On the global and weak dimensions of pullbacks of non-commutative rings

On the global and weak dimensions of pullbacks of non-commutative rings

Nikolai Kosmatov

All rings will be assumed to have identity elements preserved by ring homomorphisms, and all modules, unless specified otherwise, will be left modules. For a ring S, $\operatorname{Igld} S$ and $\operatorname{Iwd} S$ will denote the left global dimension of S and the left weak global dimension of S, respectively. For an S-module X and a right S-module Y, the projective dimension of X, the injective dimension of X, the flat dimension of X, and the flat dimension of Y are denoted by $\operatorname{pd}_S X$, $\operatorname{id}_S X$, $\operatorname{id}_S X$ and $\operatorname{rfd}_S Y$, respectively.

A commutative square of rings and ring homomorphisms

$$R \xrightarrow{i_1} R_1$$

$$\downarrow_{i_2} \qquad \downarrow_{j_1}$$

$$R_2 \xrightarrow{j_2} R'$$

$$(1)$$

is said to be a pullback (or a cartesian square, or a fibre product) if given $r_1 \in R_1$, $r_2 \in R_2$ with $j_1(r_1) = j_2(r_2)$ there is a unique element $r \in R$ such that $i_1(r) = r_1$ and $i_2(r) = r_2$ (note that if j_2 is a surjection then so is i_1 , but not conversely). The ring R is called the fibre product (or pullback) of R_1 and R_2 over R'.

Assuming that j_2 is surjective, Milnor [5, Chapter 2] characterized projective modules over such a ring R. Facchini and Vámos [2] established analogues of Milnor's theorems for injective and flat modules. Kirkman and Kuzmanovich [3, Theorem 2] showed that if (1) is a pullback square with j_2 surjective, then

$$\operatorname{lgld} R \leqslant \max_{k=1,2} \{ \operatorname{lgld} R_k + \operatorname{rfd}_R R_k \}. \tag{2}$$

For commutative rings, Scrivanti [6] sharpened this upper bound on $\operatorname{lgld} R$ and obtained an upper bound on $\operatorname{lwd} R$. Moreover, she gave examples which

showed that, in a certain case, those results were best possible. Besides, Cowley showed that it could be beneficial to work only on one side of the rings in question [1, Example 3.4]. He obtained the following "one-sided" bound [1, Theorem 3.1]: if (1) is a pullback square with j_2 surjective, then

$$\operatorname{lgld} R \leqslant \max_{k=1,2} \{\operatorname{lgld} R_k + \operatorname{pd}_R R_k\}. \tag{3}$$

Our Theorems 9, 10 and Corollaries 12, 13 are the generalizations to non-commutative rings of Scrivanti's results. In Theorem 8, we provide a "one-sided" bound on the left global dimension of a pullback ring. In Propositions 5, 6 and 7, we give sufficient conditions for an R-module M to have injective, projective and flat dimensions $\leq n$. In Corollaries 11 and 12, we deduce the upper bounds (3) and (2) as immediate consequences of our Propositions 5 and 6. Here we relax the conditions and only require i_1 to be surjective.

We begin with the following consequence of [2, Theorem 2].

Theorem 1. Let (1) be a pullback diagram with i_1 surjective. Then an R-module M is injective (projective, flat) if and only if $\operatorname{Hom}_R(R_1, M)$ and $\operatorname{Hom}_R(R_2, M)$ ($R_1 \otimes_R M$ and $R_2 \otimes_R M$) are R_1 - and R_2 -injective (projective, flat) modules respectively.

Proof. Set $R'' = j_2(R_2)$. Since i_1 is a surjection, we obtain $j_1(R_1) \subset j_2(R_2) = R''$. Thus we have another commutative square of rings and ring homomorphisms

$$R \xrightarrow{i_1} R_1$$

$$\downarrow^{i_2} \qquad \downarrow^{j_1}$$

$$R_2 \xrightarrow{j_2} R''.$$

It is clear that this diagram is a pullback square with $j_2: R_2 \to R''$ surjective. So the desired result follows from [2, Theorem 2].

Proposition 2. Let M be an R-module, n be a positive integer, and let

$$0 \longrightarrow M \xrightarrow{f_0} I_0 \xrightarrow{f_1} I_1 \xrightarrow{f_2} I_2 \longrightarrow \dots$$

be an injective resolution of M. Let K_t denote $\operatorname{im}(f_{t+1})$, $t \geq 0$. Suppose that $\operatorname{id}_{R_k}(\operatorname{Ext}_R^l(R_k, M)) \leq n - l$ for $l = 0, 1, \ldots, n$ and k = 1, 2. Then $\operatorname{id}_{R_k}(\operatorname{Hom}_R(R_k, K_t)) \leq n - t - 1$ for $t = 0, 1, \ldots, n$ and k = 1, 2.

Proof. For any $n \ge 1$ and k = 1, 2, the proof is by induction on t.

For t = 0, if we apply the functor $\operatorname{Ext}_R^*(R_k, -)$ to the short exact sequence of R-modules $0 \longrightarrow M \longrightarrow I_0 \xrightarrow{f_1} K_0 \longrightarrow 0$, we obtain an exact sequence of R_k -modules

$$0 \longrightarrow \operatorname{Hom}_{R}(R_{k}, M) \longrightarrow \operatorname{Hom}_{R}(R_{k}, I_{0}) \xrightarrow{f_{1 \bullet}}$$

$$\xrightarrow{f_{1 \bullet}} \operatorname{Hom}_{R}(R_{k}, K_{0}) \longrightarrow \operatorname{Ext}_{R}^{1}(R_{k}, M) \longrightarrow 0$$

$$(4)$$

and isomorphisms of R_k -modules

$$\operatorname{Ext}_{R}^{l}(R_{k}, K_{0}) \simeq \operatorname{Ext}_{R}^{l+1}(R_{k}, M), \ l \geqslant 1.$$
 (5)

Set $A_{k,0} = \text{im } f_{1*}$ and break up (4) into two short exact sequences of R_k -modules:

$$0 \longrightarrow \operatorname{Hom}_{R}(R_{k}, M) \longrightarrow \operatorname{Hom}_{R}(R_{k}, I_{0}) \xrightarrow{f_{1}} A_{k,0} \longrightarrow 0, \tag{6}$$

$$0 \longrightarrow A_{k,0} \hookrightarrow \operatorname{Hom}_{R}(R_{k}, K_{0}) \longrightarrow \operatorname{Ext}_{R}^{1}(R_{k}, M) \longrightarrow 0. \tag{7}$$

Since I_0 is an injective R-module, it can easily be checked that R_k -module $\operatorname{Hom}_R(R_k, I_0)$ is injective. Since $\operatorname{id}_{R_k}(\operatorname{Hom}_R(R_k, M)) \leq n$, we obtain from (6) that $\operatorname{id}_{R_k}(A_{k,0}) \leq n-1$. At the same time $\operatorname{id}_{R_k}(\operatorname{Ext}_R^1(R_k, M)) \leq n-1$. Therefore, using (7), we get $\operatorname{id}_{R_k}(\operatorname{Hom}_R(R_k, K_0)) \leq n-1$.

For $t \ge 1$, we apply the functor $\operatorname{Ext}_R^*(R_k, -)$ to the short exact sequence of R-modules $0 \longrightarrow K_{t-1} \hookrightarrow I_t \xrightarrow{f_{t+1}} K_t \longrightarrow 0$. We get an exact sequence of R_k -modules

$$0 \longrightarrow \operatorname{Hom}_{R}(R_{k}, K_{t-1}) \longrightarrow \operatorname{Hom}_{R}(R_{k}, I_{t}) \xrightarrow{(f_{t+1})_{*}}$$

$$\stackrel{(f_{t+1})_{*}}{\longrightarrow} \operatorname{Hom}_{R}(R_{k}, K_{t}) \longrightarrow \operatorname{Ext}_{R}^{1}(R_{k}, K_{t-1}) \longrightarrow 0$$

$$(8)$$

and isomorphisms of R_k -modules

$$\operatorname{Ext}_{R}^{l}(R_{k}, K_{t}) \simeq \operatorname{Ext}_{R}^{l+1}(R_{k}, K_{t-1}), \ l \geqslant 1.$$
 (9)

Put $A_{k,t} = \text{im } (f_{t+1})_*$ and break up (8) into two short exact sequences of R_k -modules:

$$0 \longrightarrow \operatorname{Hom}_{R}(R_{k}, K_{t-1}) \longrightarrow \operatorname{Hom}_{R}(R_{k}, I_{t}) \xrightarrow{(f_{t+1})^{\bullet}} A_{k,0} \longrightarrow 0, \tag{10}$$

$$0 \longrightarrow A_{k,t} \hookrightarrow \operatorname{Hom}_{R}(R_{k}, K_{t}) \longrightarrow \operatorname{Ext}_{R}^{1}(R_{k}, K_{t-1}) \longrightarrow 0. \tag{11}$$

By the inductive hypothesis, we have $\mathrm{id}_{R_k}(\mathrm{Hom}_R(R_k,K_{t-1}))\leqslant n-t$. Since I_t is an injective R-module, $\mathrm{Hom}_R(R_k,I_t)$ is an injective R_k -module. Therefore, from (10), $\mathrm{id}_{R_k}(A_{k,t})\leqslant n-t-1$. Combining (5) and (9), we have $\mathrm{Ext}_R^1(R_k,K_{t-1})\simeq\ldots\simeq\mathrm{Ext}_R^t(R_k,K_0)\simeq\mathrm{Ext}_R^{t+1}(R_k,M)$. Hence $\mathrm{id}_{R_k}(\mathrm{Ext}_R^1(R_k,K_{t-1}))=\mathrm{id}_{R_k}(\mathrm{Ext}_R^{t+1}(R_k,M))\leqslant n-t-1$. Finally, from (11), we obtain $\mathrm{id}_{R_k}(\mathrm{Hom}_R(R_k,K_t))\leqslant n-t-1$, as required.

The proofs of the following Propositions 3 and 4 are similar to that of Proposition 2 if we apply the functors $\operatorname{Tor}_{*}^{R}(R_{k}, -)$ to the given resolutions.

Proposition 3. Let M be an R-module, n be a positive integer, and let

$$\dots \longrightarrow P_2 \xrightarrow{f_2} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \longrightarrow 0$$

be a projective resolution of M. Let K_t denote $\ker f_t$, $t \geq 0$. Suppose that $\operatorname{pd}_{R_k}(\operatorname{Tor}_l^R(R_k, M)) \leq n - l$ for $l = 0, 1, \ldots, n$ and k = 1, 2. Then $\operatorname{pd}_{R_k}(R_k \otimes_R K_t) \leq n - t - 1$ for $t = 0, 1, \ldots, n$ and k = 1, 2.

Proposition 4. Let M be an R-module, n be a positive integer, and let

$$\ldots \longrightarrow F_2 \xrightarrow{f_2} F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \longrightarrow 0$$

be a flat resolution of M. Let K_t denote $\ker f_t$, $t \geq 0$. Suppose that $\operatorname{fd}_{R_k}(\operatorname{Tor}_l^R(R_k, M)) \leq n - l$ for $l = 0, 1, \ldots, n$ and k = 1, 2. Then $\operatorname{fd}_{R_k}(R_k \otimes_R K_t) \leq n - t - 1$ for $t = 0, 1, \ldots, n$ and k = 1, 2.

Proposition 5. Let (1) be a pullback diagram with i_1 surjective, M be an R-module, and let n be a non-negative integer. Suppose that $id_{R_k}(\operatorname{Ext}_R^l(R_k, M)) \leq n-l$ for $l=0, 1, \ldots, n$ and k=1,2. Then $id_R M \leq n$.

Proof. For the case n = 0, the result follows from Theorem 1. For $n \ge 1$, consider an injective resolution of R-module M

$$0 \longrightarrow M \xrightarrow{f_0} I_0 \xrightarrow{f_1} I_1 \xrightarrow{f_2} I_2 \longrightarrow \dots$$

By definition, put $K_t = \operatorname{im}(f_{t+1})$ for $t \ge 0$. From Proposition 1, we get that R_k -module $\operatorname{Hom}_R(R_k, K_{n-1})$ is injective (k = 1, 2). Hence, by Theorem 1, K_{n-1} is an injective R-module. This means that $\operatorname{id}_R M \le n$.

Arguing as above, the reader will easily prove the following analogues of Proposition 5 for projective and flat dimensions.

Proposition 6. Let (1) be a pullback diagram with i_1 surjective, M be an R-module, and let n be a non-negative integer. Suppose that $\operatorname{pd}_{R_k}(\operatorname{Tor}_l^R(R_k, M)) \leqslant n - l$ for $l = 0, 1, \ldots, n$ and k = 1, 2. Then $\operatorname{pd}_R M \leqslant n$.

Proposition 7. Let (1) be a pullback diagram with i_1 surjective, M be an R-module, and let n be a non-negative integer. Suppose that $\mathrm{fd}_{R_k}(\mathrm{Tor}_l^R(R_k,M)) \leqslant n-l$ for $l=0,1,\ldots,n$ and k=1,2. Then $\mathrm{fd}_R M \leqslant n$.

Proposition 5 clearly implies the following theorem.

Theorem 8. Let (1) be a pullback diagram with i_1 surjective, and let n be a non-negative integer. Suppose that for any R-module M we have that

$$\operatorname{id}_{R_k}(\operatorname{Ext}_R^l(R_k, M)) \leqslant n - l \text{ for } l = 0, 1, \ldots, n \text{ and } k = 1, 2.$$

Then $\operatorname{lgld} R \leqslant n$.

Theorem 9. Let (1) be a pullback diagram with i_1 surjective, and let n be a non-negative integer. Suppose that for any left ideal J of R we have that

$$\operatorname{pd}_{R_{k}}(\operatorname{Tor}_{l}^{R}(R_{k}, R/J)) \leq n - l \text{ for } l = 0, 1, ..., n \text{ and } k = 1, 2.$$

Then $\operatorname{lgld} R \leq n$.

Proof. Let J be a left ideal of R. Proposition 6 shows immediately that $\operatorname{pd}_R(R/J) \leq n$. Therefore, using Auslander's theorem, we have $\operatorname{lgld} R = \sup \{\operatorname{pd}_R(R/J) \mid J \text{ is a left ideal of } R\} \leq n$.

Theorem 10. Let (1) be a pullback diagram with i_1 surjective, and let n be a non-negative integer. Suppose that for any finitely generated left ideal J of R we have that

$$fd_{R_k}(Tor_l^R(R_k, R/J)) \leq n-l \text{ for } l=0, 1, ..., n \text{ and } k=1, 2.$$

Then $\operatorname{lwd} R \leqslant n$.

Proof. Let J be a finitely generated left ideal of R. Proposition 7 evidently implies that $\operatorname{fd}_R(R/J) \leq n$. Therefore, since $\operatorname{lwd} R = \sup\{\operatorname{pd}_R(R/J) \mid J \text{ is a finitely generated left ideal of } R\}$, we have $\operatorname{lgld} R \leq n$.

Corollary 11. If (1) is a pullback diagram with i_1 surjective, then

$$\operatorname{lgld} R \leqslant \max_{k=1,2} \{\operatorname{lgld} R_k + \operatorname{pd}_R R_k\}.$$

Proof. Set $n_k = \operatorname{Igld} R_k$, $m_k = \operatorname{pd}_R R_k$, $N_k = n_k + m_k$ (k = 1, 2) and $N = \max\{N_1, N_2\}$. It can be assumed that $m_k, n_k < \infty$. Let M be an R-module and $k \in \{1, 2\}$. Since $\operatorname{pd}_R R_k = m_k$, we have $\operatorname{Ext}_R^l(R_k, M) = 0$ for all $l \geqslant m_k + 1$. At the same time, since $\operatorname{Igld} R_k = n_k$, we get $\operatorname{Id}_{R_k}(\operatorname{Ext}_R^l(R_k, M)) \leqslant n_k = N_k - m_k \leqslant N_k - l \leqslant N - l$ for any $l = 0, 1, \ldots, m_k$. Therefore, by Proposition 5, $\operatorname{pd}_R M \leqslant N$. This means that $\operatorname{Igld} R \leqslant N$.

Similarly, Propositions 6 and 7 allow us to prove Corollaries 12 and 13.

Corollary 12. If (1) is a pullback diagram with i_1 surjective, then

$$\operatorname{lgld} R \leqslant \max_{k=1,2} \{\operatorname{lgld} R_k + \operatorname{rfd}_R R_k\}.$$

Corollary 13. If (1) is a pullback diagram with i_1 surjective, then

$$\operatorname{lwd} R \leqslant \max_{k=1,2} \{\operatorname{lwd} R_k + \operatorname{rfd}_R R_k\}.$$

Acknowledgement. The authour would like to thank Professor A. I. Generalov for his help and guidance.

References

- [1] K. M. COWLEY. One-sided bounds and the vanishing of Ext. J. Algebra, 190 (1997), 361-371.
- [2] A. FACCHINI, P. VÁMOS. Injective modules over pullbacks. J. London Math. Soc., 31 (1985), 425-438.
- [3] E. KIRKMAN, J. KUZMANOVICH. On the global dimension of fibre products. Pacific J. Math., 134 (1988), 121–132.
- [4] S. MACLANE. Homology. Springer-Verlag, New York, 1963.

- [5] J. MILNOR. Introduction to Algebraic K-theory. Annals Math. Studies, vol. 72, Princeton University Press, Princeton, 1971.
- [6] S. SCRIVANTI. Homological dimension of pullbacks. Math. Scand., 71 (1992), 5-15.

Equipe de Mathématiques U.M.R. 6623 du C.N.R.S. 16, route de Gray 25030 Besançon Cedex France

Department of Mathematics and Mechanics Saint-Petersburg State University Bibliotechnaya pl. 2 Saint-Petersburg, 198904, Russia

E-Mail: koko@nk1442.spb.edu