Teichmiiller geodesic ray or following
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an earthquake. In our proof we chose the second one, since earthquakes are
directly connected to the hyperbolic geometry.

Since every points of the Teichmiiller space is attained by an earthquake,
Theorem 4.1 is a consequence of

THEOREM 4.2. — Let S; be an earthquake path in Teich(S) then
lim sup §(Sy, S) < 1/2.

t—o0

Here again, for our purpose we don’t need to know the formal definition of
an earthquake. As we said, earthquakes are generalisation to any measured
laminations of Fenchel-Nielsen twist along simple closed curves. We need
to prove the same result as Corollary 3.14 without the possibility of using
the “symmetrization” trick.

For this we have shown in [13] that along any laminations £, the length
of “most” of the curves are increasing along the earthquake directed by L:
just think of Fenchel Nielsen twist along a very long curve. All the subtlety
lies in what we mean by “most”.

DEFINITION 4.3. — Let S be a hyperbolic surface. We say that a prop-
erty P is satisfied by most curves on S if there is n > 0 such that

Card{c € C|ls(c) < R}NP _ p

CardfceClts( <Ry )
Let S, S’ be two hyperbolic surfaces. We say that a property P is satisfied
by most curves on S + S’ if there is n > 0 such that
Card{c € C|ls(c) + ls/(c) < R}NP _.p
Card{c € C|ts() 1l (0 <R} ")

A theorem of Y. Kifer [18] on large deviation of geodesic flow allows us
to show that a property is satisfied by most of the curve on one surface. His
theorem does probably not generalise to the “sum” of two surfaces, since
H? x H? is not hyperbolic.

However, in this terminology, we showed that most of the curves on S are
increasing along any earthquakes. This part of the proof uses many different
arguments: compactness of geodesic currents of bounded length, compact-
ness of projective measure geodesic laminations, convexity of length along
earthquakes, and a rigidity result on intersection between two Liouville
currents.

The next problem to deal with is that ¢ is defined through the use
of the Manhattan metric, hence we need a result for most of the curves
on S + S,. A result of G. Link [20, Theorem 3.12, Theorem 5.1] or J-
F. Quint [29] (more precisely we proved its counterpart for the Manhattan
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metric) showed there is a A, for which most of the curves on S+ 5,,, satisfy
ls(c)/Ls, (c) almost equal to A,,. Moreover I showed using the Manhattan
curve defined in [9], that if 6(S5,S,) — 1/2 then A, — 1.

Putting everything together, it can then be shown that there is n > 0
such that

L—n

(4.1) 0(5,Sn) < TTa

Indeed, in the Poincaré séries associated to (S + S,) we can take out
the set of curves whose length increases uniformly, since their associated
critical exponent tends to 0. Then, there are only “few” curves on S in

the complementary set of these curves: that is where the 1 —n comes from.
Moreover, in these complementary set, most of the curve for S+.5,, satisfies
ls(c)+Lg, (¢) ~ (14 M\y)ls(c) and that is where ﬁ comes from.

We conclude by contradiction. Supposing that § — 1/2, Hence passing
to the limit in equation 4.1 gives % < 15—" since A, — 1.

5. Anti-de Sitter interpretation

It appears that this critical exponent can be related to Anti-de Sitter ge-
ometry. The Anti-de Sitter space AdS is a Lorentzian manifold of constant
negative curvature, so it is the Lorentzian counterpart of the hyperbolic
space. A nice model is to consider PSLy(R) endowed with its Killing form.
In this model the identity component of the isometry group can be identi-
fied to PSL2(R) x PSLo(R) acting by left and right multiplication.

A class of manifolds modelled on AdS are the so-called globally hyper-
bolic. These manifolds are topologically the product of S x (0,1) and are
the counterpart of Quasi-Fuchsian manifold in the hyperbolic setting. For
our purpose, the main result to know is a result of G. Mess [24]: in dimen-
sion 3, globally hyperbolic manifolds with base surface S are parametrized
by the product of two Teichmiiller spaces. Given two Teichmiiller repre-
sentations, then there exists a (maximal) convex subset of AdS®, called
“black domain”, where the action is properly discontinuous, the quotient is
a globally hyperbolic manifold. We called Fuchsian the globally hyperbolic
manifolds which are parametrized by the two same points of Teich(.S), in
that case the black domain contains a totally geodesic copy of the hyper-
bolic plane.

I proved that on a globally hyperbolic AdS® manifold, in every isotopy
class of closed curve there is a unique geodesic. This geodesic is space-like,
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meaning that the quadratic form on its tangent vector is positive. We define
the length of this geodesic by the Riemannian length for the induce metric.
Remark that since the manifold is not Riemannian, this length does neither
minimize nor maximize the integral [ g(¢(t),¢(t))dt on the isotopy class of
the curve. However a simple calculation shows that for a closed curve c¢ in
a globally hyperbolic manifold parametrized by (S7,52), its length in the
globally hyperbolic manifold £aqs(c), is given by

laqs(c) = %(fsl (c) + s, (c))-

We then define the critical exponent of a globally hyperbolic AdS® manifold,
M as

1
0(M) := limsup = log Card {c € C |laqs(c) < R}.

R—o0

The previous remark says that if M is parametrized by (S7,S2) then
0(M) = 26(S1,52).

Hence the previous results on Teichmiiller representations acting on H? x
H? give informations on the dynamics of globally hyperbolic manifolds. We
will not translate all previous statements in this vocabulary, but we just
want to mention that the Bishop Steger Theorem [4] in this setting gives
the counterpart of Bowen’s theorem for quasi-Fuchsian manifolds:

THEOREM 5.1. — Let M be a globally hyperbolic AdS® manifold. Then
S(M) > 1,
with equality if and only if M is Fuchsian.

The principal result of [13], which is the isolation results on §(Sy,S),)
when both surfaces move in Teich(.S) gives the counterpart of a theorem due
to A. Sanders [33] on the isolation of critical exponent for quasi-Fuchsian
manifolds.

And the examples, are the counterpart of the examples given by C. Mc-
Mullen in [23].

In a recent work with D. Monclair, we introduce a notion of Lorentzian
Hausdorff dimension and show that the critical exponent is equal to the
Hausdorff dimension of the limit set.

VOLUME 32 (2014-2015)



134

[1]
2]

3]
[4]
[5]
[6]
7]
(8]
[9]
(10]
(11]
(12]
(13]
(14]
15]
(16]

(17]
(18]

[19]
[20]
[21]
[22]
23]

[24]

OLIVIER GLORIEUX

BIBLIOGRAPHY

L. BERs, “Simultaneous uniformization”, Bull. Am. Math. Soc. 66 (1960), no. 2,
p. 94-97.

G. BEssoN, G. CourtoIs & S. GALLOT, “Entropies et rigidités des espaces locale-
ment symétriques de courbure strictement négative”, Geom. Funct. Anal. 5 (1995),
no. 5, p. 731-799.

C. Bis"Hop & P. W. JonEs, “Hausdorff dimension and Kleinian groups.”, Acta
Math. 179 (1997), no. 1, p. 1-39.

C. BisHoP & T. STEGER, “Three rigidity criteria for PSL(2,R)”, Bull. Am. Math.
Soc. 24 (1991), no. 1, p. 117-123.

F. BONAHON, “Bouts des variétés hyperboliques de dimension 3”, Ann. Math. 124
(1986), p. 71-158.

, “The geometry of Teichmiiller space via geodesic currents”, Invent. Math.
92 (1988), no. 1, p. 139-162.

R. BOwEN, “Hausdorff dimension of quasi-circles”, Publ. Math., Inst. Hautes Etud.
Sci. 50 (1979), no. 1, p. 11-25.

J. Brock, “The Weil-Petersson metric and volumes of 3-dimensional hyperbolic
convex cores”, J. Am. Math. Soc. 16 (2003), no. 3, p. 495-535.

M. BURGER, “Intersection, the Manhattan curve, and Patterson-Sullivan theory in
rank 2”7, Int. Math. Res. Not. 1993 (1993), no. 7, p. 217-225.

J. W. CANNON & W. P. THURSTON, “Group invariant Peano curves”, Geom. Topol.
11 (2007), no. 3, p. 1315-1355.

F. DAUBoO & 1. KiM, “Shadow lemma on the product of Hadamard manifolds and
applications”, Sémin. Théor. Spectr. Géom. 25 (2006-2007), p. 105-119.

K. FALk & B. O. STRATMANN, “Remarks on Hausdorff dimensions for transient
limits sets of Kleinian groups”, Tohoku Math. J. 56 (2004), no. 4, p. 571-582.

O. GLORIEUX, “Behaviour of critical exponent”, https://arxiv.org/abs/1503.
09067v1, 2015.

N. HALPERN, “A proof of the collar lemma”, Bull. Lond. Math. Soc. 13 (1981),
no. 2, p. 141-144.

A. KARLSSON, “Two extensions of Thurston’s spectral theorem for surface diffeo-
morphisms”, Bull. Lond. Math. Soc. 46 (2014), no. 2, p. 217-226.

S. P. KERCKHOFF, “The asymptotic geometry of Teichmuller space”, Topology 19
(1980), no. 1, p. 23-41.

, “The Nielsen realization problem”, Ann. Math. 117 (1983), p. 235-265.
Y. KIFER, “Large deviations, averaging and periodic orbits of dynamical systems”,
Commun. Math. Phys. 162 (1994), no. 1, p. 33-46.

G. KNIEPER, “Das Wachstum der Aquivalenzklassen geschlossener Geoditischer in
kompakten Mannigfaltigkeiten.”, Arch. Math. 40 (1983), p. 559-568.

G. Link, “Hausdorff dimension of limit sets of discrete subgroups of higher rank
Lie groups”, Geom. Funct. Anal. 14 (2004), no. 2, p. 400-432.

H. MASUR, “Uniquely ergodic quadratic differentials”, Comment. Math. Helv. 55
(1980), p. 255-266.

K. MAaTsuzaki, “Dynamics of Kleinian Groups—The Hausdorff Dimension of Limit
Sets”, Trans. Am. Math. Soc. 204 (2001), p. 23-44.

C. T. MCMULLEN, “Hausdorff dimension and conformal dynamics I: Strong conver-
gence of Kleinian groups”, J. Differ. Geom. 51 (1999), no. 3, p. 471-515.

G. MEss, “Lorentz spacetimes of constant curvature”, Geom. Dedicata 126 (2007),
p. 3-45.

SEMINAIRE DE THEORIE SPECTRALE ET GEOMETRIE (GRENOBLE)


https://arxiv.org/abs/1503.09067v1
https://arxiv.org/abs/1503.09067v1

GRAPHED TEICHMULLER REPRESENTATIONS ON H? x H? 135

[25] P. J. NicHoLLs, The ergodic theory of discrete groups, London Mathematical Soci-
ety Lecture Note Series, vol. 143, Cambridge university press, 1989, xi+221 pages.

[26] S. J. PATTERSON, “The limit set of a Fuchsian group”, Acta Math. 136 (1976),
p. 241-273.

[27] F. PAULIN, “Regards croisés sur les séries de Poincaré et leurs applications”, in
Géométrie ergodique, Monographie de L’Enseignement Mathématique, vol. 43,
Geneve: L’Enseignement Mathématique, 2013, p. 93-116.

[28] M. PEIGNE, “Autour de I’exposant critique d’un groupe kleinien”, https://arxiv.
org/abs/1010.6022, 2010.

[29] J.-F. QuINT, “Divergence exponentielle des sous-groupes discrets en rang
supérieur”, Comment. Math. Helv. 77 (2002), no. 3, p. 563-608.

[30] T. ROBLIN, “Ergodicité et équidistribution en courbure négative”, Mém. Soc. Math.
Fr. (2003), no. 95, p. A-96.

, “Un théoréme de Fatou pour les densités conformes avec applications aux
revétements galoisiens en courbure négative”, Isr. J. Math. 147 (2005), p. 333-357.

[32] T. RoBLIN & S. TAPIE, “Exposants critiques et moyennabilité”, in Géométrie
ergodique, Monographie de L’Enseignement Mathématique, vol. 43, Geneéve:
L’Enseignement Mathématique, 2013, p. 61-92.

[33] A. SANDERS, “Entropy, minimal surfaces, and negatively curved manifolds”, https:
//arxiv.org/abs/1404.1105, 2014.

[34] R. ScHWARTZ & R. SHARP, “The correlation of length spectra of two hyperbolic
surfaces.”, Commun. Math. Phys. 153 (1993), no. 2, p. 423-430.

[35] R. SHARP, “The Manhattan curve and the correlation of length spectra on hyper-
bolic surfaces.”, Math. Z. 228 (1998), no. 4, p. 745-750.

[36] D. SULLIVAN, “The density at infinity of a discrete group of hyperbolic motions”,
Publ. Math., Inst. Hautes Etud. Sci. 50 (1979), p. 171-202.

, “Entropy, Hausdorff measures old and new, and limit sets of geometrically
finite Kleinian groups”, Acta Math. 153 (1984), p. 259-277.

[38] W. P. THURSTON, “Minimal stretch maps between hyperbolic surfaces”, https:
//arxiv.org/abs/math/9801039, 1998.

[39] C. WALSsH, “The horoboundary and isometry group of Thurston’s Lipschitz metric”,
https://arxiv.org/abs/1006.2158v1, 2010.

[40] S. WOLPERT, “The length spectra as moduli for compact Riemann surfaces”, Ann.
Math. 109 (1979), p. 323-351.

31]

Olivier GLORIEUX

VOLUME 32 (2014-2015)


https://arxiv.org/abs/1010.6022
https://arxiv.org/abs/1010.6022
https://arxiv.org/abs/1404.1105
https://arxiv.org/abs/1404.1105
https://arxiv.org/abs/math/9801039
https://arxiv.org/abs/math/9801039
https://arxiv.org/abs/1006.2158v1

	1. Introduction
	2. Critical exponent
	2.1. Definitions
	2.2. Classical results
	2.3. Diagonal action on H2 H2

	3. Examples of behaviour
	3.1. Iteration of Mapping class group
	3.1.1. Dehn twist
	3.1.2. Pseudo Anosov

	3.2. Random walk on mapping class group
	3.3. Pinching curves
	3.4. Fenchel Nielsen twists

	4. Isolation theorem
	5. Anti-de Sitter interpretation
	Bibliography

