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Séminaire de théorie spectrale et géométrie
Grenoble
Volume 29 (2010-2011) 1-13

ON THE REMAINDER IN THE WEYL FORMULA FOR
THE EUCLIDEAN DISK

Yves Colin de Verdière

Abstract. — We prove a 2-terms Weyl formula for the counting function N(µ)
of the spectrum of the Laplace operator in the Euclidean disk with a sharp remain-
der estimate O

(
µ2/3

)
.

Résumé. — On montre une formule de Weyl à deux termes pour la fonction
N(µ) de comptage du spectre de l’opérateur de Laplace sur le disque euclidien,
avec un reste précis en O

(
µ2/3

)
.

Introduction

Let us denote by 0 < λ1 < λ2 6 · · · the eigenvalues for the Dirichlet
Laplacian of some bounded connected smooth domain X in the Euclidean
plane. It has been shown by Ivrii [11] that the following 2-terms Weyl
formula holds under some genericity assumption on the periodic orbits of
the associated billiard ball problem: if NX(µ) = #{j | λj 6 µ2},

NX(µ) = |X|4π µ
2 − |∂X|4π µ+R(µ)

with R(µ) = o(µ). Moreover, this result is quite optimal: Lazutkin and
Terman [13] showed that there is no δ > 0 so that an estimate R(µ) =
O
(
µ1−δ) holds for all smooth convex domains.
Our goal is to get an upper bound for R(µ) in the case of the Euclidean

disk. Our main result(1) is:

Keywords: lattice point problem ; Laplace operator ; eigenvalues ; Weyl asymptotic
formula ; Bessel functions.
Math. classification: 35P20, 11P21, 35J05, 58G25.
(1)After having completed this work, we learned from I. Polterovich that the same result
has been announced in 1964 by N. V. Kuznecov and B. V. Fedosov in [12]. The method
is similar to ours. We give here an independent complete derivation of the needed Van
der Corput result
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Theorem 0.1.

Ndisk(µ) = µ2/4− µ/2 +O
(
µ2/3

)
.

The proof is based on the explicit expression of the eigenvalues as the
squares of the zeros of the Bessel functions Jn as well as on some precise
asymptotics of these zeros which goes back to Olver (see [15, 5]). This way,
we have to study a lattice point problem in some domain with cusps. A
rather general lattice point problem was studied by Van der Corput [16], see
also [10, 9, 17, 3]. In [4], a similar method was used in order to get a good
remainder estimate for some surfaces of revolution. Let us note also that
the same remainder estimate holds for the integrable polygonal billiards like
the rectangles or the equilateral triangles: this is a direct consequence of
the explicit formula for the eigenvalues which reduces the question directly
to a lattice point problem for which the Van der Corput’s result applies.

1. The spectrum of the unit disk

We consider the spectrum of the Euclidean Laplacian ∆disk = −∂2
x − ∂2

y

in the unit disk in R2
x,y with Dirichlet boundary conditions. As it is well

known and can be checked by separation of variables, the eigenvalues of
∆disk are the squares of the zeros of the Bessel functions Jn, n ∈ Z. Let us
recall that

(1.1) Jn(x) = 1
2π

∫ π

−π
ei(x sin t−nt)dt ,

and that we have the following identities Jn(−x) = (−1)nJn(x), J−n(−x) =
Jn(x). Let us denote by |n| < x1(n) < x2(n) < · · · < xk(n) < · · · the pos-
itive zeros of Jn. Then the spectrum of ∆disk, with multiplicity, is given
by

σ = {xk(n)2 | n ∈ Z, k = 1, · · · , } .

In order to describe the asymptotics of the zeros of Bessel functions, we
introduce the domain D in R2 defined by

D = {(x, y) | − 1 6 x 6 1, y 6 g(x), y > max(0,−x) }

with
g(x) = 1

π

(√
1− x2 − x arccosx

)
.

Let us define R = {(n, k − 1/4) | (n, k) ∈ Z2} and S = {(x, y) | y >
max(0,−x)}. Let F : S → R be the function homogeneous of degree 1 which

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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1−1

Figure 1.1. the domain D

satisfies F ≡ 1 on the graph of g. It is a consequence of the stationary phase
expansion applied to the integral representations (1.1) of Bessel functions
(see [5]) that the spectrum of the disk is approximately given by {λj | j ∈
N} ∼ {F (m) |m ∈ R∩S}. More precisely, for n > 0, xk(n) ∼ F (n, k−1/4),
while for n < 0, xk(n) ∼ F (n, k + |n| − 1/4). As we will see in Section 3,
this allows to reduce our problem to a lattice point problem:

Ndisk(µ) ∼ ND(µ) = #{m ∈ R ∩ µD} .

Remark 1. — Let us note that D and R are invariant by the linear
involution J(x, y) = (−x, y + x). This corresponds to the fact that Jn and
J−n have the same zeros.

In order to complete the argument, we will have to study the lattice
point problem (Section 2) and to show how close Ndisk(µ) and ND(µ) are
(Section 3). The first part uses the method of Hlawka, Herz and Randol
[10, 9, 17] for studying smooth lattice point problems and the second part
is done using Olver’s asymptotics for the zeros of Bessel functions: we re-
derived it in [5] using the integral representation of the Bessel functions and
the general theory of oscillatory integrals associated to versal unfoldings of
singularities as explained in [8].

VOLUME 29 (2010-2011)



4 YVES COLIN DE VERDIÈRE

2. A lattice point problem with a cusp

Let us denote by R the lattice R := {(n, k − β) | (n, k) ∈ Z2} with
0 < β < 1. Let us consider a domain G ⊂ R2 with a cusp: G = {(x, y) | 0 6
x 6 1, 0 6 y 6 g (x)} with g (x) ∼ a (1− x)3/2 with a > 0 near x = 1.
We consider the weighted lattice point problem defined by the counting
function

NG,β,χ (µ) =
∑

m=(m1,m2)∈µG∩R

χ (m2/m1) ,

with χ ∈ C∞o (R) with χ ≡ 1 near 0 and the support of χ small enough.
We have the following 2-term Weyl estimate:

Theorem 2.1. — Under the previous assumptions on G, β and χ, we
have

NG,β,χ (µ) =
(∫

G

χ (y/x) dxdy
)
µ2 +

(
β − 1

2

)
µ+ 0

(
µ2/3

)
.

Corollary 2.2. — IfD is the domain defined in Section 1 and β = 1/4,
we have

ND(µ) = Area(D)µ2 − µ

2 + 0
(
µ2/3

)
.

Proof of Corollary 2.2: we decompose ND into 3 terms: one for each
cusp and one inner term using an homogeneous partition of unity. The
corollary follows from the previous Theorem for the parts near the cusps
and from the classical estimates going back at least to Van der Corput
[16] (see also [17, 3]) for the inner part. In order to use Van der Corput
estimates O

(
µ2/3), we need to check the strict convexity, in fact the non

vanishing of the curvature of the graph of g: this comes from the fact that
g′′(x) =

(
1− x2)− 1

2 > 0. �
Proof of Theorem 2.1: let us denote by B(m, r) the Euclidean ball of

center m and radius r. We can first replace χ(y/x) by the smooth function
χ0(x, y) = χ(y/x)(1 − φ(x, y)) with φ ∈ C∞o with support in the ball
B(0,min(β, 1 − β)) and ≡ 1 near 0 because there is no element of R in
the support of φ. The smooth function χ0 is a classical symbol of degree 0:
∂jx∂

k
yχ0(x, y) = 0((1 + |x|+ |y|)−(j+k)).

Let us give a positive function ρ ∈ C∞o
(
R2) with Support(ρ) ⊂ {x2 +

y2 < 1} and
∫
R2 ρ(x, y)dxdy = 1, define ρε = ρ (./ε) /ε2 with ε = µ−1/3,

and consider

(2.1) N±ε (µ) =
∑
m∈R

(
χ01G±

µ,ε
? ρε

)
(m)

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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where
G+
µ,ε = {(x, y) | 0 6 x 6 µ, 0 6 y 6 µg (x/µ) + 2ε} ,

1G−
µ,ε

= 106x6µ, 06y6µg(x/µ)−2ε − 106x6µ, µg(x/µ)−2ε6y60 .

µ

µ2ε
2εx
x

G+
µ,ε

G−
µ,ε

Figure 2.1. the domains G±µ,ε

For each m /∈ µG with m ∈ R, B (m, ε) ∩ G−µ,ε = ∅, hence (1G−
µ,ε

?

ρε)(m) = 0 while ∀(x, y) ∈ R2, 0 6 (1G−
µ,ε

? ρε)(x, y) 6 1. Similarly, for
each m ∈ µG ∩R, B (m, ε) ⊂ G+

µ,ε and (1G+
µ,ε

? ρε)(m) = 1. Hence,

N−ε (µ) 6 N (µ) 6 N+
ε (µ) .

We will apply Poisson summation formula and use estimates on the Fourier
transform of 1G±

µ,ε
. Let us denote by

Φ±µ,ε (ξ, η) =
∫
R2
χ0(x, y)1G±

µ,ε
(x, y)ei(xξ+yη)dxdy

the Fourier transforms of χ0-times the characteristic function of G±µ,ε.
The Poisson summation formula applied to the sum (2.1) gives

N±ε (µ) =
∫
R2
χ0(x, y)1G±

µ,ε
(x, y)dxdy(2.2)

+
∑

(p,q)∈Z2\0

ρ̂ (2πε (p, q)) Φ±µ,ε (2πp, 2πq) e−2πiβq .

We need to evaluate Φ±µ,ε. We use Green-Riemann formula in order to
get integrals on the boundaries. We have the following formulas:

Lemma 2.3. — If χ0 is a smooth classical symbol of degree 0 and

α = i

η

(
χ0(x, y) + i

η
∂yχ0(x, y)− 1

η2 ∂yyχ0(x, y)
)
ei(xξ+yη)dx ,

then

dα = χ0(x, y)ei(xξ+yη)dx ∧ dy +O(η−3)χ1(x, y)dx ∧ dy ,

VOLUME 29 (2010-2011)



6 YVES COLIN DE VERDIÈRE

where χ1(x, y) ∈ L1(dxdy).
A similar results holds for

β = 1
iξ

(
χ0(x, y) + i

ξ
∂xχ0(x, y)− 1

ξ2 ∂xxχ0(x, y)
)
ei(xξ+yη)dy .

If |η| 6 C|ξ|, we use

ei(xξ+yη)χ0(x, y)dx ∧ dy = dβ + 0(1/ξ3)χ2dx ∧ dy ,

while, if |ξ| 6 C|η|, we use

ei(xξ+yη)χ0(x, y)dx ∧ dy = dα+ 0(1/η3)χ1dx ∧ dy .

We have to estimate the integrals∫
∂G±

µ,ε

eiξ(x+νy)χ0 (x, y) dy ,

where ν = η/ξ is bounded (and similar integrals with χ0 replaced by the
derivatives of χ0 which are symbols of < 0 degrees) and∫

∂G±
µ,ε

eiη(y+νx)χ0 (x, y) dx ,

where ν = ξ/η is bounded. We use the upper bounds given in Appendix
A for the different parts of the boundaries, using the parametrization of
the graph of y = g(x) by x(t) = 1 − t2f(t), y(t) = t3 for 0 6 t 6 t0. For
example, the main part of the integral on the curved part of ∂G+

µ,ε of α is

i

η

∫ ∞
0

χ0(x(t), y(t))eiµη(y(t)+νx(t))x′(t)dt ,

to which we apply estimate given in Lemma 4.3. This gives:

Lemma 2.4. — The following estimates hold:
•

Φ±µ,ε (0, 0) = µ2
∫
G

χ (y/x) dxdy +O
(
µ2/3

)
• For 1 6 |p| 6 C|q|,

Φ±µ,ε (2πp, 2πq) = O

(
µ2

(1 + µ‖ (p, q) ‖)3/2 + 1
|pq|

)
• For p = 0, q 6= 0,

Φ±µ,ε (0, 2πq) = µi

2πq +O

(
µ2

(1 + µ|q|)3/2

)

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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• For |q| 6 C|p|,

Φ±µ,ε (2πp, 2πq) = O

(
µ2

(1 + µ‖ (p, q) ‖)3/2 + 1
µ1/3|p|

)
.

Let us prove for example the estimate of Φ±µ,ε (0, 2πq). The corresponding
integral on the boundary splits into 2 parts

∫ µ
0 ..dx−

∫ t0
0 ..dt. The first part

gives the first term. The second part gives, up to constants,

J = q−1
∫ t0

0
exp(2πiqµt3)χ0(µx(t), µy(t))µx′(t)dt

which is bounded by 0(q−1µ(qµ)−1/2) using the estimates of Lemma 4.3.
We need also the classical formula:

Lemma 2.5. — For 0 < β < 1, we have

i
∑
q∈Z\0

e−2πiβq/q = 2π
(
β − 1

2

)
.

Theorem 2.1 follows then from the previous Lemmas and simple evalu-
ations of the sums in the Poisson summation formula (2.2); using the fact
that the Fourier transform of ρ is rapidly decaying, we need the bounds:

Lemma 2.6. — We have:

µ2
∑

(p,q)∈Z2\0

(1 + µ‖(p, q)‖)−3/2(1 + µ−1/3‖(p, q)‖)−N = O
(
µ2/3

)
,

∑
16|p|6C|q|

|pq|−1(1 + µ−1/3‖(p, q)‖)−N = 0
(
(logµ)2) ,

µ2
∑
q 6=0
|(1 + µ|q|)−3/2(1 + µ−1/3|q|)−N = 0

(
µ

1
2

)
,

µ−1/3
∑

16|q|6C|p|

|p|−1(1 + µ−1/3‖(p, q)‖)−N = 0(1) .

Let us check the first upper bound, the others are similar. The first sum
is bounded by

Cµ
1
2

∑
(p,q)∈Z2\0

‖(p, q)‖−3/2(1 + µ−1/3‖(p, q)‖)−3/2

which is of the same order as the integral

µ
1
2

∫ ∞
0

rdr

r3/2(1 + µ−1/3r)N
.

�

VOLUME 29 (2010-2011)
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3. Spectrum of the disk as a lattice point problem

Our goal is to prove the following result:

Theorem 3.1.

Ndisk(µ) = ND(µ) +O
(
µ2/3

)
.

This will complete the proof of Theorem 0.1.
Proof. — The estimate splits into 3 parts: the inner part and the 2

boundary parts. We choose a function χ ∈ C∞o (] − 1, 1[, [0, 1]) which is
≡ 1 in some large interval [−1 + c, 1 − c] and split the two numbers to
compare as

Ndisk(µ) =N1
disk(µ) +N2

disk(µ) +N3
disk(µ)

=
∑

xk(n)6µ

χ(k/n) +
∑

n>0, xk(n)6µ

(1− χ(k/n))

+
∑

n<0, xk(n)6µ

(1− χ(k/n)) ,

and

ND(µ) =N1
D(µ) +N2

D(µ) +N3
D(µ)

=
∑

(n,k+max(0,−n)−1/4)∈µD

χ(k/n) +
∑

n>0, (n,k−1/4)∈µD

(1− χ(k/n))

+
∑

n<0, (n,k+|n|−1/4)∈µD

(1− χ(k/n)) .

We will compare the first terms (the inner parts) in both decompositions
and the second terms (the boundary parts). The third ones are similar to
the second ones.

The inner part: The zeros xk(n) are given uniformly in any domain
xk(n) > (1 + c)|n| with c > 0, by

xk(n) =
{
F (n, k − 1

4 ) +O(1/(1 + k + n)) if n > 0
F (n, k + |n| − 1

4 ) +O(1/(1 + k + |n|)) if n < 0
This is a consequence of the stationary phase expansion applied to the
integral representations (1.1) of Bessel functions (see [5]). Using the fact
that when F (n, k + max(0,−n)− 1/4) is close to µ, |n|+ k is of the same
order as µ, we get

N1
D

(
µ− C

µ

)
6 N1

disk(µ) 6 N1
D

(
µ+ C

µ

)
.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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It follows then from the Van der Corput’s remainder estimate O
(
µ2/3) for

the smooth strictly convex lattice point problems that

N1
disk(µ)−N1

D(µ) = O
(
µ2/3

)
.

The boundary parts: due to the fact that the zeros of Jn and J−n are
the same, we discuss only the case n > 0. We are in a domain where
xk(n) < (1 + C)n. Let us denote by tk the k-th zero of the Airy function,
we have (see [1])

tk =
[

3π
2

(
k − 1

4

)]2/3
+ ε(k) ,

with ε(k) = O
(
k−1). From [5], we have the following equation for the zeros

x of the Bessel function Jn(x) :

Ai
(
|x|2/3ρ (u)

)
+ b (u, x) |x|−4/3Ai′

(
|x|2/3ρ (u)

)
= 0 ,

where u = (n/x) − 1 < 0, ρ is a smooth germ of odd diffeomorphism of
(R, 0) (with ρ′ > 0) and b (u, x) is a smooth symbol of degree 0 in x. We
deduce, using the implicit function theorem and the asymptotics of the
Airy function, that

xk (n) = n

(
1 + ψ

(
tk
n2/3

))
+ η(n, k)

with η(n, k) = O(n−1), ψ smooth, ψ(0) = 0, ψ′(0) > 0. This asymptotics
is due to Olver [15]. If (1 + C)n > k > (1 + c)n > 0 with 0 < c < C, this
asymptotics matches with the inner asymptotics via the asymptotics of the
tk’s for large k’s.

Let
Nk (µ) := #{(n, k − 1/4) ∈ µD | 1 6 k 6 Cn}

and
N ′k (µ) := #{xk(n) 6 µ | 1 6 k 6 Cn} .

We have the

Lemma 3.2.

|Nk (µ)−N ′k (µ) | 6 Nk
(
µ+ C

µ

)
−Nk

(
µ− C

µ

)
+ Cµ1/3k−4/3 .

By summing the estimate of the previous Lemma w.r. to k and using the
2-terms asymptotics of N2

D(µ), we get

N2
disk(µ)−N2

D(µ) = O
(
µ2/3

)
.

�

VOLUME 29 (2010-2011)
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Proof of Lemma 3.2: Let us write F (x, y) := x(1 + ψ1(y2/3/x2/3)); we
haveNk(µ) = #{F (n, k−1/4) 6 µ | 1 6 k 6 Cn} andN ′k (µ) = #{F (n, k−
1/4 + ε(k)) 6 µ+ η(k, n) | 1 6 k 6 Cn}, with ε(k) = O(1/k) and η(k, n) =
O(1/n). We have, in the range 0 < y 6 cx with c small enough, 0 < a <

∂xF < b and ∂yF = O(x1/3y−1/3). The Lemma follows by estimating the
cardinal of the sets

Ak := {n | µ 6 F (n, k − 1/4) 6 µ+ η(k, n) + Cε(k)n1/3k−1/3}

and

A′k := {n | µ− η(k, n)− Cε(k)n1/3k−1/3 6 F (n, k − 1/4) 6 µ} .

We use the fact that if F (n, k − 1/4) is close to µ then n ∼ µ. We have
Ak ⊂ Bk ∪ Ck with Bk := {n | µ 6 F (n, k − 1/4) 6 µ + O(1/µ)} and
Ck := {n | µ + η(k, n) 6 F (n, k − 1/4) 6 µ + η(k, n) + Cε(k)n1/3k−1/3}.
Using the estimate on ∂xF , we have #Ck = O

(
n1/3k−4/3)

4. Conclusion and problems

It would be nice to get similar estimates for other integrable billiards
like a circular annulus. The case of ellipse is more difficult and is due
to Emile Mathieu [14]: the problem is with the unstable periodic geodesic
(the larger diameter). We know now a good approximation of the associated
eigenvalues thanks to my works with Bernard Parisse and San Vũ Ngo.c ([6,
7]).

Appendix A: Estimation of some integrals

We need to get estimates of various integrals corresponding to part of
the boundary of the domains D±µ,ε to be defined in Section 2.

Let us first recall the following stationary phase estimate:

Lemma 4.1. — Let f ∈ C∞([a, b],C) and φ ∈ C∞([a, b],R) so that φ
has only non degenerate critical points, then, if

I(τ) :=
∫ b

a

eiτφ(t)f(t)dt ,

we have I(τ) = O
(
τ−

1
2

)
. If φ depends smoothly on some parameter µ so

that the non degeneracy assumption holds for µ = µ0, the same conclusion
is true uniformly in some interval |µ− µ0| 6 c with c small enough.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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The curved part

These integrals come when evaluating integrals on the curved part of the
domains D±µ,ε.

Lemma 4.2. — Let us consider the integral

Ic,A(τ) =
∫ ∞

0
eiτ(νt

3−t2f(t))t2g(t)dt

with g ∈ C∞o (R), f ∈ C∞(R,R) with f(0) 6= 0 and |ν| 6 ν0 < ∞ with ν0
small enough, then, as τ →∞, Ic,A(τ) = O(τ− 1

2 ) if |ν0| is small enough.

This is easy using the stationary phase Lemma 4.1.

Lemma 4.3. — Let us consider the integral

Ic,B(τ) =
∫ ∞

0
eiτ(t

3−νt2f(t))tg(t)dt

with g ∈ C∞o (R), f ∈ C∞(R,R), and |ν| 6 ν0 < ∞ with ν0 small enough,
then, as τ →∞, Ic,B(τ) = O(τ− 1

2 ).

This is more difficult because the critical point t = 0 is degenerate for
ν = 0. We need a

Definition 4.4. — A smooth function f(t, α) is in Sk if all t-derivatives
are bounded near t =∞ by O(tk) uniformly in α.

Proof. — We will first prove the Lemma for f ≡ 1. Let us put µ = ντ1/3.
We consider 2 cases:

• |µ| 6 1: let us make the change t = wτ−1/3, we get

Ic,B(τ) = τ−2/3
∫ ∞

0
ei(w

3−µw2)wg
(
wτ−1/3

)
dw ,

The critical points of the phase are 0 and 2µ/3. We split the integral
into 2 parts with a smooth partition of unity 1 = h+ (1− h) with
h ∈ C∞o ([0, w0[) and h ≡ 1 on [0, 1]. The part containing the critical
points is O (1) using an uniform bound for the integrand. For the
other part, we introduce L = 1/

(
3w2 − 2µw

)
d/dw and integrate

by part several times using the formal transpose tL of L and the
fact that wg

(
wτ−1/3) ∈ S1, so that (tL)N

(
wg
(
wτ−1/3)) ∈ S1−2N .

If N > 2, this gives a function which is in L1(]w0,+∞[) uniformly
in µ.

VOLUME 29 (2010-2011)
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• |µ| > 1: we put t = νσ and get

Ic,B(τ) = ν2
∫ ∞

0
eiµ

3(σ3−σ2)σg (νσ) dσ .

We split the integral smoothly and get for the part containing the
critical points O

(
ν2/µ3/2) = O

(
τ−1/2). For the other part we

use K =
(
1/3w2 − 2w

)
d/dw, tK : Sk → Sk−2 and σg (νσ) ∈

S1. We pick a factor µ−3 for each integration by parts and get
O
(
ν2/µ3N) = O

(
τ−2/3).

It is clear enough that the proof still works if f is not constant. �

The linear parts

These integrals come when evaluating integrals on the linear parts of the
domains D±µ,ε.

Lemma 4.5. — We have, for |η| = O(|ξ|), Iv (ξ, η) = 1
ξ

∫ 2ε
0 eiyηdy =

O (ε/|ξ|).
For ξ = O (|η|), if

Ih (ξ, η) = i

η

∫ µ

0
eixξdx ,

then, for ξ 6= 0, Ih (ξ, η) = O (1/|ξη|) for ξ 6= 0 and Ih (0, η) = iµ
η .
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