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All rings will be assumed to have identity elements preserved by ring ho-
momorphisms, and all modules, unless specified otherwise, will be left mod-
ules. For a ring S, Igld S and lwd S will denote the left global dimension of §
and the left weak global dimension of S, respectively. For an S-module X
and a right S-module Y, the projective dimension of X, the injective dimen-
sion of X, the flat dimension of X, and the flat dimension of Y are denoted
by pdg X, idg X, fds X and 1fdg Y, respectively.

A commutative square of rings and ring homomorphisms

lh 11‘1 (1)
R, 2 R

is said to be a pullback (or a cartesian square, or a fibre product) if given
ri € Ry, ra € Ry with ji(ry) = ja(r;) there is a unique element r € R such
that 11(r) = r; and iy(r) = r (note that if j; is a surjection then so is s,
but not conversely). The ring R is called the fibre product (or pullback) of
R, and R, over R/.

Assuming that j, is surjective, Milnor [5, Chapter 2] characterized pro-
jective modules over such a ring R. Facchini and Vamos [2] established ana-
logues of Milnor’s theorems for injective and flat modules. Kirkman and
Kuzmanovich [3, Theorem 2] showed that if (1) is a pullback square with j;

surjective, then
lgld R < igflné{lgld Ry + rfdg Ry }. (2)

For commutative rings, Scrivanti [6] sharpened this upper bound on lgld R
and obtained an upper bound on lwd R. Moreover, she gave examples which
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showed that, in a certain case, those results were best possible. Besides,
Cowley showed that it could be beneficial to work only on one side of the
rings in question [1, Example 3.4]. He obtained the following “one-sided”
bound [1, Theorem 3.1]: if (1) is a pullback square with j; surjective, then

lgld B < max{lgld Ry + pdp Ri}- (3)

Our Theorems 9, 10 and Corollaries 12, 13 are the generalizations to
non-commutative rings of Scrivanti’s results. In Theorem 8, we provide
a “one-sided” bound on the left global dimension of a pullback ring. In
Propositions 5, 6 and 7, we give sufficient conditions for an R-module M to
have injective, projective and flat dimensions < n. In Corollaries 11 and 12,
we deduce the upper bounds (3) and (2) as immediate consequences of our
Propositions 5 and 6. Here we relax the conditions and only require i; to be
surjective.

We begin with the following consequence of [2, Theorem 2].

Theorem 1. Let (1) be a pullback diagram with 1, surjective. Then an
R-module M is injective (projective, flat) if and only if Homp(Ry, M) and
Hompg(Ry, M) (Ri®r M and Ry, ®r M) are Ry- and Ry-injective (projective,
flat) modules respectively.

Proof. Set R" = jy(Ry). Since ¢; is a surjection, we obtain
J1(R1) C j2(R) = R". Thus we have another commutative square of rings
and ring homomorphisms

R 25 R,

Lol

R, ——J}—"> R".
It is clear that this diagram is a pullback square with j, : Ry — R" surjective.
So the desired result follows from [2, Theorem 2].

Proposition 2. Let M be an R-module, n be a positive integer, and let
0— ML I Loy

be an injective resolution of M. Let K, denote im(fi41), t = 0. Suppose
that ide(Extﬁ{(Rk,M)) <Kn—10forl=0,1,...,n and k = 1,2. Then
idg, (Homp(Ri, Ki)) Sn—t—=1fort=0,1,...,n and k =1,2.
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Proof. For any n > 1 and k = 1,2, the proof is by induction on t.
For t = 0, if we apply the functor Exty( Rk, —) to the short exact sequence

of R-modules 0 — M — [, N Ky — 0, we obtain an exact sequence of
Ri-modules

0 — Homp(Ri, M) — Homg(Ri,lo) 23 @)

Dy Homp(Ri, Ko) — Exth(Re, M) — 0

and isomorphisms of Ri-modules

Exth(Ry, Ko) ~ Extd (R, M), 1 > 1. (5)

Set Ary = im f;, and break up (4) into two short exact sequences of
Ri-modules:

0 — Hompg(Ry, M) — Hompg( Ry, Ip) LN Aro — 0, (6)

0 — Ago = Hompg(Ry, Ko) — Extg(Ri, M) —> 0. (7

Since Iy is an injective R-module, it can easily be checked that R;-module
Hompg( Ry, Io) is injective. Since idg, (Homp(Ry, M)) < n, we obtain from (6)
that idg, (Axo) < n — 1. At the same time idg, (Extk(Ri, M)) < n — L.
Therefore, using (7), we get idg, (Homp(Ry, Kp)) < n — L.

For t > 1, we apply the functor Exty(R, —) to the short exact sequence
of R-modules 0 — K;.; < [; ety K; — 0. We get an exact sequence of
Ry-modules

0 — HOIIIR(R]C, I{t-—l) — HomR(Rk, It) (fe41)e

s
) Homa(Ri Ki) — BExth(Ri Kie) — 0

(8)

and isomorphisms of Ri-modules
Exth(Re, Ky) ~ ExtdY (R, Ko_y), 1 2 1. (9)

Put A, = im (fi41), and break up (8) into two short exact sequences of
Ri-modules:

0 —s Homp(Ry, Ki-1) — Homg(Ry, I) 129" 4,0 — 0,  (10)

0 — Ay, < Homp(Ry, K:) — Exth(Re, Ki—y) — 0. (11)
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By the inductive hypothesis, we have idg, (Homp(Rk, Ki-1)) € n — t.
Since I; is an injective R-module, Hompg( Ry, I;) is an injective Rx-module.
Therefore, from (10), idg,(Ar:) < n —t — 1. Combining (5) and (9),
we have Extp(Re, K1) ~ ... =~ Exth(By, Ko) ~ Ext4 (R, M). Hence
idp, (Extp( Ry, Ki-1)) = idg, (Extd (Ry, M)) < n —t — 1. Finally, from (11),
we obtain idg, (Homp( R, K:)) < n —t — 1, as required.

The proofs of the following Propositions 3 and 4 are similar to that of
Proposition 2 if we apply the functors Tor?( Ry, —) to the given resolutions.

Proposition 3. Let M be an R-module, n be a positive integer, and let

———+P,,——>P1 P M —0

be a projective resolution of M. Let K; denote ker f;, t = 0. Suppose
that pdg, (Torf(Ry,M)) < n—1 for l = 0,1,...,n and k = 1,2. Then
pdp, (B @r Ki)<n—t—~1fort=0,1,...,n and k=1,2.

Proposition 4. Let M be an R-module, n be a positive integer, and let
. F2 ——) F1 F() M—0

be a flat resolution of M. Let K, denote ker f;, t = 0. Suppose that
fdg, (Torf(Ri,M)) < n —1 forl = 0,1,...,n and k = 1,2. Then
fdr, (Re @r K;) <Sn—t—1fort=0,1,...,nand k=1,2.

Proposition 5. Let (1) be « pullback diagram with iy surjective, M
be an R-module, and let n be a non-negative integer.  Suppose that

idg, (Exth(Re, M)) < n—=Lforl=0,1,...,n andk =1,2. Thenidg M < n.

Proof. For the case n = 0, the result follows from Theorem 1. For n > 1,
consider an injective resolution of R-module M

0— MI 1, 21—

By definition, put K; = im(f;4+1) for ¢t > 0. From Proposition 1, we get that
Ry-module Hompg( Ry, K,-;) is injective (k = 1,2). Hence, by Theorem 1,
K, _; is an injective R-module. This means that idg M < n.

Arguing as above, the reader will easily prove the following analogues of
Proposition 5 for projective and flat dimensions.
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Proposition 6. Let (1) be a pullback diagram with iy surjective, M
be an R-module, and let n be a non-negative integer. Suppose that
dek(Torf‘(Rk,M)) Kn—=10forl =0,1,...,n and k = 1,2. Then
pdp M < n.

Proposition 7. Let (1) be a pullback diagram with 1, surjective, M
be an R-module, and let n be « non-negative integer. Suppose that
fdg, (Torf (R, M)) < n—=l forl=0,1,...,nandk = 1,2. Thenfdg M < n.

Proposition 5 clearly implies the following theorem.

Theorem 8. Let (1) be a pullback diagram with iy surjective, and let n be a
non-negative integer. Suppose that for any R-module M we have that

ide(Ext%(Rk,M)) <Sn—=1 for 1=0,1,...,n and k=1,2.
Then lgld R < n.

Theorem 9. Let (1) be « pullback diagram with iy surjective, and let n be a
non-negative integer. Suppose that for any left ideal J of R we have that

pdg, (Torf(Re, B/J)) Sn—=1 for 1=0,1,...,n and k=1,2.
Thenlgld R < n.

Proof. Let J be a left ideal of R. Proposition 6 shows immediately
that pdg(R/J) < n. Therefore, using Auslander’s theorem, we have
lgld R = sup{pdg(R/J)|J is a left ideal of R} < n.

Theorem 10. Let (1) be a pullback diagram with 1, surjective, and let n be
a non-negative integer. Suppose that for any finitely generated left ideal J
of R we have that

dek(TorF(Rk,R/J)) <n—1 for [=0,1,...,n and k=1,2.
Then lwd R € n.

Proof. Let J be a finitely generated left ideal of R. Propo-
sition 7 evidently implies that fdgr(R/J) < n. Therefore, since
lwd R = sup{pdg(R/J)|J is a finitely generated left ideal of R}, we have
lgld R < n.



Corollary 11. If (1) is a pullback diagram with iy surjective, then

lgld R £ inax{lgld Ry + pdg Ry}

=1,2

Proof. Set ny =lgld Ry, my =pdg By, Ne =ny+mi (kK = 1,2) and
N = max{N;, N,}. It can be assumed that mg, ny < co. Let M be an
R-module and k € {1, 2}. Since pdg Ry = my, we have Exth(Ry, M) =0
for all > m;+1. At the same time, since lgld By = ng, we get
idp, (Exth(Re, M)) < ng = Ne —my < Ny —1 € N — 1 for any
l=0,1, ..., m. Therefore, by Proposition 5, pdg M < N. This means
that lgld R < N.

Similarly, Propositions 6 and 7 allow us to prove Corollaries 12 and 13.
Corollary 12. If (1) is a pullback diagram with i1 surjective, then

| lgld R < {.ll?')é{lgld Ry + ridr Ry}
Corollary 13. If (1) is a pullback diagram with i, surjective, then
IwdR < {E?')é{le Ry + rfdgr Ry}
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