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INVERSE SCATTERING FOR WAVEGUIDES

Hiroshi Isozaki, Yaroslav Kurylev & Matti Lassas

Abstract. — We study the inverse scattering problem for a waveguide (M,g)

with cylindrical ends, M = Mc ∪
(
∪N

α=1(Ωα × (0,∞))
)

, where each Ωα × (0,∞)

has a product type metric. We prove, that the physical scattering matrix, measured
on just one of these ends, determines (M,g) up to an isometry.

1. General formulation of the problem

One of the most typical geometric constructions encountered in the every-
day life is that of a compound waveguide, e.g. setting of optical and elec-
tric cables, oil, gas and water pipelines, etc. Mathematically, a compound
waveguide can be represented as a non-compact connected Riemannian
manifold (M,g) such that at infinity it looks like a disjoint union of the
asymptotically cylindrical ends. More precisely, let X0 be a point in M and
denote by d(X,X0) the distance between X0 and a variable point X ∈M .
Then, for large R > 0, the sphere SR(X0) = {X ∈ M : d(X,X0) = R}
decomposes into a finite number, N of the (n − 1)−dimensional compact,
connected submanifolds, (Ωα

R, g
α
R),

SR(X0) =
N⋃

α=1

Ωα
R,

and, in a proper sense, (Ωα
R, g

α
R) → (Ωα, gα), when R → ∞. In this case,

the Laplace operator, ∆M in L2(M) (with either Dirichlet or Neumann
boundary conditions on components of ∂M , if ∂M 6= ∅) is defined as the
closure of the Laplace operator on C∞−functions with compact support.
It is then possible to develop a spectral and scattering theory for ∆M , see
e.g. [10], [11], [4], [13] and, in a more general setting, [19], [2], [3].

Math. classification: 58J50, 35R30.



72 HIROSHI ISOZAKI, YAROSLAV KURYLEV & MATTI LASSAS

To describe the nature of the scattering theory, note that each asymptotic
section (Ωα, gα), which we associate with the corresponding channel of scat-
tering, gives rize to its own (n−1)−dimensional Laplacian, ∆α (for ∂Ωα 6= ∅
with the boundary conditions inherited from those on ∂M). Denote by
{λα

m, φ
α
m}∞m=1 the eigenvalues and corresponding orthonormal eigenfunc-

tions of ∆α. It is then possible to establish an existence, for all but a dis-
crete number of k2 ∈ R+, of a generalized eigenfunction ψα

m(X; k2) of ∆M ,
associated with {λα

m, φ
α
m}, when λα

m < k2. Physically, we can imagine the
situation as follows: We send through the channel associated with Ωα an
incoming propagating wave into M that is related to the eigenfunction φα

m

with λα
m < k2. This is the wave which behaves, when d(X,X0) → ∞,

as exp
(
−id(X,X0)

√
k2 − λα

m

)
φα

m(xα) (for the terminology used see [22]).
Here X = (xα, d(X,X0)), xα being (local) coordinates in Ωα, are (local)
coordinates in the channel α which, for large d(X,X0), is diffeomorphic to
Ωα × (A,+∞) with some A > 0. The described incoming wave propagates
through M , giving rize to the wavefunction ψα

m(X; k2), which is actually a
generalised eigenfunction of the continuous spectrum for ∆M . In general,
this wavefunction goes to infinity through all N channels of M . Registering
ψα

m(X; k2) in the β−channel as d(X,X0) →∞, we observe the asymptotic
behaviour of the wave,

(1.1) ψα
m(X; k2) ∼

∑
λβ

l
<k2

Sαβ
ml(k

2) eiy
√

k2−λβ
l φβ

l (xβ).

Here y = d(X,X0) and X = (xβ , y), xβ ∈ Rn−1 being (local) coordinates
in Ωβ , are coordinates in the β−channel Ωβ × (A,+∞). This construction
is valid for all but a discrete set σs(M) of k2, with σs(M) consisting of
the (positive) eigenvalues of the point spectrum of −∆M and all k2 =
λα

m, α = 1, . . . , N ; m = 1, 2, . . . In the following, denote by dβ(k) the
integer such that λβ

l 6 k2 for l 6 dβ(k) and λβ
l > k2 for l > dβ(k).

The above construction associates with any k2 ∈ R+ \ σs(M) a finite-
dimensional matrix, called the physical scattering matrix, S(k2),

(1.2) S(k2) = [Sαβ
ml(k

2)]α,β∈{1,...,N}, m6dα(k), l6dβ(k).

Note that the dimension of S(k2) is a step function with jumps at the
eigenvalues of −∆α, α ∈ {1, . . . , N}.

A natural inverse scattering problem for a compound waveguide is to
reconstruct, up to an isometry, the manifold (M,g) from its physical scat-
tering matrix S(k2), k2 ∈ R+ \ σs(M). Moreover, as it is quite conceivable
that we can not make measurements in all N channels of M or even the
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INVERSE SCATTERING FOR WAVEGUIDES 73

number of these channels is a priori unknown, a more realistic inverse prob-
lem is to reconstruct, up to an isometry, the manifold (M, g) from its partial
physical scattering matrix Sαβ

ml(k
2), known for α, β ∈ K ⊂ {1, . . . , N} and

k2 ∈ O , where O is an infinite open subset of R+ such that O∩σs(M) = ∅.
Note that, making measurements on a part of the boundary at infinity

of M , namely Ωα, α ∈ K, it is natural to assume that the Riemannian
manifolds (Ωα, gα) and, therefore, the pairs {λα

m, φ
α
m}, α ∈ K, m = 1, 2 . . . ,

of eigenvalues and eigenfunctions are in our disposal.
Inverse problems in waveguides were considered from the physical point

of view in [9] and from the view point similar to ours in [5], [7].

2. Waveguide with cylindrical ends

In this paper, we provide a sketch of solution to the formulated inverse
problem in the special case when the manifold (M,g) is a waveguide with
cylindrical ends. This means that (M,g) can be represented as

M = M c ∪

(
N⋃

α=1

(Ωα × (0,∞))

)
, M c ∩ (Ωα × (0,∞))) = Ωα × (0, 1),

Ωα ∩ Ωβ = ∅, for α 6= β.

(2.1)

Here M c is an open, relatively compact subset of M and each Ωα × (0,∞)
has a product structure

g|Ωα×(0,∞) =
n−1∑

p,q=1

gα
pq(x)dx

pdxq + dy2,

where X = (x, y) are the local coordinates on Ωα × R+.
Note that the spectral and scattering theory for waveguides with cylin-

drical ends much proceeds the general theory, see e.g. [10], [11], [17], [18],
[22]. This is due to the fact that, in case of cylindrical ends, the scatter-
ing problem for (M,g) can be considered as a perturbation in a compact
domain of a direct sum of the Laplace operators,

∆0 =
N⊕

α=1

(
∆α + ∂2

y

)
,

where y ∈ R+ is the coordinate along each channel. In the case when
∂M = ∅, the domain of definition of ∆0 is

D(∆0) = ⊕N
α=1{uα ∈ H2(Ωα × R+) : uα|Ωα×{0} = 0},

VOLUME 25 (2006-2007)



74 HIROSHI ISOZAKI, YAROSLAV KURYLEV & MATTI LASSAS

and if ∂M 6= 0, the ∆0 is defined using the Dirichlet or Neumann boundary
condition on ∂Ωα × (0,∞).

Let us return to the eigenfunctions of the continuous spectrum of ∆M ,
ψα

m(X; k2), with m 6 dα(k), k2 /∈ σs, which were introduced in Section 1.
Then, in Ωβ × (0,∞),

ψα
m(xβ , y; k2) = e−iy

√
k2−λα

m φβ
m(xβ)δα,β

+
∑

l6dβ(k)

aαβ
ml(k

2)eiy
√

k2−λβ
l φβ

l (xβ)

+
∑

l>dβ(k)

bαβ
ml(k

2)e−y
√

λβ
l
−k2

φβ
l (xβ).

(2.2)

Comparing the above formula with the asymptotic behavior (1.2) of ψα
m,

we see that

aαβ
ml(k

2) = Sαβ
ml(k

2), m 6 dα(k), l 6 dβ(k).

Note that, in addition to the waves propagating towards infinity, which are
represented by the first sum in the right side of (2.2), the wavefunction
ψα

m contains, in Ωβ × (0,∞), infinitely many exponentially decaying terms,
described by the second sum in the right side of (2.2). Therefore, it is
possible to extend the notion of the scattering matrix from the physical
one Sαβ

ml(k
2), m 6 dα(k), l 6 dβ(k), to the general l ∈ Z+. Namely, we first

define the non-physical scattering matrix Sαβ
ml (k

2) by

Sαβ
ml (k

2) = aαβ
ml(k

2) for m 6 dα(k), l 6 dβ(k);

Sαβ
ml (k

2) = bαβ
ml(k

2), for m 6 dα(k), l > dβ(k).

Moreover, it is also possible to treat the case ofm > dα(k), that is, λα
m > k2.

To this end, we start with an exponentially growing, as y → ∞, incom-
ing wave, exp (y

√
λα

m − k2)φα
m(xα) = exp (−iy

√
k2 − λα

m)φα
m(xα). Starting

from the above wave, we construct a non-physical wavefunction ψα
m(X; k2)

by using the Green function Rk2(X,X ′) of (∆M + k2),

(2.3) ψα
m(X; k2)− χ(y) exp (y

√
λα

m − k2)φα
m(xα)

=
∫ ∞

0

∫
Ωα

Rk2(X,X ′) [∆′
M , χ(y′)] exp (y′

√
λα

m − k2)φα
m(xα) dy′dxα,

where X = (x, y), X ′ = (x′, y′). Here χ(y) is a cut-off function, equal
to 0 for y < 1/4 and 1 for y > 3/4 which vanishes in M \ Ωα × R+,
[∆′

M , χ(y′)] stands for the commutator of the above operators, and ∆′
M is

the operator ∆M in coordinates (x′, y′).

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



INVERSE SCATTERING FOR WAVEGUIDES 75

Next, denote the resolvent of −∆M by Rz = (−∆M − z)−1. It is known,
see e.g. [18] for the waveguides with cylindrical ends and [13] for the general
compound waveguides, that, for any Φ, Φ̃ ∈ C∞0 (M),

RΦ,Φ̃
k2 := mΦ ◦Rk2 ◦m

Φ̃
∈ L(L2(M)),

where mΦ is the multiplication operator (mΦu)(X) = Φ(X)u(X) and L(B)
denotes bounded operators in a Banach space B. On the other hand, due
to M being a compact domain perturbation of

⋃N
β=1

(
Ωβ × (0,∞)

)
, the op-

erator [∆′
M , χ(y′)] has a compact support in Ωα×[1/4, 3/4]. Thus, equation

(2.3) has sense, defining the non-physical wavefunction ψα
m(X; k2).

Using the limiting absorption principle for Rk2±iε, ε > 0, see e.g [13],
where Rz is the resolvent for −∆M , we see that there are no propagating

terms of the form exp (−iy
√
k2 − λβ

l ), l 6 dβ(k) due to the integral in the
right side of (2.3) . Summarizing, we see that, for y > 3/4,

(2.4) ψα
m(xβ , y; k2) = exp (y

√
λα

m − k2)φα
m(xβ)δαβ

+
∞∑

l=1

Sαβ
ml (k

2) exp (iy
√
k2 − λβ

l )φβ
l (xβ),

thus defining the scattering matrix Sαβ
ml (k

2) for m > dα(k). In following,
we denote by

S(k2) = [Sαβ
ml (k

2)]m,l∈Z+, α,β=(1,...,N)

this generalized, or the non-physical scattering matrix. Note that the phys-
ical scattering matrix S(k2) is a finite dimensional sub-matrix of S(k2) for
each k2 ∈ R+ \ σs(M).

3. Analytic properties of the non-physical scattering
matrix

To analyse the dependence of Sαβ
ml (λ), λ ∈ C, we recall that the operator-

valued function RΦ,Φ̃
λ is analytic in C\R+ and has continuous limits, RΦ,Φ̃

k2±i0

as λ→ k2 ± i0 (except for k2 ∈ σs(M).)
Thus, equation (2.3) makes it possible to define the non-physical wave-

function ψα
m(X;λ) for all λ ∈ C\R+. Considered as a function of λ, ψα

m(· ;λ)
is analytic in C \ R+ and, moreover, there are limits

ψ±, α
m (X; k2) = lim

ε→0
ψα

m(X; k2 ± iε).

VOLUME 25 (2006-2007)
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Remark 3.1. — In our definition of ψα
m(X; k2), it corresponds actually

to ψ+, α
m (X; k2) with ψ−, α

m (X; k2) = ψ
+, α

m (X; k2). Similarly, Rk2(X,X ′) in
(2.3) actually coincides with Rk2+i0(X,X ′).

Therefore, when y > 0,

Ψs, αβ
ml (y;λ) :=

(
ψα

m(·, y;λ)− exp (−iy
√
λ− λm)φα

m(·)δαβ , φ
β
l (·)

)
L2(Ωβ)

satisfies, for λ ∈ C \ R+, the ordinary differential equation

d2

dy2
Ψs, αβ

ml (y;λ) + (λ− λβ
l )Ψs, αβ

ml (y;λ) = 0.

This and (2.4) imply that

Ψs, αβ
ml (y;λ) = Sαβ

ml (λ) exp (iy
√
λ− λβ

l ),

where Sαβ
ml (λ) is analytic in C \R+ and continuous, from above and below,

up to R+, thus defining Sαβ
ml (k

2 ± i0). Note that Sαβ
ml (k

2) in section 2 is
actually Sαβ

ml (k
2 + i0).

These considerations immediately imply the following lemma:

Lemma 3.2. — Let S(k2) be given for all k2 ∈ O , where O is an un-
bounded open subset of R+, O ∩ σs(M) = ∅. Then, these data determine
the non-physical scattering matrix Sαβ

ml (λ), m, l ∈ Z+, α, β ∈ {1, . . . , N}
for all λ ∈ C \ R+ and also Sαβ

ml (k
2 ± i0) for all k2 /∈ σs(M).

Proof Observe that for any m, l and α, β, there is an open interval I ⊂ O
such that, for k2 ∈ I, we have λα

m, λ
β
l < k2. Moreover, for such k2,

Sα,β
ml (k2) = Sαβ

ml (k
2 + i0).

By the analyticity properties of Sαβ
ml(λ), described above, this determines

uniquely this matrix coefficient in C \ R+ and also Sαβ
ml (k

2 ± i0) in R+ \
σs(M). QED

Note that having only a partial physical scattering matrix Sph for α, β
lying in a subset K of (1, . . . , N), we can find the partial non-physical
matrix Sαβ

ml (λ) for these α, β.

4. From scattering data to the Dirichlet-to-Neumann map

In this and the next sections we consider the case when the physical
scattering matrix S is known only in one channel of scattering Ωα× (0,∞),
corresponding to, say, α = 1, i.e. we are given Sαα

m,l(k
2), m, l 6 dα(k)

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



INVERSE SCATTERING FOR WAVEGUIDES 77

with α = 1. In this connection, in the future we skip indexes α, β writing
just Ω = Ω1, Sml(λ) = S11

ml(λ), ψm(X, k2) = ψ1
m(X, k2), φm(x) = φ1

m(x),
etc. We denote by M̃ the domain

M̃ = M \ (Ω× (1,∞)).

Observe that, in general, (M̃, g|
M̃

) is itself a compound waveguide with
Ω× {1} ⊂ ∂M̃ .

Consider the Dirichlet-to-Neumann operator Λ̃λ, λ ∈ C \ R+ associated
with M̃ ,

(4.1) Λ̃λ : H1/2(Ω) → H−1/2(Ω); Λ̃λ(f) := ∂yu
f
λ|(Ω×{1}),

where uf
λ(X) is the solution to the boundary-value problem,

(∆̃ + λ)uf = 0 in M̃

uf |Ω×{1} = f,

where ∆̃ is the Laplace operator in M̃ .
Then, the partial non-physical scattering matrix S determines the action

of Λ̃λ, for λ ∈ C \ R+, on all functions f , such that

(4.2) f ∈ clH1/2(Ω){Span (ψm(x, 1;λ), m = 1, 2, . . . )}.

Indeed, for f(x) = ψm(x, 1;λ), we have,

uf
λ(X) = ψm(X;λ), X ∈ M̃.

Thus,

∂yu
f
λ(x)|(Ω×{1}) = −i

√
λ− λm exp (−i

√
λ− λm)φm(x)

+
∞∑

l=1

i
√
λ− λl Sml(λ) exp(i

√
λ− λl)φl(x).

(4.3)

Here, due to the orthogonality, (φm, φl)H1(Ω) = 0, for m 6= l, and regularity
ψm ∈ H2

loc(M), the sum in (4.3) converges in H1(Ω). Note that we also
know that

ψm|Ω×{1} =

exp (−i
√
λ− λm)φm(x) +

∞∑
l=1

Sml(λ) exp(i
√
λ− λl)φl(x).

(4.4)

Then the desired result that Λ̃λ on the set (4.2) can be determined using the
scattering matrix Sml(λ) follows from the continuity of Λ̃λ from H1/2(Ω)
to H−1/2(Ω).

VOLUME 25 (2006-2007)



78 HIROSHI ISOZAKI, YAROSLAV KURYLEV & MATTI LASSAS

Therefore, if we can show that

(4.5) clH1/2(Ω{Span (ψm(x, 1;λ), m = 1, 2, . . . )} = H1/2(Ω),

then the partial non-physical scattering matrix S(λ) determines the Diri-
chlet-to-Neumann map Λ̃λ. In turn, by duality, property (4.5) is equivalent
to the following result

Lemma 4.1. — Let h ∈ H−1/2(Ω). Assume that, for some λ ∈ C \ R+,

〈h, ψm(λ)|Ω×{1}〉 = 0, m = 1, 2, . . .

Then h = 0.

(In the above formula 〈·, ·〉 stands for the sesquilinearH−1/2(Ω)×H1/2(Ω)
duality.)

Proof. — Let us return to representation (2.3) which we rewrite slightly
differently as

ψm(X;λ) = 2iχ(y) sin (y
√
λ− λm)φm(x)

+ 2i
∫ ∞

0

∫
Ω

Rλ(X,X ′) [∆′
M , χ(y′)] sin (y′

√
λ− λm)φm(x′) dy′dx′.

(4.6)

Here we take into the account that the non-physical wavefunction in the
“unperturbed waveguide”, M0 = Ω × (0,∞) with Dirichlet condition at
Ω × {0}, which corresponds to {λm, φm}, is sin (y

√
λ− λm)φm(x). Next,

let X = (x, y), X ′ = (x′, y′), X ′′ = (x′′, y′′) be points of M0. Observe,
that when y′′ > 1, the Green function Rλ(X,X ′′) does itself satisfy a
representation similar to (4.6),

Rλ(X,X ′′) = χ(y)R0
λ(X,X ′′)

+
∫ ∞

0

∫
Ω

Rλ(X,X ′) [∆′
M , χ(y′)]R0

λ(X ′, X ′′) dy′dx′,
(4.7)

where R0
λ(X,X ′′) is the Green function in Ω × (0,∞) with the Dirichlet

condition at Ω× {0}. We have, for X = (x, y), X ′ = (x′, y′), y < y′, that
(4.8)

R0
λ(X,X ′) =

∞∑
m=1

sin (y
√
λ− λm) exp (iy′

√
λ− λm)φm(x)φm(x′).

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



INVERSE SCATTERING FOR WAVEGUIDES 79

Therefore, substituting (4.8) into representation (4.7), we get

Rλ(X,X ′′)

= χ(y)
∞∑

m=1

sin (y
√
λ− λm) exp (iy′′

√
λ− λm)φm(x)φm(x′′)

+
∫ ∞

0

∫
Ω

Rλ(X,X ′) [∆′
M , χ(y′)]

×
∞∑

m=1

sin (y′
√
λ− λm) exp (iy′′

√
λ− λm)φm(x′)φm(x′′) dy′dx′.

Comparing the above representation with (4.6), we see that, for X =
(x, y) ∈ M̃, X ′′ = (x′′, y′′), y′′ > 1,

(4.9) Rλ(X,X ′′) =
∞∑

m=1

ψm(X;λ) exp (iy′′
√
λ− λm)φm(x′′).

Let now h ∈ H−1/2(Ω) be orthogonal to all ψm(·;λ)|(Ω×{1}), i.e.

(4.10) 〈h, ψm|Ω×{1}〉 :=
∫

Ω

h(x)ψm(x, 1;λ)dx = 0, m = 1, 2, . . .

Consider the equation

(∆M + λ)u = h(x)δ(y − 1) ∈ H−1(M).

For λ ∈ C \ R+, it has the solution of the form of a single-layer potential,

(4.11) uh(X) =
∫

Ω

Rλ(X; (x′, 1))h(x′)dx′, uh ∈ H1(M).

Let now X = (x, y), y > 1. Observe that

Rλ(X ′, X) = Rλ(X,X ′).

Therefore, condition (4.10) imply that, for y > 1,

uh(x, y) =
∞∑

m=1

(
〈h, ψm|Ω×{1}〉

)
exp (−iy

√
λ− λm)φm(x) = 0,

where we choose the branch of
√
z to be equal to −i|z|1/2 for z ∈ R−.

As uh ∈ H1(M) this means, in particular, that uh|
M̃

is solution to the
homogeneous Dirichlet problem. As λ /∈ R+, this implies that uh = 0 in M̃
and, therefore, h = 0. QED

Summarizing the above, we formulate the following result. �

VOLUME 25 (2006-2007)



80 HIROSHI ISOZAKI, YAROSLAV KURYLEV & MATTI LASSAS

Lemma 4.2. — Let (M,g) be a waveguide with cylindrical ends. Then,
for any α the partial physical scattering matrices Sαα

ml (k
2), m, l 6 dα(k), k ∈

R+ determines uniquely, for any λ ∈ C\R+, the Dirichlet-to-Neumann map
Λ̃λ of the Laplace operator, ∆̃ in M̃ .

5. Main result

We are now in the position to formulate the main result of the pa-
per. To this end, consider two waveguides, each with cylindrical ends,
(M1,g1), (M2,g2). Assume that for some ends, say, those numbered by
α = 1, the boundaries of these ends at infinity, (Ωα

1 , g
α
1 ), (Ωα

2 , g
α
2 ) with

α = 1, are isometric. Next we omit α and write just Ω1
1 = Ω1, Ω1

2 = Ω2,
etc. Identifying them, we write

(5.1) (Ω1, g1) = (Ω2, g2) = (Ω, g).

Consider the Laplace operators ∆Mi in (Mi,gi), i = 1, 2, and the corre-
sponding partial physical scattering matrices in channels Ω1× (0,∞), Ω2×
(0,∞), namely S11

(i)(k
2) = [S11

(i),ml(k
2)]m,l6d1(k),.

Theorem 5.1. — Let (M1,g1), (M2,g2) satisfy the above conditions.
Assume that, for any k2 ∈ O , where O is an unbounded open set in R+ such
that O ∩σs(Mi) = ∅, the physical scattering matrices corresponding to the
end Ω × R+, S11

(1)(k
2) and S11

(2)(k
2), k2 ∈ O , coincide. Then the manifolds

(M̃1,g1), (M̃2,g2) are isometric. In particular, the number of scattering
channels is the same, N1 = N2 (= N) and, after a proper identification,
(Ωα

1 , g
α
1 ) are isometric to (Ωα

2 , g
α
2 ), α = 1, . . . , N.

Proof. — By Lemma 3.2, the conditions of the theorem imply that

S(1),ml(k2) = S(2),ml(k2)

for all m, l ∈ Z+, k
2 ∈ O . Denoting by ψ(i)

m (X,λ) the wavefunctions, both
physical and non-physical, of Mi, i = 1, 2, and using equations (4.3), (4.4),
we see that

ψ(1)
m (x, 1; k2) = ψ(2)

m (x, 1; k2),

∂yψ
(1)
m (x, 1; k2) = ∂yψ

(2)
m (x, 1; k2);

x ∈ Ω, k2 ∈ O .
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Due to the analyticity, with respect to λ, of ψ(i)
m (·, λ), see the beginning of

section 3, we see that

ψ(1)
m (x, 1;λ) = ψ(2)

m (x, 1;λ),

∂yψ
(1)
m (x, 1;λ) = ∂yψ

(2)
m (x, 1;λ);

x ∈ Ω, λ /∈ R+.

It then follows from Lemma 4.2 that the Dirichlet-to-Neumann maps for M̃1

and M̃2 coincide,

(5.2) Λ̃(1)
λ = Λ̃(2)

λ .

Consider now the wave equations in M̃i × R,

(5.3) ∂2
t u

i
F − ∆̃iu

i
F = 0, ui

F |t<0 = 0, ui
F |Ω×{1} = F.

It follows from (5.2), cf. [15], that

(5.4) Λ̃(1)
h (F ) = Λ̃(2)

h (F ), F ∈ C∞0 (Ω× R+),

where Λ̃(i)
h is the hyperbolic Dirichlet-to-Neumann map,

Λ̃(i)ui
h(F ) = ∂yu

i
F |(Ω×{1})×R+ .

This implies, it turn, that there exists an isometry

Φ : (M̃1,g1) → (M̃2,g2), Φ|(Ω×{1}) = Id|(Ω×{1}),

see e.g. [16].
As M̃i∩(Ω×R+) = (Ω×(0, 1)), the second equation in the above formula

yields also that (M1,g1) and (M2,g2) are isometric. QED �

Remark 5.2. — Instead of given isometric Ω(1), Ω(2), we can assume
that the spectra of ∆M1 and ∆M2 coincide as well as the sets

Φi := {(φi
1|Ω(i) , φ

i
2|Ω(i) , . . . )} i = 1, 2,

cf. [1].

Remark 5.3. — The general theory [2], [3], [19] describes spectral and
scattering properties of compound waveguides with asymptotically cylindri-
cal ends. Also, constructions in [16] remain valid for the manifolds (M̃, g̃)
with asymptotically cylindrical ends. Therefore, the constructions of the
paper, in particular Theorem 5.1, remain valid even if we do not assume
that the ends of M1 and M2, except for Ω× (0,∞), are cylindrical.
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Remark 5.4. — The idea to consider, in studying inverse scattering, not
only the "physical" wavefunctions, but also "non-physical", exponentially
growing ones, goes back to [8], which used it to study inverse quantum
scattering with data given by the scattering matrix at all energies. Later,
this type of exponentially growing solutions proved most effective in the
study of inverse problems with fixed-frequency data, see [21], [20], [14] for
the pioneering works. In this paper we return, for the waveguide inverse
problem, to the original idea of Faddeev and combine it with the technique
of the BC-method, see e.g. [15].
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