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Abstract. The alternating direction method of multipliers (ADMM) is a benchmark for solving a linearly
constrained convex minimization model with a two-block separable objective function; and it has been shown
that its direct extension to a multiple-block case where the objective function is the sum of more than two
functions is not necessarily convergent. For the multiple-block case, a natural idea is to artificially group
the objective functions and the corresponding variables as two groups and then apply the original ADMM
directly —- the block-wise ADMM is accordingly named because each of the resulting ADMM subproblems
may involve more than one function in its objective. Such a subproblem of the block-wise ADMM may not
be easy as it may require minimizing more than one function with coupled variables simultaneously. We
discuss how to further decompose the block-wise ADMM’s subproblems and obtain easier subproblems so
that the properties of each function in the objective can be individually and thus effectively used, while the
convergence can still be ensured. The generalized ADMM and the strictly contractive Peaceman-Rachford
splitting method, two schemes closely relevant to the ADMM, will also be extended to the block-wise versions
to tackle the multiple-block convex programming cases. We present the convergence analysis, including both
the global convergence and the worst-case convergence rate measured by the iteration complexity, for these
three block-wise splitting schemes in a unified framework.

Math. classification. 90C25, 90C06, 65K05.
Keywords. Convex programming, Operator splitting methods, Alternating direction method of multipli-
ers, proximal point algorithm, Douglas-Rachford splitting method, Peaceman-Rachford splitting method,
Convergence rate, Iteration complexity.

1. Introduction

We consider a separable convex minimization problem with linear constraints and its objective function
is the sum of more than one function without coupled variables:

min
{ m∑
i=1

θi(xi)
∣∣ m∑
i=1

Aixi = b, xi ∈ Xi, i = 1, · · · ,m
}
, (1.1)

where θi : Rni → R (i = 1, · · · ,m) are convex (not necessarily smooth) closed functions; Ai ∈ Rl×ni ,
b ∈ Rl, and Xi ⊆ Rni (i = 1, · · · ,m) are convex sets. The solution set of (1.1) is assumed to be
nonempty throughout our discussions in this paper. We also assume that matrices ATi Ai for (i =
1, . . . ,m) are all nonsingular.
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Xiaoming Yuan was supported by a General Research Fund from Hong Kong Research Grants Council.

145

mailto:hebma@nju.edu.cn
mailto:xmyuan@hkbu.edu.hk


B. S. He & X. M. Yuan

Let the augmented Lagrangian function of (1.1) be

Lmβ (x1, x2, · · · , xm, λ) =
m∑
i=1

θi(xi)− λT
( m∑
i=1

Aixi − b
)

+ β

2 ‖
m∑
i=1

Aixi − b‖2, (1.2)

with λ ∈ Rl the Lagrange multiplier and β > 0 a penalty parameter. For the special case of (1.1) with
m = 2, the alternating direction method of multipliers (ADMM) in [14] reads as

xk+1
1 = arg min

{
L2
β(x1, x

k
2, λ

k)
∣∣ x1 ∈ X1

}
,

xk+1
2 = arg min

{
L2
β(xk+1

1 , x2, λ
k)
∣∣ x2 ∈ X2

}
,

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 − b).

(1.3)

Recently, the ADMM has found many efficient applications for a broad spectrum of applications in
various fields such as machine learning, statistical learning, computer vision, wireless network, and so
on. We refer the reader to [1, 7, 12] for some recent review papers on the ADMM. For the multiple-block
case of (1.1) with m ≥ 3, the direct extension of ADMM reads as

xk+1
1 = arg min

{
Lmβ (x1, x

k
2, · · · , xkm, λk)

∣∣ x1 ∈ X1
}
,

· · · · · ·
xk+1
i = arg min

{
Lmβ (xk+1

1 , · · · , xk+1
i−1 , xi, x

k
i+1, · · · , xkm, λk)

∣∣ xi ∈ Xi
}
,

· · · · · ·
xk+1
m = arg min

{
Lmβ (xk+1

1 , · · · , xk+1
m−1, xm, λ

k)
∣∣ xm ∈ Xm

}
,

λk+1 = λk − β(
∑m
i=1Aix

k+1
i − b).

(1.4)

The direct extension of ADMM scheme (1.4) indeed works empirically for some applications, as shown
in, e.g. [32, 34]. However, it was shown in [3] that the scheme (1.4) is not necessarily convergent. In
the literature, some surrogates of (1.4) have been well studied. For example, the schemes in [22, 21]
suggest correcting the output of (1.4) appropriately to ensure the convergence; the scheme in [23]
slightly changes the order of updating the Lagrange multiplier and twists some of the subproblems
appropriately; the scheme in [26] suggests attaching a shrinking factor to the Lagrange multiplier
updating step in (1.4).

Given the wide applicability of ADMM (1.3) for a two-block convex minimization model and the
convergence difficulty of the direct extension of ADMM (1.4) for a multiple-block counterpart, in this
paper we mainly answer the question of how to use the original ADMM scheme (1.3) directly for
the multiple-block model (1.1) and to design an implementable algorithm with provable convergence
which can individually take advantage of the properties of the functions in the objective of (1.1). Let
us first elaborate on the difficulty by applying the original ADMM (1.3) to the model (1.1) withm ≥ 3.
Conceptually, we can group the m functions in the objective of (1.1) and accordingly all the variables
as two groups; to which the original ADMM scheme (1.3) becomes applicable in a block-wise form.
That is, we can rewrite the model (1.1) as

min


m1∑
i=1

θi(xi) +
m2∑
j=1

φj(yj)
∣∣∣ m1∑
i=1

Aixi +
m2∑
j=1

Bjyj = b, xi ∈ Xi, yj ∈ Yj

 , (1.5)

where m1 ≥ 1, m2 ≥ 1 and m = m1 +m2. Note that for the second group, we relabel (θi, xi, Ai, Xi)
for i = m1 + 1, · · · ,m in (1.1) as (φj , yj , Bj , Yj) with j = 1, 2, · · · ,m2 in (1.5), respectively. This
relabeling will significantly simplify our natation of presentation in the coming analysis and help us
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expose our idea more clearly. Furthermore, with the notation

x =

 x1
...

xm1

 , y =

 y1
...

ym2

 , A = (A1, . . . , Am1), B = (B1, . . . , Bm2), (1.6)

and

ϑ(x) =
m1∑
i=1

θi(xi), ϕ(y) =
m2∑
j=1

φj(yj), X =
m1∏
i=1

Xi, Y =
m2∏
j=1

Yj , (1.7)

The reformulation (1.5) of the model (1.1) can be written as the block-wise form

min
{
ϑ(x) + ϕ(y)

∣∣Ax + By = b, x ∈ X ,y ∈ Y
}
. (1.8)

The Lagrange function of (1.8) is

L2(x,y, λ) = ϑ(x) + ϕ(y)− λT (Ax + By − b), (1.9)

which defined on
Ω = X × Y × Rl = X1 × · · · ×Xm1 × Y1 × · · · × Ym2 × Rl. (1.10)

The augmented Lagrangian function can be denoted by

L2
β(x,y, λ) = L2(x,y, λ) + β

2 ‖Ax + By − b‖2

=
m1∑
i=1

θi(xi) +
m2∑
j=1

φj(xj)− λT
(m1∑
i=1

Aixi+
m2∑
j=1

Bjyj − b
)

+ β

2

∥∥∥ m1∑
i=1

Aixi+
m2∑
j=1

Bjyj − b
∥∥∥2
. (1.11)

Then, conceptually, the original ADMM (1.3) is implementable to the block-wise reformulation (1.8)
of the model (1.1). The resulting scheme, called a block-wise ADMM hereafter, reads as

xk+1 = arg min
{
L2
β(x,yk, λk)

∣∣ x ∈ X
}
,

yk+1 = arg min
{
L2
β(xk+1,y, λk)

∣∣ y ∈ Y
}
,

λk+1 = λk − β(Axk+1 + Byk+1 − b).

(1.12)

For a generic case of (1.1) withm ≥ 3, however, solving the x- and y-subproblems in (1.12) is usually
hard or even not feasible for many concrete applications of the abstract model (1.1). This is mainly due
that such a subproblem is in a block-wise form and it may require minimizing more than one functions
with variables coupled by the quadratic term in (1.11). Recall that for the ADMM (1.3) and its variants,
all the functions in the objective of (1.1) are treated individually in their decomposed subproblems and
thus these functions’ properties can be effectively exploited in the algorithmic implementation. One
representative case arising often in sparse and/or low-rank optimization models is that when a function
θi is simple in the sense that its proximal operator can be evaluated explicitly, then the corresponding
subproblem or its linearized version is easy enough to have a closed-form solution —- meaning the
corresponding subproblem is completely exempted from any inner iteration. This feature is indeed the
main reason to account for the efficient applications of ADMM-related schemes in a broad spectrum
of applications. Therefore, although the scheme (1.12) represents a direct application of the original
ADMM to the block-wise reformulation (1.8) and it makes theoretical senses, it is necessary to discuss
how to solve its x- and y-subproblems efficiently. With the just-mentioned desire of taking advantage
of the properties of θi’s individually, we can consider further decomposing the x- and y-subproblems
in (1.12) into m1 and m2 smaller subproblems (implementing decomposition to the quadratic term
in (1.11) which couples the variables), respectively; so that each of them only has to deal with one
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θi(xi) in its objective. That is, for solving the multiple-block model (1.1) with m ≥ 3, we can consider
the following splitting version of the block-wise ADMM (1.12):

xk+1
1 = arg min

{
L2
β(x1, x

k
2, · · · , xkm1 ,y

k, λk)
∣∣ x1 ∈ X1

}
,

...
xk+1
i = arg min

{
L2
β(xk1, , xk2, · · · , xki−1, xi, x

k
i+1, · · · , xkm1 ,y

k, λk)
∣∣xi ∈ Xi

}
,

...
xk+1
m1 = arg min

{
L2
β(xk1, xk2, · · · , xkm1−1, xm1 ,y

k, λk)
∣∣ xm1 ∈ Xm1

}
,

yk+1
1 = arg min

{
L2
β(xk+1, y1, y

k
2 , · · · , ykm2 , λ

k)
∣∣ y1 ∈ Y1

}
,

...
yk+1
j = arg min

{
L2
β(xk+1, yk1 , y

k
2 , · · · , ykj−1, yj , y

k
j+1, · · · , ykm2 , λ

k)
∣∣ yj ∈ Yj},

...
yk+1
m2 = arg min

{
L2
β(xk+1, yk1 , y

k
2 , · · · , xkm2−1, ym2 , λ

k)
∣∣ ym2 ∈ Ym2

}
,

λk+1 = λk − β(Axk+1 +Byk+1 − b).

(1.13)

Note that in (1.13), internally we consider the parallel (i.e., Jacobian) decomposition for the x- and
y-subproblems arising in (1.12). See Remark 3.5 for the discussion where the alternating (i.e., Gauss-
Seidel) decomposition is implemented to these subproblems internally. With this consideration of
parallel decomposition, it is possible to solve the smaller subproblems respectively decomposed by the
x- and y-subproblems simultaneously on parallel computation infrastructures, which is particularly
of interest for the scenarios where large-dimension data is considered and distributed computation is
requested. Thus, the scheme (1.13) is a mixture of alternating decomposition outside (i.e, the block-
wise variables x and y are updated alternatingly) and parallel decomposition inside (i.e., the individual
variables in both the x- and y-subproblems are updated in parallel). It is clear that the scheme (1.13)
enjoys the same good feature as the ADMM-related schemes, because each of its subproblems could
be very easy if the functions θi’s are easy enough (e.g., their proximal operators can be evaluated
explicitly). Despite of this nice feature, the scheme (1.13), however, is not necessarily convergent —
see a counter example in the appendix.

In fact, the divergence of (1.13) can be intuitively understood: The decomposed (x1, x2, · · · , xm1)-
subproblems (Resp., (y1, y2, · · · , ym2)-subproblems) in (1.13) represent a more implementable but
inexact version of the block-wise x-subproblem (Resp., y-subproblem) in (1.12). This approxima-
tion, however, is not accurate enough because the block-wise x-subproblem (Resp., y-subproblem)
in (1.12) is decomposed bym1 (Resp.,m2) times in (1.13). Therefore, the convergence of the block-wise
ADMM (1.12), which is indeed guaranteed under the condition that both of its block-wise subproblems
must be solved exactly or inexactly but with certain requirement on the inexactness (see e.g. [18, 30]),
does not necessarily hold for its splitting version (1.13). The counter example in the appendix is indeed
a case of the model (1.1) with m = 3. Thus, we have m1 = 1 and m2 = 2 when implementing the
splitting version (1.13), meaning that the xi-subproblem in (1.13) is the same as that in (1.12) while
only the y-subproblem in (1.12) is approximated by two further decomposed subproblems in (1.13).
For this case with the least extent of approximation, the scheme (1.13) is already shown not to be
necessarily convergent by this counter example. This fact clearly shows the failure of convergence
of (1.13) for a generic case where both m1 ≥ 2 and m2 ≥ 2. How to derive a convergence-guaranteed
algorithm based on the scheme (1.13) is thus the emphasis of this paper.

We will present an algorithm based on the scheme (1.13) in Section 3, preceding by some preliminar-
ies summarized in Section 2 for further analysis. Then, in Section 4, we prove the convergence for the
new scheme and establish its worst-case convergence rate measured by the iteration complexity in both
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the ergodic and a nonergodic senses. In Sections 5 and 6, we apply similar analysis to the generalized
ADMM in [6] and the strictly contractive Peaceman-Rachford splitting method in [20], respectively,
and obtain their block-wise versions which are suitable for the model (1.1). The convergence analysis,
including the convergence rate analysis, for these three block-wise splitting methods can be presented
in a unified framework. Finally, we make some conclusions in Section 7.

2. Preliminaries

In this section, we summarize some known results in the literature for further analysis.

2.1. A variational inequality characterization

We denote by x∗ = (x∗1, . . . , x∗m1) and y∗ = (y∗1, . . . , y∗m2). Let (x∗,y∗, λ∗) be a saddle point of the
Lagrange function (1.9). Then, for any λ ∈ Rl,x ∈ X ,y ∈ Y, we have

L2(x∗,y∗, λ) ≤ L2(x∗,y∗, λ∗) ≤ L2(x,y, λ∗).

Indeed, finding a saddle point of L2(x,y, λ) can be expressed as the following variational inequalities:(
x∗1, . . . , x

∗
m1 , y

∗
1, . . . , y

∗
m2 , λ

∗) ∈ Ω where Ω is defined in (1.10), such that

x∗1 ∈ X1, θ1(x1)− θ1(x∗1) + (x1 − x∗1)T (−AT1 λ∗) ≥ 0, ∀x1 ∈ X1,
...

x∗m1 ∈ Xm1 , θm1(xm1)− θm1(x∗m1) + (xm1 − x∗m1)T (−ATm1λ
∗) ≥ 0, ∀xm ∈ Xm,

y∗1 ∈ Y1, φ1(y1)− φ1(y∗1) + (y1 − y∗1)T (−BT
1 λ
∗) ≥ 0, ∀y1 ∈ Y1,

...
y∗m2 ∈ Ym2 , φm2(ym2)− φm2(y∗m2) + (ym2 − y∗m2)T (−BT

m2λ
∗) ≥ 0, ∀ym2 ∈ Ym2 ,

λ∗ ∈ Rl, (λ− λ∗)T (
∑m1
i=1Aix

∗
i +

∑m2
j=1Bjy

∗
j − b) ≥ 0, ∀λ ∈ Rl.

(2.1)

More compactly, the variational inequalities in (2.1) can be rewritten in a compact form

VI(Ω, F, θ) w∗ ∈ Ω, f(u)− f(u∗) + (w −w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (2.2a)

with the definitions:

f(u) =
m1∑
i=1

θi(xi) +
m2∑
j=1

φj(yj), (2.2b)

u =



x1
...

xm1
y1
...

ym2


, w =



x1
...

xm1
y1
...

ym2
λ


, F (w) =



−AT1 λ
...

−ATm1λ
−BT

1 λ
...

−BT
m2λ∑m1

i=1Aixi +
∑m2
j=1Bjyj − b


(2.2c)

and Ω is given in (1.10) (also can be expressed as Ω = X × Y × Rl). We also denote by Ω∗ the set of
all saddle points of L2

β(x,y, λ).
Recall the notation defined in (1.6)-(1.7). For the variational inequality (2.2). we further have

f(u) = ϑ(x) + ϕ(y), (2.3a)
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where

u =
(

x
y

)
, w =

 x
y
λ

 , F (w) =

 −ATλ
−BTλ

Ax + By − b

 (2.3b)

This variational inequality indeed characterizes the first-order optimality condition of the block-wise
reformulation (1.5) of the model (1.1). We need this variational inequality characterization for the
upcoming theoretical analysis.

2.2. Some properties of the matrices A and B

For the matrices A and B defined in (1.6), we have some properties which are useful for our analysis.
We summarize them in the following lemma; its proof is omitted as it is trivial.
Lemma 2.1. For the matrices defined A and B defined in (1.6), we have the following conclusions:

m1 · diag(ATA) � ATA and m2 · diag(BTB) � BTB, (2.4)
where diag(ATA) and diag(BTB) are defined by

diag(ATA) :=


AT1A1 0 · · · 0

0 . . . . . . ...
... . . . . . . 0
0 · · · 0 ATm1Am1

 and diag(BTB) :=


BT

1B1 0 · · · 0

0 . . . . . . ...
... . . . . . . 0
0 · · · 0 BT

m2Bm2

 ,
respectively.
Lemma 2.2. Let τi > mi − 1 for i = 1, 2. Then we have

DA := (τ1 + 1)βdiag(ATA)− βATA � 0 (2.5)
and

DB := (τ2 + 1)βdiag(BTB)− βBTB � 0, (2.6)
where diag(ATA) and diag(BTB) are defined in Lemma 2.1.
Proof. We need only to show (2.5). It follows from (2.4) that

DA = (τ1 + 1)βdiag(ATA)− βATA � β(τ1 + 1−m1)diag(ATA).
The positive definiteness of DA follows from (τ1 + 1−m1) > 0 and diag(ATA) � 0 directly. �

3. A splitting version of the block-wise ADMM (1.12) for (1.1)

In this section, we present a splitting version of the block-wise ADMM (1.12) for the model (1.1) and
give some remarks.

Algorithm 1: A splitting version of the block-wise ADMM for (1.1)
Initialization: Specify a grouping strategy for (1.1) and determine the integers m1 and m2.
Choose the constants τ1 > m1−1; τ2 > m2−1 and β > 0. For a given iterate wk = (xk,yk, λk) =
(xk1, . . . , xkm1 , y

k
1 , . . . , y

k
m2 , λ

k), the new iterate wk+1 is generated by the following steps.
xk+1
i = arg min

xi∈Xi

{
L2
β

(
xk1 , . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
m1
,yk, λk

)
+ τ1β

2 ‖Ai(xi − x
k
i )‖2

}
, i = 1, · · · ,m1,

yk+1
j = arg min

yj∈Yj

{
L2
β

(
xk+1, yk1 , . . . , y

k
j−1, yj , y

k
j+1, . . . , y

k
m2
, λk
)

+ τ2β
2 ‖Bj(yj − y

k
j )‖2

}
, j = 1, · · · ,m2,

λk+1 = λk − β
(
Axk+1 + Byk+1 − b

)
.

(3.1)
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Remark 3.1. As analyzed in the introduction, the scheme (1.13) is not necessarily convergent be-
cause the decomposed subproblems therein might not be accurate enough to approximate the x- and
y-subproblems in the block-wise ADMM (1.12). Compared to (1.13), the splitting version (3.1) prox-
imally regularizes the decomposed subproblems in (1.13) but the proximally regularized subproblems
are of the same difficulty as their original ones in (1.13). In fact, these added proximal terms play
the role of controlling the proximity of the solutions of the decomposed subproblems to the solutions
of the block-wise subproblems in (1.12), and the extent of this control is determined by the proximal
coefficients τ1 and τ2. This is the intrinsic mechanism why the convergence of the scheme (3.1) can be
sufficiently guaranteed by adding some proximal terms in its subproblems. The requirement τi > mi−1
for i = 1, 2 is the specific mathematical condition for how large the mentioned proximity should be
controlled to sufficiently lead to convergence. More specifically, we require this condition to guarantee
the positive definiteness of the matrix G defined in (4.13) and thus ensure the strict contraction for
the sequence generated by the scheme (3.1) with respect to the solution set.
Remark 3.2. Algebraically, the scheme (3.1) can be derived from the proximal version of the block-
wise ADMM (1.12) with appropriate choices of proximal terms, see, e.g., [18] for an abstract discussion
in the variational inequality context. But it should be mentioned that it is significantly different
from the so-called linearized ADMM in the literature (e.g., [8, 35, 36]), which aims at linearizing
the quadratic terms in ADMM’s subproblems with a sufficiently large proximal parameter (e.g., it
should be greater than β · ‖ATi Ai‖ if the xi-subproblem in (3.1) is considered) and thus alleviating
the linearized subproblems. In other words, the proximal parameters in current linearized ADMM
literature are dependent on the involved matrices of the corresponding quadratic terms and they may
need to be sufficiently large to ensure the convergence if the matrices happen to be ill-conditioned,
see, e.g., [16]. In (3.1), however, the proximal parameters τ1 and τ2 are just constants independent
of the matrices. Indeed, they just rely on the user-assigned numbers of blocks for regrouping the
model (1.1); and could be small. More importantly, the idea of using proximal terms to regularize the
subproblems in the block-wise ADMM (1.12) and obtaining (3.1) is just for decomposing each block-
wise ADMM subproblem into smaller and simpler ones when the block-wise reformulation (1.5) of (1.1)
is considered. We do can further discuss how to linearize the subproblems in (3.1) and obtain even
easier subproblems, as mentioned at the end in Section 7. But our emphasis is just the scheme (3.1)
and we do not discuss more elaborated versions of it.
Remark 3.3. Notice that if we use xk, instead of xk+1, for the yj-subproblems in (1.13), it leads
to a full Jacobian decomposition scheme of the application of the augmented Lagrangian method to
the model (1.1); and its divergence was shown in [17] even for the case of m = 2. For this case,
adding appropriate proximal terms to regularize the resulting subproblems can also guarantee the
convergence, see [17] for detailed analysis. The scheme (3.1) differs from the scheme in [17] in that
the block-wise variables x and y are updated alternatingly, i.e., it is xk+1, not xk for updating the
yj-subproblems in (3.1). This fact indeed represents a more accurate approximation to the augmented
Lagrangian method when it is applied to the model (1.1). This difference also brings us a significant
difference in the requirement on the proximal coefficients τ1 and τ2: The conditions τ1 > m1 − 1 and
τ2 > m2 − 1 in (3.1) are much less restrictive than that in [17] which is required to be greater than
m − 1. For example, if we consider a case of (1.1) with m = 20, then the scheme in [17] requires
the proximal coefficient to be greater than 19. Meanwhile, if we choose m1 = m2 = 10 to implement
the scheme (3.1), then τ1 and τ2 are only required to be greater than 9. This is a very important
difference because a larger proximal coefficient makes the proximal term play a more important role
in the objective function and thus the proximity is controlled in a more conservative way and it is
more likely to result in slower convergence.
Remark 3.4. Note that we only discuss grouping the variables and functions of (1.1) “blindly”
as (1.5). For a particular application of (1.1), based on some known information or features, we may
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group the functions and variables more smartly and even discuss an optimal grouping strategy; but
we would emphasize that how to group the variables and functions better for a particular application
really depends on the particular structures and features of a given application itself. In this paper,
we just provide the methodology and theoretical analysis to guarantee the convergence for the most
general setting in form of (1.5).

Remark 3.5. As mentioned, the splitting scheme (3.1) is obtained by implementing the parallel
(i.e., Jacobian) decomposition to the block-wise x- and y-subproblems in (1.13). If we consider the
alternating (i.e., Gauss-Seidel) decomposition for the same subproblems in (1.13), then it is easy to
see that the direct extension of ADMM (1.4) is recovered. Similar as what we will analyze, we can also
consider how to ensure the convergence for the scheme (1.4) by adding proximal regularization terms
to its subproblems. For succinctness, we omit the detail of analysis.

4. Convergence analysis

In this section, we analyze the convergence for the splitting version (3.1) of the block-wise
ADMM (1.12). We will prove the global convergence, and establish the worst-case convergence rate
measured by both the ergodic and a nonergodic senses. First of all, we rewrite the iterative scheme
of (3.1) as a form that is more favorable for our analysis.

4.1. A reformulation of (3.1)

In our analysis, we need the auxiliary variables

x̃k = xk+1, ỹk = yk+1 (4.1)

and
λ̃k = λk − β

(
Axk+1 + Byk − b

)
. (4.2)

Recall the notation w = (x,y, λ) = (x1, · · · , xm1 , y1, · · · , ym2 , λ) with superscripts k and k + 1; and
further define w̃ = (x̃, ỹ, λ̃) = (x̃1, · · · , x̃m1 , ỹ1, · · · , ỹm2 , λ̃) with superscripts. Then, we can artificially
rewrite the iterative scheme of (3.1) as the following prediction-correction framework.

Prediction.
x̃ki = arg min

xi∈Xi

{
L2
β

(
xk1 , . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
m1
,yk, λk

)
+ τ1β

2 ‖Ai(xi − x
k
i )‖2

}
, (4.3a)

ỹkj = arg min
yj∈Yj

{
L2
β

(
x̃k, yk1 , . . . , y

k
j−1, yj , y

k
j+1, . . . , y

k
m2
, λk
)

+ τ2β

2 ‖Bj(yj − y
k
j )‖2

}
, (4.3b)

λ̃k = λk − β
(
Ax̃k + Byk − b

)
. (4.3c)

Correction.
wk+1 = wk −M(wk − w̃k), (4.4a)

where

M =

 I 0 0
0 I 0
0 −βB I

 , (4.4b)

and w̃k is the related sub-vector of the predictor w̃k generated by (4.3).
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The iterative scheme (4.3)-(4.4) can also be understood as a prediction-correction method. We would
emphasize that it is the scheme (3.1) that will be implemented in practice; and the reformulation (4.3)-
(4.4) is considered in our analysis because of two reasons. First, our upcoming convergence analysis is
essentially based on the effort of showing that the sequence generated by (3.1) is strictly contractive
with respect to the solution set of (1.1) and it turns out that the progress of proximity to the solution
set at each iteration can be measured by the quantity ‖wk − w̃k‖2G where G is defined in (4.13), see
the inequality (4.20) in Theorem 4.4. Second, the analysis we will consider in Sections 5 and 6 for
two other methods can also be written as prediction-correction frameworks; and using this kind of
reformulations can make us present the analysis for these three methods in a unified framework.

4.2. Global convergence

Indeed, to prove the global convergence of the scheme (3.1), we mainly need to prove two conclusions.
We summarize them in the following two theorems respectively.

Theorem 4.1. Let w̃k be generated by (4.3) from the given vector wk. Then we have
w̃k ∈ Ω, f(u)− f(ũk) + (w − w̃k)TF (w̃k) ≥ (w − w̃k)TQ(wk − w̃k), ∀w ∈ Ω, (4.5)

where Q is defined by

Q =


(τ1 + 1)βdiag(ATA)− βATA 0 0

0 (τ2 + 1)βdiag(BTB) 0

0 −B 1
β I

 . (4.6)

Proof. First, the xi-subproblem in (4.3a) can be written as

x̃ki = arg min
xi∈Xi

{
L2
β

[
xk1, . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
m1 ,y

k, λk
]

+ τ1β

2 ‖Ai(xi − x
k
i )‖2

}
(1.11)= arg min

xi∈Xi

{
θi(xi)− (λk)TAixi + β

2 ‖Ai(xi − x
k
i ) + (Axk + Byk − b)‖2

+ τ1β
2 ‖Ai(xi − x

k
i )‖2,

}
,

in which some constant terms are ignored in its objective function. The first-order optimality condition
of the above convex minimization problem can be written as
x̃ki ∈ Xi, θi(xi)− θi(x̃ki ) + (xi − x̃ki )T

{
−ATi λk

+βATi
[
Ai(x̃ki − xki ) + (Axk + Byk − b)

]
+ τ1βA

T
i Ai(x̃ki − xki )

}
≥ 0, ∀xi ∈ Xi.

(4.7)

Then, it follows from (4.3c) that
λk = λ̃k + β

(
Ax̃k + Byk − b

)
.

Hence, based on (4.7), we have
x̃ki ∈ Xi, θi(xi)− θi(x̃ki ) + (xi − x̃ki )T

{
−ATi

(
λ̃k + β(Ax̃k + Byk − b)

)
+βATi

[
Ai(x̃ki − xki ) + (Axk + Byk − b)

]
+ τ1βA

T
i Ai(x̃ki − xki )

}
≥ 0, ∀xi ∈ Xi.

Consequently, we have
x̃ki ∈ Xi, θi(xi)− θi(x̃ki ) + (xi − x̃ki )T

{
−ATi λ̃k

+βATi
[
Ai(x̃ki − xki )−A(x̃k − xk)

]
+ τ1βA

T
i Ai(x̃ki − xki )

}
≥ 0, ∀xi ∈ Xi,

and it can be written as
x̃ki ∈ Xi, θi(xi)− θi(x̃ki ) + (xi − x̃ki )T

{
−ATi λ̃k

−βATi A(x̃k − xk) + (τ1 + 1)βATi Ai(x̃ki − xki )
}
≥ 0, ∀xi ∈ Xi.
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Taking i = 1, . . . ,m1 in the above variational inequality and summarizing them, we obtain that x̃k ∈ X
and

ϑ(x)−ϑ(x̃k)+(x−x̃k)T
{
−AT λ̃k−βATA(x̃k−xk)+(τ1+1)βdiag(ATA)(x̃k−xk)

}
≥ 0, ∀x ∈ X . (4.8)

Then, we deal with the yj-subproblems in (4.3b). Again, the yj-th subproblem can be written as

ỹkj = arg min
yj∈Yj

{
L2
β

(
x̃k, yk1 , . . . , y

k
j−1, yj , y

k
j+1, . . . , y

k
m2 , λ

k)+ τ2β

2 ‖Bj(yj − y
k
j )‖2

}
(1.11)= arg min

yj∈Yj

{
φj(yj)− (λk)TBjyj + β

2 ‖Ax̃k +Bj(yj − ykj ) + Byk − b‖2

+ τ2β
2 ‖Bj(yj − y

k
j )‖2,

}
.

where some constant terms are also ignored in its objective function. The first-order optimality con-
dition of the above convex minimization problem is given by

ỹkj ∈ Yj , φj(yj)− φj(ỹkj ) + (yj − ỹkj )T
{
−BT

j λ
k

+βBT
j

[
Ax̃k +Bj(ỹkj − ykj ) + Byk − b

]
+ τ2βB

T
j Bj(ỹkj − ykj )

}
≥ 0, ∀yj ∈ Yj .

(4.9)

Again, using (4.3c), we have λk = λ̃k + β
(
Ax̃k + Byk − b

)
. Substituting it into (4.9), we obtain

ỹkj ∈ Yj , φj(yj)− φj(ỹkj ) + (yj − ỹkj )T
{
−BT

j

(
λ̃k + β(Ax̃k + Byk − b)

)
+βBT

j

[
Ax̃k +Bj(ỹkj − ykj ) + Byk − b

]
+ τ2βB

T
j Bj(ỹkj − ykj )

}
≥ 0, ∀yj ∈ Yj .

Consequently, we have

ỹkj ∈ Yj , φj(yj)− φj(ỹkj ) + (yj − ỹkj )T
{
−BT

j λ̃
k

+βBT
j

[
Bj(ỹkj − ykj )

]
+ τ2βB

T
j Bj(ỹkj − ykj )

}
≥ 0, ∀yj ∈ Yj ,

and it can be written as

ỹkj ∈ Yj , φj(yj)− φj(ỹkj ) + (yj − ỹkj )T
{
−BT

j λ̃
k + (τ2 + 1)βBT

j Bj(ỹkj − ykj )
}
≥ 0, ∀yj ∈ Yj .

Taking j = 1, . . . ,m2 in the above variational inequality and summarizing them, we get

ỹk ∈ Y, ϕ(y)− ϕ(ỹk) + (y − ỹk)T
{
−BT λ̃k + (τ2 + 1)βdiag(BTB)(ỹk − yk)

}
≥ 0, ∀y ∈ Y. (4.10)

Using (4.3c) again, we have

(Ax̃k + Bỹk − b)− B(ỹk − yk) + 1
β

(λ̃k − λk) = 0,

and it can be rewritten as

λ̃k ∈ Rl, (λ− λ̃k)T
{
(Ax̃k + Bỹk − b)− B(ỹk − yk) + 1

β
(λ̃k − λk)

}
≥ 0, ∀λ ∈ Rl. (4.11)

Combining (4.8), (4.10) and (4.11) together and using the notations F (w) and Q (see (2.3) and (4.6)),
the assertion of this theorem is followed directly. �

Theorem 4.2. For given matrices Q in (4.6) and M in (4.4b), let

H = QM−1 (4.12)

and
G = QT +Q−MTHM. (4.13)

Then, both H and G are positive definite.
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Proof. First, we show the positive definiteness of the matrix H. For the matrix M defined in (4.4b),
we have

M−1 =

 I 0 0
0 I 0
0 βB I

 .
Thus, according to the definition of the matrix H (see (4.12)), we have

H = QM−1

=


(τ1 + 1)βdiag(ATA)− βATA 0 0

0 (τ2 + 1)βdiag(BTB) 0

0 −B 1
β I



I 0 0
0 I 0
0 βB I



=


(τ1 + 1)βdiag(ATA)− βATA 0 0

0 (τ2 + 1)βdiag(BTB) 0

0 0 1
β I

 . (4.14)

The positive definiteness of H follows from (2.5) and (2.6) directly. Now, we turn to prove that the
matrix G is positive definite. First, we have the identity

G = QT +Q−MTHM = MTH +HM −MTHM

= H − (MT − I)H(M − I). (4.15)

Since H is a block diagonal matrix, we use the notation H = diag(H11, H22,
1
β I) and obtain

(MT − I)H(M − I) =

 0 0 0
0 0 −βBT

0 0 0


 H11 0 0

0 H22 0
0 0 1

β I


 0 0 0

0 0 0
0 −βB 0



=

 0 0 0
0 βBTB 0
0 0 0

 . (4.16)

Using (4.14), (4.15) and (4.16), we get

G =


(τ1 + 1)βdiag(ATA)− βATA 0 0

0 (τ2 + 1)βdiag(BTB)− βBTB 0

0 0 1
β I

 .
According to (2.5) and (2.6), each block of G is positive definite. The proof is complete. �

Based on the conclusions in Theorems 4.1 and 4.2, it is easy to analyze the convergence for the
scheme (3.1). In the following two theorems, we first prove the global convergence for (3.1).

Theorem 4.3. Let {wk} be the sequence generated by the scheme (3.1). Let {w̃k} be defined in (4.3);
H and G be defined in (4.12) and (4.13), respectively. Then we have

f(u)− f(ũk) + (w − w̃k)TF (w̃k)

≥ 1
2
(
‖w −wk+1‖2H − ‖w −wk‖2H

)
+ 1

2‖w
k − w̃k‖2G, ∀w ∈ Ω. (4.17)
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Proof. Using Q = HM (see (4.12)) and the relation (4.4a), the right-hand side of (4.5) can be written
as

(w − w̃k)TH(wk −wk+1).
Hence, we have

f(u)− f(ũk) + (w − w̃k)TF (w̃k) ≥ (w − w̃k)TH(wk −wk+1), ∀w ∈ Ω. (4.18)

Applying the identity

(a− b)TH(c− d) = 1
2
(
‖a− d‖2H − ‖a− c‖2H

)
+ 1

2
(
‖c− b‖2H − ‖d− b‖2H

)
,

to the right-hand side of (4.18) with

a = w, b = w̃k, c = wk, and d = wk+1,

we obtain

(w−w̃k)TH(wk−wk+1) = 1
2
(
‖w−wk+1‖2H−‖w−wk‖2H

)
+ 1

2(‖wk−w̃k‖2H−‖wk+1−w̃k‖2H). (4.19)

For the last term of (4.19), we have

‖wk − w̃k‖2H − ‖wk+1 − w̃k‖2H
= ‖wk − w̃k‖2H − ‖(wk − w̃k)− (wk −wk+1)‖2H

(5.7a)= ‖wk − w̃k‖2H − ‖(wk − w̃k)−M(wk − w̃k)‖2H
= 2(wk − w̃k)THM(wk − w̃k)− (wk − w̃k)TMTHM(wk − w̃k)
= (wk − w̃k)T (QT +Q−MTHM)(wk − w̃k)

(4.13)= ‖wk − w̃k‖2G.

Substituting (4.19) and the last equation into (4.18), the assertion of this theorem is proved. �
Then, with the assertion (4.17) and positive definiteness of the matrix G, we can show that the

sequence {wk} generated by the scheme (3.1) is strictly contractive with respect to Ω∗. We summarize
this result in the following theorem.

Theorem 4.4. Let {wk} be the sequence generated by the scheme (3.1). Let {w̃k} be defined in (4.3);
H and G be defined in (4.12) and (4.13), respectively. Then we have

‖wk+1 −w∗‖2H ≤ ‖wk −w∗‖2H − ‖wk − w̃k‖2G, ∀w∗ ∈ Ω∗. (4.20)

Proof. Setting w = w∗ in (4.17), we get

‖wk −w∗‖2H − ‖wk+1 −w∗‖2H ≥ ‖wk − w̃k‖2G + 2{f(ũk)− f(u∗) + (w̃k −w∗)TF (w̃k)}.

By using the optimality of w∗ and the monotonicity of F (w), we have

f(ũk)− f(u∗) + (w̃k −w∗)TF (w̃k) ≥ f(ũk)− f(u∗) + (w̃k −w∗)TF (w∗) ≥ 0

and thus
‖wk −w∗‖2H − ‖wk+1 −w∗‖2H ≥ ‖wk − w̃k‖2G.

The assertion (4.20) follows directly. �
The global convergence of the scheme (3.1) can be easily proved based on the assertion in Theo-

rem 4.4. We state it in the following theorem.

Theorem 4.5. The sequence {wk} generated by the splitting version of the block-wise ADMM (3.1)
converges to a saddle point in Ω∗.
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Proof First, according to (4.20), it holds that {wk} is bounded and
lim
k→∞

‖wk − w̃k‖G = 0. (4.21)

Thus, {wk} (and {w̃k}) has a cluster point w∞. Then, it follows from (4.5) that
w̃∞ ∈ Ω, f(u)− f(ũ∞) + (w − w̃∞)TF (w̃∞) ≥ 0, ∀w ∈ Ω,

and thus w̃∞ is a solution point of VI(Ω, F, θ) in Ω∗. The proof is complete. �

4.3. Convergence rate in the ergodic sense

In this subsection, we establish a worst-case convergence rate measured by the iteration complexity
in the ergodic sense for the scheme (3.1). Note that the same convergence rate was established in [24]
for the original ADMM (1.3) and its linearized version. Here, we show that the scheme (3.1) enjoys
the same worst-case convergence rate as the original ADMM even though it is a splitting version with
m decomposed subproblems.

For this convergence rate analysis, we need to recall a characterization of the solution set Ω∗ of
VI (2.2), which is described in the following theorem. Its proof can be found in [9] (Theorem 2.3.5)
or [24] (Theorem 2.1).

Theorem 4.6. The solution set of VI(Ω, F, θ) is convex and it can be characterized as

Ω∗ =
⋂

w∈Ω

{
w̃ ∈ Ω :

(
f(u)− f(ũ)

)
+ (w − w̃)TF (w) ≥ 0

}
. (4.22)

Therefore, for a given ε > 0, w̃ ∈ Ω is called an ε-approximate solution of VI(Ω, F, θ) if it satisfies
f(u)− f(ũ) + (w − w̃)TF (w) ≥ −ε, ∀ w ∈ D(w̃),

where D(w̃) = {w ∈ Ω | ‖w − w̃‖ ≤ 1}1.
In the following, we show that for a given ε > 0, based on t iterations of the scheme (3.1), we can

find w̃ ∈ W such that w̃ ∈ W and
sup

w∈D(w̃)

{
f(ũ)− f(u) + (w̃ −w)TF (w)

}
≤ ε. (4.23)

This means a worst-case O(1/t) convergence rate is established for the scheme (3.1).
Prior to the proof, we emphasize that the conclusion in Theorem 4.3 is also very useful for estab-

lishing the worst-case O(1/t) convergence rate for the scheme (3.1). In fact, using the monotonicity of
F , we have

(w − w̃k)TF (w) ≥ (w − w̃k)TF (w̃k).
Substituting it into (4.17), we obtain

f(u)− f(ũk) + (w − w̃k)TF (w) + 1
2‖w −wk‖2H ≥

1
2‖w −wk+1‖2H , ∀w ∈ Ω. (4.24)

Note that the above assertion is hold for G � 0.
Now, we establish the worst-case O(1/t) convergence rate for the scheme (3.1) in the following

theorem.

Theorem 4.7. Let {wk} be the sequence generated by the scheme (3.1). Let {w̃k} be defined in (4.3)
and H be defined in (4.12), respectively. For any integer t > 0, let

w̃t = 1
t+ 1

t∑
k=0

w̃k. (4.25)

1We refer the reader to [29] (see (2.5) therein) for the definition of an ε-approximate solution
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Then, we have w̃t ∈ Ω and

f(ũt)− f(u) + (w̃t −w)TF (w) ≤ 1
2(t+ 1)‖w −w0‖2H , ∀w ∈ Ω. (4.26)

Proof. First, it holds that w̃k ∈ Ω for all k ≥ 0. Together with the convexity of X and Rl, (4.25)
implies that w̃t ∈ Ω. Summarizing this inequality (4.24) over k = 0, 1, . . . , t, we obtain

(t+ 1)f(u)−
t∑

k=0
f(ũk) +

(
(t+ 1)w −

t∑
k=0

w̃k
)T
F (w) + 1

2‖w −w0‖2H ≥ 0, ∀w ∈ Ω.

Using the notation w̃t, it can be written as

1
t+ 1

t∑
k=0

f(ũk)− f(u) + (w̃t −w)TF (w) ≤ 1
2(t+ 1)‖w −w0‖2H , ∀w ∈ Ω. (4.27)

Since f(u) is convex and

ũt = 1
t+ 1

t∑
k=0

ũk,

we have that

f(ũt) ≤
1

t+ 1

t∑
k=0

f(ũk).

Substituting it into (4.27), the assertion of this theorem follows directly. �
Recall the definition (4.23). Theorem 4.7 thus indicates that the average of the first t iterates

generated by the scheme (3.1) is an approximate solution of VI(Ω, F, θ) with an accuracy of O(1/t).
This clearly means a worst-case O(1/t) convergence rate measured by the iteration complexity in the
ergodic sense for the scheme (3.1).

4.4. Convergence rate in a nonergodic Sense

In this subsection, we establish a worst-case O(1/
√
t) convergence rate in a nonergodic sense for the

scheme (3.1). Recall that the same convergence rate was established in [25] for the original ADMM (1.3)
and its linearized version; we refer the reader to [33] for a more general study on the convergence rate
of decomposition methods based on the proximal method of multipliers. Moreover, in general a worst-
case nonergodic convergence rate measured by the iteration complexity is stronger than its ergodic
counterpart.

We first need to prove the following lemma.

Lemma 4.8. Let {wk} be the sequence generated by the scheme (3.1). Let {w̃k} be defined in (4.3);
M , H and Q be defined in (4.4b), (4.12) and (4.6), respectively. Then we have

(wk − w̃k)TMTHM{(wk − w̃k)− (wk+1− w̃k+1)} ≥ 1
2‖(w

k − w̃k)− (wk+1− w̃k+1)‖2(QT +Q). (4.28)

Proof. First, setting w = w̃k+1 in (4.5) gives us

f(ũk+1)− f(ũk) + (w̃k+1 − w̃k)TF (w̃k) ≥ (w̃k+1 − w̃k)TQ(wk − w̃k). (4.29)
Note that (4.5) is also true for k := k + 1. Thus, we have

f(u)− f(ũk+1) + (w − w̃k+1)TF (w̃k+1) ≥ (w − w̃k+1)TQ(wk+1 − w̃k+1), ∀w ∈ Ω.
Setting w = w̃k in the above inequality, we obtain

f(ũk)− f(ũk+1) + (w̃k − w̃k+1)TF (w̃k+1) ≥ (w̃k − w̃k+1)Q(wk+1 − w̃k+1). (4.30)
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Combining (4.29) and (4.30) and using the monotonicity of F , we get

(w̃k − w̃k+1)TQ{(wk − w̃k)− (wk+1 − w̃k+1)} ≥ 0. (4.31)

Adding the term

{(wk − w̃k)− (wk+1 − w̃k+1)}TQ{(wk − w̃k)− (wk+1 − w̃k+1)}

to the both sides of (4.31), and using wTQw = 1
2wT (QT +Q)w, we obtain

(wk −wk+1)TQ{(wk − w̃k)− (wk+1 − w̃k+1)} ≥ 1
2‖(w

k − w̃k)− (wk+1 − w̃k+1)‖2(QT +Q).

Substituting (wk − wk+1) = M(wk − w̃k) into the left-hand side of the last inequality and using
Q = HM , we obtain (4.28) and the lemma is proved. �

Now, we are ready to prove an important inequality which will play a crucial role in the coming
analysis for the worst-case convergence rate in a nonergodic sense. We summarize it in the following
theorem.

Theorem 4.9. Let {wk} be the sequence generated by the scheme (3.1). Let {w̃k} be defined in (4.3);
M and H be defined in (4.4b) and (4.12), respectively. Then we have

‖M(wk+1 − w̃k+1)‖H ≤ ‖M(wk − w̃k)‖H , ∀ k > 0,

and consequently (4.4a)

‖wk+1 −wk+2‖H ≤ ‖wk −wk+1‖H , ∀ k > 0. (4.32)

Proof. Setting a = M(wk − w̃k) and b = M(wk+1 − w̃k+1) in the identity

‖a‖2H − ‖b‖2H = 2aTH(a− b)− ‖a− b‖2H ,

we obtain

‖M(wk − w̃k)‖2H − ‖M(wk+1 − w̃k+1)‖2H
= 2(wk − w̃k)TMTHM [(wk − w̃k)− (wk+1 − w̃k+1)]− ‖M [(wk − w̃k)− (wk+1 − w̃k+1)]‖2H .

Inserting (4.28) into the first term of the right-hand side of the last equality, we obtain

‖M(wk − w̃k)‖2H − ‖M(wk+1 − w̃k+1)‖2H
≥ ‖(wk − w̃k)− (wk+1 − w̃k+1)‖2(QT +Q) − ‖M [(wk − w̃k)− (wk+1 − w̃k+1)]‖2H

(4.13)= ‖(wk − w̃k)− (wk+1 − w̃k+1)‖2G ≥ 0,

where the last inequality is because of the positive definiteness of the matrix (QT +Q)−MTHM � 0.
The assertion (4.32) follows from the last inequality and (4.4a) immediately. �

Note that it follows from G � 0 and Theorem 4.4 that there exists a constant c0 > 0 such that

‖wk+1 −w∗‖2H ≤ ‖wk −w∗‖2H − c0‖M(wk − w̃k)‖2H , ∀w∗ ∈ Ω∗,

and consequently due to M(wk − w̃k) = (wk −wk+1),

‖wk+1 −w∗‖2H ≤ ‖wk −w∗‖2H − c0‖wk −wk+1‖2H , ∀w∗ ∈ Ω∗. (4.33)

Now, with (4.33) and (4.32), we are ready to establish a worst-case O(1/t) convergence rate in a
nonergodic sense for the scheme (3.1).

159



B. S. He & X. M. Yuan

Theorem 4.10. Let {wk} be the sequence generated by the scheme (3.1) and H be defined in (4.12).
The, for any integer t > 0, we have

‖wt −wt+1‖2H ≤
1

(t+ 1)c0
‖w0 −w∗‖2H , ∀w∗ ∈ Ω∗, (4.34)

with c0 > 0.

Proof. First, it follows from (4.33) that
∞∑
k=0

c0‖wk −wk+1‖2H ≤ ‖w0 −w∗‖2H , ∀w∗ ∈ Ω∗. (4.35)

According to Theorem 4.9, the sequence {‖wk−wk+1‖2H} is monotonically non-increasing. Therefore,
we have

(t+ 1)‖wt −wt+1‖2H ≤
t∑

k=0
‖wk −wk+1‖2H . (4.36)

The assertion (4.34) follows from (4.35) and (4.36) immediately. �

Let d := inf{‖w0 − w∗‖H |w∗ ∈ Ω∗}. Then, for any given ε > 0, Theorem 4.10 shows that the
scheme (3.1) needs at most bd2/c0εc iterations to ensure that ‖wk − wk+1‖2H ≤ ε. Recall (4.18). It
indicates that wk is a solution point of VI(Ω, F, θ) if ‖wk − wk+1‖2H = 0. A worst-case O(1/

√
t)

convergence rate in a nonergodic sense is thus established for the scheme (3.1).

5. A splitting version of the block-wise generalized ADMM

In this section, we consider the generalized ADMM in [6] and propose a splitting version of the block-
wise generalized ADMM for solving the model (1.1). The convergence analysis similar as those in
Section 4 will be conducted.

5.1. Algorithm

In [10], it was shown that the ADMM scheme (1.3) is an application of the DRSM in [5, 27] to the
dual of (1.1) with m = 2; and it was further shown in [6] that the DRSM is an application of the
PPA in [28]. These two conclusions mean that the ADMM scheme (1.3) is a special case of the PPA.
Thus, it was suggested in [6] to apply the relaxed PPA in [15] and accordingly the generalized PPA
was proposed.

Based on our analysis in Section 3, it is easy to propose the block-wise version of the generalized
ADMM for the grouped model (1.5). For this purpose, we first remark that we can rewrite the ADMM
scheme (1.3) as 

xk+1
1 = arg min

{
L2
β(x1, x

k
2, λ

k)
∣∣ x1 ∈ X1

}
,

λk+1 = λk − β(A1x
k+1
1 +A2x

k
2 − b),

xk+1
2 = arg min

{
L2
β(xk+1

1 , x2, λ
k+1)

∣∣ x2 ∈ X2
}
,

(5.1)

which is equivalent to (1.3) in cyclical sense. Based on this representation, it was explained in [2]
that the ADMM scheme (5.1) is indeed an application of the PPA in [28] with a customized proximal
coefficient in metric form to the model (1.1) with m = 2. Hence, applying the acceleration scheme
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in [15] to the specific PPA (5.1), the generalized ADMM in [6] can be expressed as



xk+1
1 = arg min

{
L2
β(x1, x

k
2, λ

k)
∣∣ x1 ∈ X1

}
,

λk+1 = λk − β(A1x
k+1
1 +A2x

k
2 − b),

xk+1
2 = arg min

{
L2
β(xk+1

1 , x2, λ
k+1)

∣∣ x2 ∈ X2
}
,

wk+1 := wk − α(wk − wk+1),

(5.2)

with α ∈ (0, 2). Recall the block-wise ADMM (1.12). Then, the block-wise generalized ADMM when
the scheme (5.2) is applied to the the grouped two-block model (1.5) can be written as



x̃k = arg min
{
L2
β(x,yk, λk)

∣∣ x ∈ X
}
,

λ̃k = λk − β(Ax̃k + Byk − b)

ỹk = arg min
{
L2
β(x̃k,y, λ̃k)

∣∣ y ∈ Y
}
,

wk+1 = wk − α(wk − w̃k),

(5.3)

with α ∈ (0, 2). Similar as (1.13), we can consider further decomposing the block-wise x- and y-
subproblems in (5.3) and obtain a splitting version of the generalized ADMM (5.3) as the following:



x̃k1 = arg min
{
L2
β(x1, x

k
2, · · · , xkm1 ,y

k, λk)
∣∣ x1 ∈ X1

}
,

x̃k2 = arg min
{
L2
β(xk1, x2, x

k
3, · · · , xkm1 ,y

k, λk)
∣∣ x2 ∈ X2

}
,

...
x̃km1 = arg min

{
L2
β(xk1, xk2, · · · , xkm1−1, xm1 ,y

k, λk)
∣∣ xm1 ∈ Xm1

}
,

λ̃k = λk − β(Ax̃k + Byk − b),

ỹk1 = arg min
{
L2
β(x̃k, y1, y

k
2 , · · · , ykm2 , λ̃

k)
∣∣ y1 ∈ Y1

}
,

ỹk2 = arg min
{
L2
β(x̃k, yk1 , y2, y

k
3 , · · · , ykm2 , λ̃

k)
∣∣ y2 ∈ Y2

}
,

...

ỹkm2 = arg min
{
L2
β(xk, yk1 , yk2 , · · · , xkm2−1, ym2 , λ̃

k)
∣∣ ym2 ∈ Ym2

}
,

wk+1 := wk − α(wk − w̃k).

(5.4)

Recall that it has been mentioned that the splitting version of the block-wise ADMM scheme (1.13),
which is a special case of (5.4) with α = 1, is not necessarily convergent. Therefore, we have to
investigate how to ensure the convergence for (5.4). It turns out that its convergence can also be
guaranteed if the subproblems in (5.4) are proximally regularized, just like the splitting version of the
block-wise ADMM (3.1). We summarize the splitting version of the block-wise generalized ADMM in
the following.
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Algorithm 2: A splitting version of the block-wise generalized ADMM for (1.1)
Initialization: Specify a grouping strategy for (1.1) and determine the integers m1 and m2.
Choose the constants τ1 > m1 − 1; τ2 > m2 − 1, α ∈ (0, 2) and β > 0. For a given iterate
wk = (xk1, . . . , xkm1 , y

k
1 , . . . , y

k
m2 , λ

k) = (xk,yk, λk), the new iterate wk+1 is generated by the
following steps.

x̃ki = arg min
xi∈Xi

{
L2
β

(
xk1 , . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
m1
,yk, λk

)
+ τ1β

2 ‖Ai(xi − x
k
i )‖2

}
, i = 1, · · · ,m1,

λ̃k = λk − β
(
Ax̃k + Byk − b

)
,

ỹkj = arg min
yj∈Yj

{
L2
β

(
x̃k, yk1 , . . . , y

k
j−1, yj , y

k
j+1, . . . , y

k
m2
, λ̃k
)

+ τ2β
2 ‖Bj(yj − y

k
j )‖2

}
, j = 1, · · · ,m2,

wk+1 = wk − α(wk − w̃k).
(5.5)

5.2. Convergence analysis

Similarly, we can rewrite the splitting version (5.4) of the block-wise generalized ADMM as a prediction-
correction form and conduct the convergence analysis analogously as that in Section 3.

Prediction.
x̃ki = arg min

xi∈Xi

{
L2
β

(
xk1 , . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
m1
,yk, λk

)
+ τ1β

2 ‖Ai(xi − x
k
i )‖2

}
, (5.6a)

λ̃k = λk − β
(
Ax̃k + Byk − b

)
, (5.6b)

ỹkj = arg min
yj∈Yj

{
L2
β

(
x̃k, yk1 , . . . , y

k
j−1, yj , y

k
j+1, . . . , y

k
m2
, λ̃k
)

+ τ2β

2 ‖Bj(yj − y
k
j )‖2

}
. (5.6c)

Correction.
wk+1 = wk −M1(wk − w̃k), (5.7a)

where
M1 = αI, α ∈ (0, 2) (5.7b)

and w̃k is the related sub-vector of the predictor w̃k generated by (5.6).

With the prediction-correction reformulation (5.6)-(5.7), we can establish the same convergence
results as those in Section 3. As mentioned, Theorems 4.1 and 4.2 are the basis for the convergence
analysis. In the following, we prove some conclusions similar as the scheme (5.5).
Theorem 5.1. Let w̃k be generated by (5.6) from a given wk. Then we have

w̃k ∈ Ω, f(u)− f(ũk) + (w − w̃k)TF (w̃k) ≥ (w − w̃k)TQ1(wk − w̃k)} ≥ 0, ∀w ∈ Ω, (5.8)
where

Q1 =


(τ1 + 1)βdiag(ATA)− βATA 0 0

0 (τ2 + 1)βdiag(BTB) −BT

0 −B 1
β I

 (5.9)

is a symmetric matrix.
Proof. Note that the xi-subproblems in (5.6a) and the λ̃k update in (5.6b) are the same as those
in (4.3a) and (4.3c), respectively. Then, as the proof of Theorem 4.1, see (4.8)), we have x̃k ∈ X and
ϑ(x)− ϑ(x̃k) + (x− x̃k)T

{
−AT λ̃k − βATA(x̃k − xk) + (τ1 + 1)βdiag(ATA)(x̃k − xk)

}
≥ 0, ∀x ∈ X .

(5.10)
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For the yj-subproblems in (5.6c), it follows that

ỹkj = arg min
yj∈Yj

{
L2
β

[
x̃k, yk1 , . . . , y

k
j−1, yj , y

k
j+1, . . . , y

k
m2 , λ̃

k]+ τ1β

2 ‖Bj(yj − y
k
j )‖2

}
(1.11)= arg min

yj∈Yj

{
φj(yj)− (λ̃k)TBjyj + β

2 ‖Ax̃k +Bj(yj − ykj ) + Byk − b‖2

+ τ2β
2 ‖Bj(yj − y

k
j )‖2

}
,

where some constant terms are ignored in its objective function. The first-order optimality condition
of the above convex minimization problem is

ỹkj ∈ Yj , φj(yj)− φj(ỹkj ) + (yj − ỹkj )T
{
−BT

j λ̃
k

+βBT
j

[
Ax̃k +Bj(ỹkj − ykj ) + Byk − b

]
+ τ2βB

T
j Bj(ỹkj − ykj )

}
≥ 0, ∀yj ∈ Yj .

Again, using
(
Ax̃k + Byk − b

)
= 1

β (λk − λ̃k), it follows from the last inequality that

ỹkj ∈ Yj , φj(yj)− φj(ỹkj ) + (yj − ỹkj )T
{
−BT

j λ̃
k

+βBT
j

[
Bj(ỹkj − ykj ) + 1

β (λk − λ̃k)
]

+ τ2βB
T
j Bj(ỹkj − ykj )

}
≥ 0, ∀yj ∈ Yj ,

(5.11)

and it can be written as ỹkj ∈ Yj and

φj(yj)− φj(ỹkj ) + (yj − ỹkj )T
{
−BT

j λ̃
k + (τ2 + 1)βBT

j Bj(ỹkj − ykj )−BT
j (λ̃k − λk)

}
≥ 0, ∀yj ∈ Yj .

Taking j = 1, . . . ,m2 in the above variational inequality and summarizing them, we have ỹk ∈ Y and

ϕ(y)−ϕ(ỹk)+(y− ỹk)T
{
−BT λ̃k +(τ2 +1)βdiag(BTB)(ỹk−yk)−BT (λ̃k−λk)

}
≥ 0, ∀y ∈ Y. (5.12)

It follows from (5.6b) that

(Ax̃k + Bỹk − b)− B(ỹk − yk) + 1
β

(λ̃k − λk) = 0,

which can be rewritten as

λ̃k ∈ Rl, (λ− λ̃k)T
{
(Ax̃k + Bỹk − b)− B(ỹk − yk) + 1

β
(λ̃k − λk)

}
≥ 0, ∀λ ∈ Rl. (5.13)

Combining (5.10), (5.12) and (5.13), and using the notations F (w) and Q1 (see (2.3b) and (5.9)), the
assertion of this theorem is followed directly. �

Theorem 5.2. Let the matrices M1 and Q1 be defined in (5.7b) and (5.9). Then, we have

(1). The matrix Q1 is positive definite.

(2). Both the matrices defined below

H1 := Q1M
−1
1 and G1 := QT1 +Q1 −MT

1 H1M1

are positive definite.

Proof. It is clear that Q1 is symmetric. The first diagonal block of Q1 equals DA (see (2.5)) and thus
is positive definite. Now, we observe the rest diagonal part of Q1. Again, using (2.4) and τ2 > m2− 1,
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we obtain  (τ2 + 1)βdiag(BTB) −BT

−B 1
β I


=

 (τ2 + 1−m2)βdiag(BTB) 0

0 0

+

 m2βdiag(BTB) −BT

−B 1
β I



�

 (τ2 + 1−m2)βdiag(BTB) 0

0 0

+

 βBTB −BT

−B 1
β I

 � 0.

Thus, the matrix Q1 is positive definite.
Because M1 = αI and α ∈ (0, 2) (see (5.7b)), we have

H1 = Q1M
−1
1 = 1

α
Q1

and
G1 = QT1 +Q1 −MT

1 H1M1 = (2− α)Q1.

Thus, both the matrices H1 and G1 are positive definite. The proof is complete. �

Then, with the conclusions in Theorems 5.1 and 5.2, the proofs for the global convergence and
the worst-case convergence rates in both the ergodic and nonergodic senses for the scheme (5.5) are
identical as those in Sections 4.2-4.4. We thus omit them. We would reiterate again that this is the
reason we artificially rewrite the scheme (3.1) as the prediction-correction form (4.3)-(4.4) in the
analysis, because this prediction-correction form turns out to be a unified framework for analyzing
the convergence for all the three methods discussed in this paper and using this framework helps us
present the convergence results for the schemes (5.5) and (6.5) in the next section in succinctness.

6. A splitting version of the block-wise strictly contractive Peaceman-Rachford
splitting method

As mentioned, the ADMM (1.3) is an application of the DRSM in [5, 27] to the dual of the model (1.1)
with m = 2. Since the Peaceman-Rachford splitting method (PRSM) in [31, 27] is as popular as the
DRSM in the PDE literature, it is interesting to apply the PRSM to the dual of (1.1) with m = 2.
The resulting scheme is

xk+1
1 = arg min

{
L2
β(x1, x

k
2, λ

k)
∣∣ x1 ∈ X1

}
,

λk+ 1
2 = λk − β(A1x

k+1
1 +A2x

k
2 − b),

xk+1
2 = arg min

{
L2
β(xk+1

1 , x2, λ
k+ 1

2 )
∣∣ x2 ∈ X2

}
,

λk+1 = λk+ 1
2 − β(A1x

k+1
1 +A2x

k+1
2 − b).

(6.1)

which differs from the ADMM scheme (1.3) in that the Lagrange multiplier is updated once the x1-
subproblem is solved and the updated multiplier is used in the x2-subproblem. Thus, compared with
the ADMM scheme (1.3), the PRSM scheme (6.1) offers the same set of advantages. Indeed, according
to [11], the RRSM is usually faster than the ADMM whenever it is indeed convergent. The PRSM
scheme (6.1), however, according to [11] again (see also [13]), “is less ‘robust’ in that it converges under
more restrictive assumptions than ADMM”. This is because there is a significant difference between
them — the sequence generated by the ADMM scheme (1.3) is strictly contractive while that by the
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PRSM scheme (6.1) is only contractive, with respect to the solution set of (1.1). Thus, the convergence
of (6.1) is not guaranteed. We refer to [4, 20] for details.

To tackle the lack of strict contraction of (6.1), the so-called strictly contractive PRSM was proposed
in [20]: 

xk+1
1 = arg min

{
L2
β(x1, x

k
2, λ

k)
∣∣ x1 ∈ X1

}
,

λk+ 1
2 = λk − αβ(A1x

k+1
1 +A2x

k
2 − b),

xk+1
2 = arg min

{
L2
β(xk+1

1 , x2, λ
k+ 1

2 )
∣∣ x2 ∈ X2

}
,

λk+1 = λk+ 1
2 − αβ(A1x

k+1
1 +A2x

k+1
2 − b).

(6.2)

with α ∈ (0, 1). The relaxation factor α ensures that the sequence generated by (6.2) is strictly
contractive; thus the convergence can be proved.

In this section, we consider how to use the strictly contractive PRSM scheme (6.2) to solve the
model (1.1) and propose a splitting version of the block-wise strictly contractive PRSM scheme
for (1.1).

6.1. Algorithm

Similarly, we can apply the strictly contractive PRSM (6.2) to the grouped model (1.5); and using the
notation in (1.6)-(1.7), we obtain the following block-wise version of the strictly contractive PRSM for
the model (1.1): 

xk+1 = arg min
{
L2
β(x,yk, λk)

∣∣ x ∈ X
}
,

λk+ 1
2 = λk − αβ(Axk+1 + Byk − b),

yk+1 = arg min
{
L2
β(xk+1,y, λk+ 1

2 )
∣∣ y ∈ Y

}
,

λk+1 = λk+ 1
2 − αβ(Axk+1 + Byk+1 − b).

(6.3)

Furthermore, as (1.13), we can consider decomposing the block-wise x- and y-subproblems in (6.3)
and obtain a splitting version of the block-wise strictly contractive PRSM (6.3):

xk+1
1 = arg min

{
L2
β(x1, x

k
2, · · · , xkm1 ,y

k, λk)
∣∣ x1 ∈ X1

}
,

xk+1
2 = arg min

{
L2
β(xk1, x2, x

k
3, · · · , xkm1 ,y

k, λk)
∣∣ x2 ∈ X2

}
,

...
xk+1
m1 = arg min

{
L2
β(xk1, xk2, · · · , xkm1−1, xm1 ,y

k, λk)
∣∣ xm1 ∈ Xm1

}
,

λk+ 1
2 = λk − αβ(Axk+1 + Byk − b),

yk+1
1 = arg min

{
L2
β(xk+1, y1, y

k
2 , · · · , ykm2 , λ

k+ 1
2 )
∣∣ y1 ∈ Y1

}
,

yk+1
2 = arg min

{
L2
β(xk+1, yk1 , y2, y

k
3 , · · · , ykm2 , λ

k+ 1
2 )
∣∣ y2 ∈ Y2

}
,

...

yk+1
m2 = arg min

{
L2
β(xk+1, yk1 , y

k
2 , · · · , xkm2−1, ym2 , λ

k+ 1
2 )
∣∣ ym2 ∈ Ym2

}
,

λk+1 = λk+ 1
2 − αβ(Axk+1 +Byk+1 − b).

(6.4)

In [19], a counter example was given to show that the scheme (6.4) is not necessarily convergent even
for the case m1 = 1 and m2 = 2. Therefore, we also consider regularizing the subproblems in (6.4) to
ensure the convergence. This is the algorithm summarized below.
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Algorithm 3: A splitting version of the block-wise strictly contractive PRSM for (1.1)
Initialization: Specify a grouping strategy for (1.1) and determine the integers m1 and m2.
Choose the constants τ1 > m1 − 1; τ2 > m2 − 1; α ∈ (0, 1) and β > 0. For a given iterate
wk = (xk1, . . . , xkm1 , y

k
1 , . . . , y

k
m2 , λ

k) = (xk,yk, λk), the new iterate wk+1 is generated by the
following steps.

xk+1
i = arg min

xi∈Xi

{
L2
β

(
xk1 , . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
m1
,yk, λk

)
+ τ1β

2 ‖Ai(xi − x
k
i )‖2

}
, i = 1, . . . ,m1,

λk+ 1
2 = λk − αβ

(
Axk+1 + Byk − b

)
,

yk+1
j = arg min

yj∈Yj

{
L2
β

(
xk+1, yk1 , . . . , y

k
j−1, yj , y

k
j+1, . . . , y

k
m2
, λk+ 1

2
)

+ τ2β
2 ‖Bj(yj − y

k
j )‖2

}
, j = 1, · · · ,m2,

λk+1 = λk+ 1
2 − αβ

(
Axk+1 + Byk+1 − b

)
.

(6.5)

6.2. Convergence analysis

As Sections 3 and 5, we conduct the convergence analysis for the splitting version of the strictly
contractive PRSM (6.5) in a unified framework. For this purpose, we again rewrite the scheme (6.5)
as a prediction-correction form.

First of all, we definite the auxiliary variables

x̃k = xk+1, ỹk = yk+1 (6.6)

and

λ̃k = λk − β
(
Axk+1 + Byk − b

)
. (6.7)

Then, we have

λk+ 1
2 = λk − αβ

(
Axk+1 + Byk − b

)
= λk − α(λk − λ̃k)

= λ̃k + (α− 1)(λ̃k − λk). (6.8)

With these notations, we rewrite the scheme (6.5) as a prediction-correction form, in order to use the
same analytic framework used in Sections 3 and 5 to analyze the convergence for the (6.5).

Prediction.
x̃ki = arg min

xi∈Xi

{
L2
β

[
xk1 , . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
m1
,yk, λk

]
+ τ1β

2 ‖Ai(xi − x
k
i )‖2

}
, (6.9a)

ỹkj = arg min
yj∈Yj

{
L2
β

[
x̃k, yk1 , . . . , y

k
j−1, yj , y

k
j+1, . . . , y

k
m2
, λk+ 1

2
]

+ τ2β

2 ‖Bj(yj − y
k
j )‖2

}
, (6.9b)

where
λk+ 1

2 = λ̃k + (α− 1)(λ̃k − λk) (6.9c)
and

λ̃k = λk − β
(
Ax̃k + Byk − b

)
. (6.9d)
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Correction.
wk+1 = wk −M2(wk − w̃k), (6.10a)

where

M2 =

 I 0 0
0 I 0
0 −αβB 2αI

 , (6.10b)

and w̃k is the related sub-vector of the predictor w̃k generated by (6.9).

Note that (6.10a) is obtained by using (6.6), (6.8) and the following reasoning:

λk+1 = λk+ 1
2 − αβ

(
Axk+1 + Byk+1 − b

)
= λ̃k + (1− α)(λk − λ̃k)− αβ

(
Ax̃k + Bỹk − b

)
= λ̃k + (1− α)(λk − λ̃k)− α[βB(ỹk − yk) + β

(
Ax̃k + Byk − b

)
]

= λ̃k + (1− α)(λk − λ̃k)− [−αβB(yk − ỹk) + α(λk − λ̃k)]
= λk − [−αβB(yk − ỹk) + 2α(λk − λ̃k)]. (6.11)

With the prediction-correction reformulation (6.9)-(6.10), we can also establish the same conver-
gence results as those in Sections 3 and 5. As mentioned, Theorems 4.1 and 4.2 are the basis for the
convergence analysis. In the following, we prove some conclusions similar as the scheme (5.5).

Theorem 6.1. Let w̃k be generated by (6.9) from the given vector wk. Then we have

w̃k ∈ Ω, f(u)− f(ũk) + (w − w̃k)TF (w̃k) ≥ (w − w̃k)TQ2(wk − w̃k), ∀w ∈ Ω, (6.12)

where the matrix Q2 is defined by

Q2 =


(τ1 + 1)βdiag(ATA)− βATA 0 0

0 (τ2 + 1)βdiag(BTB) −αBT

0 −B 1
β I

 . (6.13)

Proof. Since the xi-subproblems in (6.9a) are the same as those in (4.3a), see (4.8), we have x̃k ∈ X
and

ϑ(x)− ϑ(x̃k) + (x− x̃k)T
{
−AT λ̃k − βATA(x̃k − xk) + (τ1 + 1)βdiag(ATA)(x̃k − xk)

}
≥ 0, ∀x ∈ X .

(6.14)
For the yj-subproblems in (6.9b), we have

ỹkj = arg min
yj∈Yj

{
L2
β

(
x̃k, yk1 , . . . , y

k
j−1, yj , y

k
j+1, . . . , y

k
m2 , λ

k+ 1
2
)

+ τ2β

2 ‖Bj(yj − y
k
j )‖2

}
(1.11)= arg min

yj∈Yj

{
φj(yj)− (λk+ 1

2 )TBjyj + β
2 ‖Ax̃k +Bj(yj − ykj ) + Byk − b‖2

+ τ2β
2 ‖Bj(yj − y

k
j )‖2

}
,

in which some constant terms in the objective function are ignored. The first-order optimality condition
of the above convex minimization problem is

ỹkj ∈ Yj , φj(yj)− φj(ỹkj ) + (yj − ỹkj )T
{
−BT

j λ
k+ 1

2

+βBT
j

[
Ax̃k +Bj(ỹkj − ykj ) + Byk − b

]
+ τ2βB

T
j Bj(ỹkj − ykj )

}
≥ 0, ∀yj ∈ Yj .
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Recall (6.9c) and use
(
Ax̃k + Byk − b

)
= 1

β (λk − λ̃k). Then, it follows from the last inequality that

ỹkj ∈ Yj , φj(yj)− φj(ỹkj ) + (yj − ỹkj )T
{
−BT

j

(
λ̃k + (α− 1)(λ̃k − λk)

)
+βBT

j [Bj(ỹkj − ykj ) + 1
β (λk − λ̃k)] + τ2βB

T
j Bj(ỹkj − ykj )

}
≥ 0, ∀yj ∈ Yj .

Consequently, we have ỹkj ∈ Yj and

φj(yj)− φj(ỹkj ) + (yj − ỹkj )T
{
−BT

j λ̃
k + (τ2 + 1)βBT

j Bj(ỹkj − ykj )− αBT
j (λ̃k − λk)

}
≥ 0, ∀yj ∈ Yj .

Taking j = 1, . . . ,m2 in the above variational inequality and summarizing them, we have ỹk ∈ Y and

ϕ(y)− ϕ(ỹk) + (y − ỹk)T
{
−BT λ̃k + (τ2 + 1)βdiag(BTB)(ỹk − yk)− αBT (λ̃k − λk)

}
≥ 0, (6.15)

for all y ∈ Y. Then, using (6.9d), we have

(Ax̃k + Bỹk − b)− B(ỹk − yk) + 1
β

(λ̃k − λk) = 0,

which can be rewritten as

λ̃k ∈ Rl, (λ− λ̃k)T
{
(Ax̃k + Bỹk − b)− B(ỹk − yk) + 1

β
(λ̃k − λk)

}
≥ 0, ∀λ ∈ Rl. (6.16)

Combining (6.14), (6.15) and (6.16), and using the notations F (w) and Q2 (see (2.3b) and (6.13)),
the assertion of this theorem is proved immediately. �

Theorem 6.2. Let the matrices M2 and Q2 be defined in (6.10b) and (6.13), respectively. Then, both
the matrices

H2 = Q2M
−1
2 (6.17)

and
G2 = QT2 +Q2 −MT

2 H2M2 (6.18)

are positive definite.

Proof. First, we check the positive definiteness of the matrix H2. For the matrixM2 defined in (6.10b),
we have

M−1
2 =

 I 0 0
0 I 0
0 1

2βB
1

2αI

 .
Note that the left-upper diagonal part of Q2 equals DA (see (6.13) and (2.5)). Thus, according to the
definitions of the matrices H2 and Q2 (see (6.17) and (6.13)), we have

H2 = Q2M
−1
2

=


DA 0 0
0 (τ2 + 1)βdiag(BTB) −αBT

0 −B 1
β I


 I 0 0

0 I 0
0 1

2βB
1

2αI



=


DA 0 0
0 (τ2 + 1)βdiag(BTB)− 1

2αβB
TB −1

2B
T

0 −1
2B

1
2αβ I

 ,
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which shows that H2 is symmetric. The positive definiteness of H2 follows from DA � 0 and

 (τ2 + 1)βdiag(BTB)− 1
2αβB

TB −1
2B

T

−1
2B

1
2αβ I


=

 (τ2 + 1)βdiag(BTB)− αβBTB 0

0 1
β I

+ 1
2

 αβBTB −BT

−B 1
αβ I


�

 (τ2 + 1)βdiag(BTB)− βBTB 0

0 1
β I

 (2.6)=

 DB 0

0 1
β I

 � 0.

Now, we turn to check the positive definiteness of the matrix G2. Note that

QT2 +Q2 =


2DA 0 0

0 2(τ2 + 1)βdiag(BTB) −(1 + α)BT

0 −(1 + α)B 2
β I



and

MT
2 H2M2 = QT2 M2

=


DA 0 0

0 (τ2 + 1)βdiag(BTB) −BT

0 −αB 1
β I



I 0 0
0 I 0
0 −αβB 2αI



=


DA 0 0

0 (τ2 + 1)βdiag(BTB) + αβBTB −2αBT

0 −2αB 2α
β I

 .

From the definition of G2 (see (6.18)), it follows that

G2 = QT2 +Q2 −MT
2 H2M2

=


DA 0 0

0 (τ2 + 1)βdiag(BTB)− αβBTB −(1− α)BT

0 −(1− α)BT 2(1−α)
β I

 .

To show that G2 is positive definite, we need only to verify

 (τ2 + 1)βdiag(BTB)− αβBTB −(1− α)BT

−(1− α)BT 2(1−α)
β I

 � 0. (6.19)
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Because α ∈ (0, 1), we have (τ2 + 1)βdiag(BTB)− αβBTB −(1− α)BT

−(1− α)BT 2(1−α)
β I


=

 (τ2 + 1)βdiag(BTB)− βBTB 0

0 1−α
β I

+ (1− α)

 βBTB −BT

−B 1
β I


�

 (τ2 + 1)βdiag(BTB)− βBTB 0

0 1−α
β I

 (2.6)=

 DB 0

0 1
β I

 � 0.

The proof is complete. �
Then, with the conclusions in Theorems 6.1 and 6.2, the proofs for the global convergence and

the worst-case convergence rates in both the ergodic and nonergodic senses for the scheme (6.5)
are identical as those in Sections 4.2-4.4. We thus omit them. Recall the worst-case convergence
rates in both the ergodic and nonergodic senses have been established in [20] for the original strictly
contractive PRSM (6.1). With the prediction-correction reformulation (6.9)-(6.10) and the unified
analytic framework presented in Sections 4.3-4.4, we can also establish the same convergence results
for the splitting version of the block-wise strictly contractive PRSM (6.5).

7. Conclusions

In this paper, we focus on how to apply the original alternating direction method of multipliers
(ADMM) to a multiple-block convex minimization model with linear constraints and an objective
function in form or more than two functions without coupled variables. If we artificially regroup the
variables and functions as two groups and directly apply the original ADMM to the regrouped two-
block model, the resulting block-wise subproblems usually should be further decomposed in order to
yield easier and solvable subproblems. Then, certain proximal terms are needed to regularize these
further decomposed subproblems to ensure the convergence. Accordingly, a splitting version of the
block-wise ADMM is derived; and its convergence and worst-case convergence rate measured by the
iteration complexity are analyzed. We also extend the analysis to the generalized ADMM and the
strictly contractive Peaceman-Rachford splitting method, two methods that are closely relevant to the
ADMM; and derive two splitting versions of their block-wise forms. The convergence analysis for these
three methods are presented in a unified framework.

The splitting schemes proposed in this paper are to some extent of prototype sense, because no
specific properties of the objective functions or structures are assumed in the model (1.1). In fact, the
proposed schemes include a number of specific algorithms — even for a given scenario of the model (1.1)
with a fixed value of m, different combinations of the two integers m1 and m2 for grouping result in
different specific algorithms for the proposed three types of splitting schemes. Thus, there is no space
to report the elaborated numerical results. In fact, the efficiency of some of the specific algorithms
derivable from the proposed schemes have already been well demonstrated. For instance, the special
case of (6.4) with m1 = 1 and m2 = 2 has been tested in [19] for some popular applications arising in
image processing and machine learning areas.

Some more sophisticated designs based on the algorithms developed in this paper can be conducted
for some more concrete scenarios of the abstract model (1.1) where some properties of the functions
or some structures of the model are specified. For example, one can further consider how to embed
the linearization technique with the decomposed subproblems in (3.1), (5.5) and (6.5) in order to
yield really easy subproblems with closed-form solutions for some specifical cases of the model (1.1).
Also, one may consider extending the analysis in this paper to the online and stochastic contexts
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which appear to have wide applications in some areas such as machine learning. This paper is an
example in the separable convex programming context of showing how to construct implementable
algorithms for more complicated models based on some existing algorithms which are suitable for
relatively simpler models. The methodology used in the algorithmic design and the roadmap used
in the analysis represent a new development on designing operator splitting methods in the convex
programming context, and they might be useful for other algorithmic designs in different contexts.

Appendix A. A divergence example of (1.13)

In this appendix, we show that the splitting version (1.13) of the block-wise ADMM, if without
additional proximal regularization in its subproblems, is not necessarily convergent. The example
showing its divergence is inspired by the counter example in [3] showing the divergence of the direct
extension of ADMM (1.4); and we thank Juwei Lu for providing this example.

We consider the system of linear equations

A1x1 +A2x2 +A3x3 = 0, (A.1)

where A1, A2, A3 ∈ R4 are linearly independent such that the matrix (A1, A2, A3) is full rank and
x1, x2, x3 are all in R. This is a special case of the model (1.1) with m = 3, θ1(x1) = θ2(x2) = θ3(x3) =
0, l = 4, n1 = n2 = n3 = 1, X1 = X2 = X3 = R; and the coefficients matrices are A1, A2 and A3,
respectively. Obviously, the system of linear equation (A.1) has the unique solution x∗1 = x∗2 = x∗3 = 0.
In particular, we consider

(A1, A2, A3) =


1 1 1
1 1 2
1 2 2
1 2 2

 . (A.2)

We consider the scheme (1.13) with m1 = 1 and m2 = 2 and apply it to the homogeneous system
of linear equation (A.1). The resulting scheme can be written as

AT1 (β(A1x1
k+1 +A2x

k
2 +A3x

k
3)− λk) = 0

AT2 (β(A1x1
k+1 +A2x2

k+1 +A3x
k
3)− λk) = 0

AT3 (β(A1x1
k+1 +A2x2

k +A3x3
k+1)− λk) = 0

αβ(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 ) + λk+1 − λk = 0.

(A.3)

It follows from the first equation in (A.3) that

xk+1
1 = 1

AT1 A1
(−AT1 A2x

k
2 −AT1 A3x

k
3 +AT1 λ

k/β). (A.4)

For ease of notation, let us denote µk = λk/β. Then, plugging (A.4) into the rest equations in (A.3),
we derive that AT2 A2 0 0

0 AT3 A3 0
αA2 αA3 I

 xk+1
2
xk+1

3
µk+1


=

 0 −AT2 A3 AT2
−AT3 A1 0 AT3

0 0 I

− 1
AT1 A1

 AT2 A1
AT3 A1
αA1

(−AT1 A2,−AT1 A3, A
T
1
) xk2

xk3
µk

 .

Let

L2 =

 AT2 A2 0 0
0 AT3 A3 0

αA2 αA3 I

 ,
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R2 =

 0 −AT2 A3 AT2
−AT3 A1 0 AT3

0 0 I

− 1
AT1 A1

 AT2 A1
AT3 A1
αA1

(−AT1 A2,−AT1 A3, A
T
1

)
,

and denote
M2 = L−1

2 R2.

Then, the scheme (A.3) can be written compactly as xk2
xk3
µk

 = Mk
1

 x0
2
x0

3
µ0

 .
Obviously, if the the spectral radius of M1, denoted by ρ(M1) := |λmax(M1)| (the largest eigenvalue
of M1), is not smaller than 1, then the sequence generated by the scheme above is not possible to
converge to the solution point (x∗1, x∗2, x∗3) = (0, 0, 0) of the system (A.1). It can be numerically shown
that ρ(M1) ≥ 1 for different choices of α varying from 0 to 1 with the equal distance of 0.02; and
it is monotonically increasing with respect to α ∈ (0, 1). Therefore, the sequence generated by the
scheme above is not convergent to the solution point of the system (A.1). It is thus illustrated that
the scheme (1.13) is not necessarily convergent.
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