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Séminaire de théorie spectrale et géométrie
GRENOBLE
Volume 23 (2005) 131−144

SURFACES IN S3 AND H3 VIA SPINORS

Bertrand MOREL

Abstract

We generalize the spinorial characterization of isometric immersions of
surfaces in R3 given by T. Friedrich to surfaces in S3 and H3. The main
argument is the interpretation of the energy-momentum tensor associated
with a special spinor field as a second fundamental form. It turns out that
such a characterization of isometric immersions in terms of a special section
of the spinor bundle also holds in the case of hypersurfaces in the Euclidean
4-space.

1. Introduction

It is well known that a description of a conformal immersion of an arbitrary surface
M2 ↪→ R3 by a spinor field ϕ on M2 satisfying the inhomogenous Dirac equation

Dϕ = Hϕ, (1)

(where D stands for the Dirac operator and H for the mean curvature of the
surface), is possible. Recently, many authors investigated such a description (see
for example [9],[10],[14]).

In fact, it is clear that any oriented immersed surface M2 ↪→ R3 inherits from R3

a solution of Equation (1), the surface M being endowed with the induced metric
and the induced spin structure. Moreover, the solution has constant length. This
solution is obtained by the restriction to the surface of a parallel spinor field on
R3. In [6], T. Friedrich clarifies the above-mentioned representation of surfaces in
R3 in a geometrically invariant way by proving the following:

Theorem 1.1 (Friedrich [6]) Let (M2, g) be an oriented, 2-dimensional mani-
fold and H : M → R a smooth function. Then the following data are equivalent:

1. An isometric immersion (M̃2, g) → R3 of the universal covering M̃2 into the
Euclidean space R3 with mean curvature H.

2000 Mathematics Subject Classification: 53C27, 53C45, 53A10.
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2. A solution ϕ of the Dirac equation

Dϕ = Hϕ ,

with constant length |ϕ| ≡ 1.

3. A pair (ϕ, T ) consisting of a symmetric endomorphism T of the tangent
bundle TM such that tr(T ) = H and a spinor field ϕ satisfying, for any
X ∈ Γ(TM), the equation

∇Xϕ+ T (X) · ϕ = 0 .

In this paper, we prove the analoguous characterizations for surfaces in S3 and H3

(Theorems 4.1 and 4.2). They are obtained by studying the equation of restrictions
to a surface of real and imaginary Killing spinor fields (compare with [6]).

We note that the involved symmetric endomorphism T is the energy-momentum
tensor associated with the restricted Killing spinor which describes the immersion.

Finally, the case of the hypersurfaces of R4 is treated (Theorem 5.3).

2. Restricting Killing spinor fields to a surface

Let N3 be a 3-dimensional oriented Riemannian manifold, with a fixed spin struc-
ture. Denote by ΣN the spinor bundle associated with this spin structure. If M2

is an oriented surface isometrically immersed into N3, denote by ν its unit nor-
mal vector field. Then M2 is endowed with a spin structure, canonically induced
by that of N3. Denote by ΣM the corresponding spinor bundle. The following
proposition is essential for what follows (see for example [2],[5],[12],[15]):

Proposition 2.1 There exists an identification of ΣN|M with ΣM , which after
restriction to M , sends every spinor field ψ ∈ Γ(ΣN) to the spinor field denoted
by ψ∗ ∈ Γ(ΣM). Moreover, if ·

N
(resp. ·) stands for Clifford multiplication on ΣN

(resp. ΣM), then one has

(X ·
N
ν ·
N
ψ)∗ = X · ψ∗ , (2)

for any vector field X tangent to M .

Another important formula is the well-known spinorial Gauss formula: if ∇N and
∇ stand for the covariant derivatives on Γ(ΣN) and Γ(ΣM) respectively, then, for
all X ∈ TM and ψ ∈ Γ(ΣN)

(∇NXψ)∗ = ∇Xψ∗ +
1
2
h(X) · ψ∗, (3)

where h is the second fundamental form of the immersion M ↪→ N viewed as a
symmetric endomorphism of the tangent bundle of M .
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Assume now that N3 admits a non-trivial Killing spinor field of Killing constant
η ∈ C, i.e., a spinor field Φ ∈ Γ(ΣN) satisfying

∇NY Φ = η Y ·
N

Φ (4)

for all vector field Y on N . Recall that η has to be real or pure imaginary and that
Φ never vanishes on N , as a non-trivial parallel section for a modified connection
(see [4],[5]). In what follows, we will consider the model spaces, with their standard
metrics, R3 with η = 0, S3 with η = 1/2, and H3 with η = i/2 which are char-
acterized by the fact that they admit a maximal number of linearly independant
Killing spinor fields with constant η.

Let (e1, e2) be a positively oriented local orthonormal basis of Γ(TM) such that
(e1, e2, ν) is a positively oriented local orthonormal basis of Γ(TN)|M . Denote by

ω3 = −e1 ·
N
e2 ·

N
ν

the complex volume form on the complex Clifford bundle ClN and ω = e1 · e2 the
real volume form on ClM . Recall that ω3 acts by Clifford multiplication as the
identity on ΣN . Therefore, denoting ϕ := Φ∗, formula (2) yields

(e1 ·
N

Φ)∗ = (−e1 ·
N
e1 ·

N
e2 ·

N
ν ·
N

Φ)∗ = e2 · ϕ = −e1 · ω · ϕ

(e2 ·
N

Φ)∗ = (−e2 ·
N
e1 ·

N
e2 ·

N
ν ·
N

Φ)∗ = −e1 · ϕ = −e2 · ω · ϕ

and
(ν ·

N
Φ)∗ = (−ν ·

N
e1 ·

N
e2 ·

N
ν ·
N

Φ)∗ = ω · ϕ .

Then, these last relations with Equations (3) and (4) show that

∀X ∈ TM , ∇Xϕ+
1
2
h(X) · ϕ+ ηX · ω · ϕ = 0 (5)

Recall that the spinor bundle ΣM splits into

ΣM = Σ+M ⊕ Σ−M

where Σ±M is the ±1-eigenspace for the action of the complex volume forme
ω2 = i ω. Under this decomposition, we will denote ϕ = ϕ+ + ϕ−, and define
ϕ := ϕ+ − ϕ−. Therefore Equation (5) is equivalent to

∇Xϕ+
1
2
h(X) · ϕ− iηX · ϕ = 0 .

The ambient spinor bundle ΣN can be endowed with a Hermitian inner prod-
uct ( , )N for which Clifford multiplication by any vector tangent to N is skew-
symmetric. This product induces another Hermitian inner product on ΣM , de-
noted by ( , ) making the identification of Proposition 2.1 an isometry. Now,
relation (2) shows that Clifford multiplication by any vector tangent to M is
skew-symmetric with respect to ( , ).
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Proposition 2.2 If η ∈ R, then ϕ has constant length. If η ∈ iR∗, then for all
vector X tangent to M ,

X|ϕ|2 = 2<(iηX · ϕ,ϕ) .

Proof . — Since Clifford multiplication by any vector tangent to M is skew-
symmetric with respect to ( , ), we have <(Y · ϕ,ϕ) = 0 for all Y ∈ TM . Taking
this fact into account and computing

X|ϕ|2 = 2<(∇Xϕ,ϕ)

with the help of formula (5), completes the proof.

Recalling that the Dirac operator D is defined on Γ(ΣM) by

D = e1 · ∇e1 + e2 · ∇e2 ,

we compute directly that

Dϕ = Hϕ+ 2η ω · ϕ = Hϕ− 2iηϕ

where H is the mean curvature of the immersion M ↪→ N . It is well known that
the action of the Dirac operator satisfies (Dϕ)± = Dϕ∓ (see [11],[5]). Therefore,
we note that

D(ϕ±) = (H ± 2iη)ϕ∓ . (6)

We have as in [6] the following

Proposition 2.3 Let M2 be a minimal surface in N3. Then the restriction of
any Killing spinor Φ with constant η on N3 restricts to an eigenspinor ϕ? on the
surface M :

Dϕ? = 2ηϕ?

Moreover, if η is real, then ϕ? has constant length.

Proof . — Since H = 0, we have

D(ϕ±) = ±2iηϕ∓ .

Therefore, it suffices to define ϕ? = ϕ+ + iϕ−.

3. Solutions of the restricted Killing spinor equation

Let (M2, g) be an oriented, 2-dimensional Riemannian manifold with a spin struc-
ture. We endow the spinor bundle ΣM with a Hermitian inner product ( , ) for
which Clifford multiplication by any vector tangent to M is skew-symmetric.
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We study now some properties of a given solution ϕ ∈ Γ(ΣM) of the following
equation

∇Xϕ+ T (X) · ϕ− iηX · ϕ = 0 , (7)

or equivalently
∇Xϕ+ T (X) · ϕ+ ηX · ω · ϕ = 0 , (8)

where T stand for a symmetric endomorphism of the tangent bundle of M , and
η ∈ R ∪ iR.

In view of the preceding section and for reasons which will become clearer later,
we will call this equation the restricted Killing spinor equation . The following
proposition shows the role of solutions of the restricted Killing spinor equation
in the theory of surfaces in R3, S3 and H3. In fact, we see that the integrability
conditions for such sections of the spinor bundle are exactly the Gauß and Codazzi-
Mainardi equations.

In the following, (e1, e2) denotes a positively oriented local orthonormal basis of
Γ(TM).

Proposition 3.1 Assume that (M2, g) admits a non trivial solution of Equation
(7) and let S = 2T , then

(∇XS)(Y ) = (∇Y S)(X) (Codazzi-Mainardi Equation),

and
R1212 − det(S) = 4η2 (Gauß Equation),

where R1212 = g(R(e1, e2) e2, e1), and R is the Riemann tensor of M .

Proof . — Let ϕ a non-trivial solution of (7). We compute the action of the
spinorial curvature tensor R on ϕ defined for all X,Y ∈ TM by

R(X,Y )ϕ = ∇X∇Y ϕ−∇Y∇Xϕ−∇[X,Y ]ϕ .

Since it is skew-symmetric and dimM = 2, with the help of formula (8), we only
compute

∇e1∇e2ϕ = ∇e1(−T (e2) · ϕ− ηe2 · ω · ϕ)
= ∇e1(−T (e2) · ϕ− ηe1 · ϕ)
= −∇e1T (e2) · ϕ− T (e2) · ∇e1ϕ− η∇e1e1 · ϕ− ηe1 · ∇e1ϕ
= −∇e1T (e2) · ϕ+ T (e2) · T (e1) · ϕ− ηT (e2) · e2 · ϕ

−η∇e1e1 · ϕ+ ηe1 · T (e1) · ϕ− η2e1 · e2 · ϕ

as well as

∇e2∇e1ϕ = −∇e2T (e1) · ϕ+ T (e1) · T (e2) · ϕ+ ηT (e1) · e1 · ϕ
+η∇e2e2 · ϕ− ηe2 · T (e2) · ϕ+ η2e1 · e2 · ϕ .
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So, taking into account that [e1, e2] = ∇e1e2 −∇e2e1, a straightforward computa-
tion gives

R(e1, e2)ϕ =
(
(∇e2T )(e1)− (∇e1T )(e2)

)
· ϕ

−
(
T (e1) · T (e2)− T (e2) · T (e1)

)
· ϕ

−2η2e1 · e2 · ϕ (9)

On the other hand, it is well known that this spinorial curvature tensor corresponds
to the Riemann tensor R of M via the relation

R(e1, e2)ϕ = −1
2
R1212e1 · e2 · ϕ . (10)

Now, it is easy to see that

T (e1) · T (e2)− T (e2) · T (e1) = 2 det(T )e1 · e2

and therefore, if we put S = 2T and define the function

G := R1212 − det(S)− 4η2

and the vector field
C := (∇e1S)(e2)− (∇e2S)(e1),

Equations (9) and (10) yield

C · ϕ = Ge1 · e2 · ϕ .

Note that e1 · e2 · ϕ = −i ϕ, hence

C · ϕ± = ±iGϕ∓ .

Applying two times this relation, it suffices to note that

||C||2ϕ± = −G2ϕ± ,

and so C = 0 and G = 0.

Note that up to rescaling, we can take η = 0, 1/2, or i/2. The case η = 0 is treated
in [6] and is the starting point of the proof of Theorem 1.1. We will discuss the
cases η = 1/2 and η = i/2 separately. We begin by

Lemma 3.2 Let ϕ be a non trivial solution of the restricted Killing spinor equation
(7). Then

• if η = 1/2, ϕ has constant norm and the symmetric endomorphism T , viewed
as a covariant symmetric 2-tensor, is given by

T (X,Y ) =
1
2
<(X · ∇Y ϕ+ Y · ∇Xϕ,ϕ/|ϕ|2)
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• if η = i/2, ϕ satisfies X|ϕ|2 = −<(X · ϕ,ϕ) and one has

T (X,Y )|ϕ|2 =
1
2
<(X · ∇Y ϕ+ Y · ∇Xϕ,ϕ) +

1
2

(
|ϕ−|2 − |ϕ+|2

)
g(X,Y )

Proof . — The first claim of each case is proved in Proposition 2.2. Let Tjk =
g(T (ej), ek), then, for j = 1, 2,

∇ej
ϕ = −

2∑
k=1

Tjkek · ϕ+ iηej · ϕ .

Taking Clifford multiplication by el and the scalar product with ϕ, we get

<(el · ∇ejϕ,ϕ) = −
2∑
k=1

Tjk<(el · ek · ϕ,ϕ) + <(iηel · ej · ϕ,ϕ) .

Since <(el · ek · ϕ,ϕ) = −δlk|ϕ|2, it follows, by symmetry of T

<(el · ∇ej
ϕ+ ej · ∇el

ϕ,ϕ) = 2Tlj |ϕ|2 − 2<(iηϕ, ϕ)δlj .

This completes the proof by taking η = 1/2 or η = i/2.

Now, we prove that the necessary conditions on a spinor field ψ ∈ Γ(ΣM) obtained
in the previous section (i.e. Proposition 2.2 and Equation (6)) are enough to prove
that ψ is a solution of the restricted Killing spinor equation.

The case η = 1/2: Consider a non-trivial spinor field ψ of constant length,
which satisfies Dψ± = (H ± i)ψ∓. Define the following 2-tensors on (M2, g)

T±(X,Y ) = <(∇Xψ±, Y · ψ∓) .

First note that

trT± = −<(Dψ±, ψ∓) = −<((H ± i)ψ∓, ψ∓) = −H|ψ∓|2 . (11)

We have the following relations

T±(e1, e2) = <(∇e1ψ±, e2 · ψ∓) = <(e1 · ∇e1ψ±, e1 · e2 · ψ∓)
= <(Dψ±, e1 · e2 · ψ∓)−<(e2 · ∇e2ψ±, e1 · e2 · ψ∓)
= <((H ± i)ψ∓, e1 · e2 · ψ∓) + <(∇e2ψ±, e1 · ψ∓)
= |ψ∓|2 + T±(e2, e1) . (12)

Lemma 3.3 The 2-tensors T± are related by the equation

|ψ+|2T+ = |ψ−|2T−
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Proof . — This relation is trivial at any point p ∈ M where |ψ+|2 or |ψ−|2 van-
ishes. Therefore we can assume in the following that both spinors ψ+ and ψ− are
not zero in the neighbourhood of a point in M .

With respect to the scalar product <( , ), the spinors

e1 ·
ψ−

|ψ−|
and e2 ·

ψ−

|ψ−|

form a local orthonormal basis of Γ(Σ+M). Hence, in this basis, we can write

∇Xψ+ = <(∇Xψ+, e1 ·
ψ−

|ψ−|
) e1 ·

ψ−

|ψ−|
+ <(∇Xψ+, e2 ·

ψ−

|ψ−|
) e2 ·

ψ−

|ψ−|

=
T+(X)
|ψ−|2

· ψ−

where the vector field T+(X) is defined by

g(T+(X), Y ) = T+(X,Y ) , ∀Y ∈ TM .

In the same manner, we can show that

∇Xψ− =
T−(X)
|ψ+|2

· ψ+ .

Since ψ has constant length, for all vector X tangent to M , we have

0 = X|ψ|2 = X(|ψ+|2 + |ψ−|2)
= 2<(∇Xψ+, ψ+) + 2<(∇Xψ−, ψ−)
= 2<(W (X) · ψ−, ψ+) (13)

with

W (X) =
T+(X)
|ψ−|2

− T−(X)
|ψ+|2

.

To conclude, it suffices to note that Equations (11) and (12) imply W is traceless
and symmetric, and that Equation (13) implies that W has rank less or equal to
1. This obviously implies W = 0.

Proposition 3.4 Assume that there exists on (M2, g) a non-trivial solution ψ of
the equation Dψ = Hψ − iψ with constant length. Then such a solution satisfies
the restricted Killing spinor equation with η = 1/2.

Proof . — Let F := T+ + T−. Lemma 3.3 and the begining of its proof imply

F

|ψ|2
=

T+

|ψ−|2
=

T−

|ψ+|2
.
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Hence F/|ψ|2 is well defined on the whole surface M , and

∇Xψ = ∇Xψ+ +∇Xψ− =
F (X)
|ψ|2

· ψ (14)

where the vector field F (X) is defined by g(F (X), Y ) = F (X,Y ), ∀Y ∈ TM. Note
that by Equation (12), the 2-tensor F is not symmetric. Define now the symmetric
2-tensor

T (X,Y ) = − 1
2|ψ|2

(F (X,Y ) + F (Y,X)) .

Observe that T is defined as in Lemma 3.2. It is straigthforward to show that

T (e1, e1) = −F (e1, e1)/|ψ|2 , T (e2, e2) = −F (e2, e2)/|ψ|2 ,

T (e1, e2) = −F (e1, e2)/|ψ|2 +
1
2

and T (e2, e1) = −F (e2, e1)/|ψ|2 −
1
2

once more by Equation (12). Taking into account these last relations in Equation
(14), we conclude

∇Xψ = −T (X) · ψ − 1
2
X · ω · ψ .

The case η = i/2:

Proposition 3.5 Assume that there exists on (M2, g) a nowhere vanishing solu-
tion ψ of the equation Dψ = Hψ + ψ. Then, if this solution satisfies

X|ψ|2 = −<(X · ψ,ψ) , ∀X ∈ Γ(TM),

then it is solution of the restricted Killing spinor equation with η = i/2.

Proof . — Defining the 2-tensors T± as in the previous case, we get

trT± = −(H ∓ 1)|ψ∓|2 , (15)

and
T±(e1, e2) = T±(e2, e1) . (16)

First note that

−<(X · ψ,ψ) = −<(X · ψ+, ψ−) + <(X · ψ−, ψ+) = 2<(X · ψ−, ψ+) .

Therefore, following the proof of Lemma 3.3, we get

<(X · ψ−, ψ+) = <(W (X) · ψ−, ψ+) (17)

with

W (X) =
T+(X)
|ψ−|2

− T−(X)
|ψ+|2

.
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As in the previous case, Equations (15), (16) and (17) imply that W − IdTM is a
symmetric, traceless endomorphism of rank not greater than 1, hence W = IdTM
and we have the relation

|ψ+|2T+ − |ψ−|2T− = |ψ+|2|ψ−|2g .

Therefore, if we define the symmetric 2-tensor F = T+ +T− + 1
2 (|ψ+|2− |ψ−|2)g,

we have on the whole surface M

F

|ψ|2
=
T+ + T− + (|ψ+|2 − |ψ−|2)g

|ψ+|2 + |ψ−|2
=

T−

|ψ+|2
+

1
2
g =

T+

|ψ−|2
− 1

2
g .

On the other hand, we get

∇Xψ = ∇Xψ+ +∇Xψ− =
T+(X)
|ψ−|2

· ψ− +
T−(X)
|ψ+|2

· ψ+ .

These two last equations imply

∇Xψ =
F (X)
|ψ|2

· (ψ+ + ψ−) +
1
2
X · ψ− − 1

2
X · ψ+ ,

which is equivalent to

∇Xψ = −T (X) · ψ − 1
2
X · ψ .

Naturally, we put T = − F
|ψ|2 and note that T is defined as in Lemma 3.2.

4. Surfaces in S3 or H3

We are now able to generalize Theorem 1.1 to surfaces in S3 or H3. In section
2, we saw that an oriented, immersed surface M2 ↪→ S3 (resp. H3) inherits an
induced metric g, a spin structure, and a solution ϕ of

Dϕ = Hϕ− iϕ (resp. Dϕ = Hϕ+ ϕ ) (18)

with constant length (resp. with X|ϕ|2 = −<(X ·ϕ,ϕ) for all vector X tangent to
M). This spinor field ϕ on M2 is the restriction of a real (resp. imaginary) Killing
spinor field in S3 (resp. H3). Section 3 shows that at least locally the converse
is true. Assume that there exists a solution of Equation (18) on an oriented, 2-
dimensional Riemannian manifold (M2, g) endowed with a spin structure, for a
given function H : M → R. Then this solution satisfies the restricted Killing
spinor equation with a well defined endomorphism T : TM → TM with trT = H.
Moreover, there exists an isometric immersion (M2, g) ↪→ S3 (resp. H3) with
second fundamental form S = 2T .

Theorem 4.1 Let (M2, g) be an oriented, 2-dimensional manifold and H : M →
R a smooth function. Then the following data are equivalent:
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1. An isometric immersion (M̃2, g) → S3 of the universal covering M̃2 into the
3-dimensional round sphere S3 with mean curvature H.

2. A solution ϕ of the Dirac equation

Dϕ = Hϕ− iϕ

with constant length.

3. A pair (ϕ, T ) consisting of a symmetric endomorphism T such that tr(T ) = H
and a spinor field ϕ satisfying the equation

∇Xϕ+ T (X) · ϕ− i

2
X · ϕ = 0 .

Theorem 4.2 Let (M2, g) be an oriented, 2-dimensional manifold and H : M →
R a smooth function. Then the following data are equivalent:

1. An isometric immersion (M̃2, g) → H3 of the universal covering M̃2 into the
3-dimensional hyperbolic space H3 with mean curvature H.

2. A nowhere vanishing solution ϕ of the Dirac equation

Dϕ = Hϕ+ ϕ

satisfying
X|ϕ|2 = −<(X · ϕ,ϕ) ∀X ∈ Γ(TM).

3. A pair (ϕ, T ) consisting of a symmetric endomorphism T such that tr(T ) = H
and a spinor field ϕ satisfying the equation

∇Xϕ+ T (X) · ϕ+
1
2
X · ϕ = 0 ∀X ∈ Γ(TM).

Remark 4.3 It has been pointed out to us that the case of surfaces in S3 has
already been treated by Leonard Voss (Diplomarbeit, Humboldt-Universität zu
Berlin, unpublished).

5. Hypersurfaces in R4

We conclude by giving a characterization of hypersurfaces in the Euclidean 4-space
in terms of a special section of the intrinsic spinor bundle of the hypersurface, in
a very similar way to that of Theorem 1.1.

LetM3 be an oriented hypersurface isometrically immersed into R4, denote by ν its
unit normal vector field. Then M3 is endowed with a spin structure, canonically
induced by that of R4. Denote by ΣM the corresponding spinor bundle and
Σ+R4 the bundle of positive spinors in R4. We then have the anologous result of
Proposition 2.1:
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Proposition 5.1 There exists an identification of Σ+R4 with ΣM , which after
restriction to M , sends every spinor field ψ ∈ Γ(Σ+R4) to the spinor field denoted
by ψ∗ ∈ Γ(ΣM). Moreover, if ·

R4
(resp. ·) stands for Clifford multiplication on

Σ+R4 (resp. ΣM), then one has

(X ·
R4
ν ·

R4
ψ)∗ = X · ψ∗ , (19)

for any vector field X tangent to M .

Recall the following definition

Definition 5.2 A symmetric 2-tensor T ∈ S2(M) is called a Codazzi tensor if it
satisfies the Codazzi-Mainardi equation, i.e.

(∇XT )(Y ) = (∇Y T )(X) ∀X,Y ∈ Γ(TM) ,

(T being viewed in this formula via the metric g as a symmetric endomorphism of
the tangent bundle).

We now prove the following

Theorem 5.3 Let (M3, g) be an oriented, 3-dimensional Riemannian manifold.
Then the following data are equivalent:

1. An isometric immersion (M̃3, g) → R4 of the universal covering M̃3 into the
Euclidean space R4 with second fundamental form h.

2. A pair (ϕ, T ) consisting of a Codazzi tensor T such that 2T = h and a non
trivial spinor field ϕ satisfying, for any X ∈ Γ(TM), the equation

∇Xϕ+ T (X) · ϕ = 0 .

Proof . — Let (M3, g) be an oriented hypersurface isometrically immersed into
R4 with second fundamental form h. Let ψ be any parallel positive spinor field on
R4. Denote by ϕ := ψ∗ ∈ Γ(ΣM) the restriction of ψ given by Proposition 5.1.
Then Gauß formula (3) yields

∇Xϕ+
1
2
h(X) · ϕ = 0 .

Since h is a second fundamental form, it is clear that T = 1
2h is a Codazzi tensor

and that (ϕ, T ) give the desired pair.

Conversely, if (M3, g) is an oriented, 3-dimensional Riemannian manifold ad-
mitting such a pair (ϕ, T ), then obviously Codazzi-Mainardi equation holds for
h = 2T .
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Therefore, the action of the spinorial curvature tensor on the spinor ϕ is given by

R(X,Y )ϕ =
(
T (Y ) · T (X)− T (X) · T (Y )

)
· ϕ (20)

Let (e1, e2, e3) be a positively oriented local orthonormal basis of Γ(TM). Then
Equation (20) yields∑

k 6=l

(
Rijkl + 4TilTjk − 4TikTjl

)
ek · el · ϕ = 0

which imply in dimension 3 that each componant

Rijkl + 4TilTjk − 4TikTjl

is zero, since for 1 ≤ k < l ≤ 3 and 1 ≤ k′ < l′ ≤ 3,

<(ek · el · ϕ, ek′ · el′ · ϕ) = ±δkk′δll′ |ϕ|2 .

Therefore h = 2T satisfies the Gauß equation.

Remark 5.4 Let (ϕ, T ) be a pair as in Theorem 5.3 (2). Then necessarily the
Codazzi tensor T has to be defined as the energy-momentum tensor associated
with the spinor field ϕ (see for example [7], [8] or [13]). Such a special spinor field
is then called a Codazzi Energy-Momentum spinor, and generalizes the notion of
Killing spinors (see [1], [3], [13]).
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