H. SUZUKI'S GENERALIZATION OF HILBERT'S TH. 94

H. SUZUKI'S GENERALIZATION OF HILBERT'S TH.94

Katsuya MIYAKE

1. INTRODUCTION

Recently, H. Suzuki [S] succeeded in giving a proof to the following theorem and an affirmative answer to a classical problem (cf.e.g. Miyake [M1] \sim [M3] and Jaulent [J]):

Theorem. Let k be an algebraic number field of finite degree, and K be an unramified abelian extension of k. Then at least [K:k] ideal classes of k become principal in K.

In case that K/k is cyclic of prime degree, we have Hilbert's Theorem 94 in his celebrated "Zahlbericht" [H]. We also have the principal ideal theorem when K is Hilbert's class field of k. The content of the present theorem has been confirmed in various cases, namely, in case that K/k is cyclic in general and in those cases which Terada's theorem is capable to cover; however, it has also been aware of, by group theoretic examples, that all cases must not have been covered by these (cf.[M3]).

It may be worth mentioning that Suzuki's proof is rather elementary; in fact, it consists of a number of analyses of group rings of a finite abelian group and nothing else.

Acknowledgement This article was prepared while the author was a visiting member of Equipe de Mathématiques de Besançon, C.N.R.S.- U.R.741, Université de Franche-Comté. He would like to express his heartfelt gratitude to the staffs, especially to Professors J. Cougnard and T. Nguyen Quang Do, for their hospitality.

2. THE TRANSLATION INTO GROUP THEORY BY ARTIN'S RECIPROCITY LAW

Let k and K be as in the theorem, and \widetilde{k} and \widetilde{k} be their absolute class fields, respectively. Put

 $H = Gal(\tilde{K}/K)$, $A = Gal(\tilde{K}/K)$, and G = Gal(K/k) = H/A.

Then we have the transfer homomorphism

$$\nabla_{H \to A} : H/[H,H] \to A$$

where [H,H] is the commutator subgroup of H which is equal to $\text{Gal}(\widetilde{\kappa}/\widetilde{\kappa})$. Therefore, the quotient group $\text{H/[H,H]} = \text{Gal}(\widetilde{\kappa}/k)$ is isomorphic to the absolute ideal class group Cl(k) of k. The kernel of $\overline{V}_{H\to A}$ corresponds exactly to the subgroup of Cl(k) consisting of those classes whose ideals become principal in K.

It is also known that everything can be reduced to "p-primary parts" for prime factors of |C1(k)|.

3. ARTIN'S SPLITTING MODULE. Through inner automorphisms of H, G acts on A; here we use additive notation for the G-module A. Let $c(g,h) \in A$, $g,h \in G$, be a 2-cocycle belonging to the 2-cohomology class of the group extension

$$1 \rightarrow A \rightarrow H \rightarrow G \rightarrow 1$$
.

Let B:= $\bigoplus_{g \in G} - \{1\}^{\mathbb{Z}.b(g)}$ be a free abelian group generated by a

set of symbols $\{b(g)|g\in G-\{1\}\}$, and put M:= A \oplus B. Then we have a well-defined action of G on M by setting

$$g.b(h) = b(gh) - b(g) + c(g,h), g,h \in G.$$

Since c(g,h) lies in A, we also have an exact sequence of G-modules,

$$0 \rightarrow A \rightarrow M \rightarrow I_s \rightarrow 0$$

with nat: $M \to I_s$ defined by nat(b(g)) = g-1, g \in G, where I_s is the augmentation ideal of $\mathbb{Z}[G]$.

It is easy to see that the quotient module $M/I_{\text{s}}M$ is isomorphic to H/[H,H]. Let

$$Tr_s: M/I_s.M \rightarrow M$$

be the G-homomorphism obtained by multiplication of

$$\mathsf{Tr}_{\mathsf{G}} := \sum_{\mathsf{g} \in \mathsf{G}} \mathsf{g} \in \mathbb{Z}[\mathsf{G}].$$

Then it is clear that $Im(Tr_s)$ lies in Ker(nat) = A. Hence we have a commutative diagram,

In particular, we have

$$|Ker(\overline{V}_{H\rightarrow \Delta})| = |H^{-1}(G,M)|.$$

Our purpose is to show

- (3.1) the order |G| of G divides $|H^{-1}(G,M)|$.
- **4. THE FIRST REDUCTION.** Fix a basis $\overline{\eta}_i$, i=1,...,m', of the finite abelian group $M/I_g.M$ ($\cong H/[H,H] \cong Cl(k)$) so that it is a direct product $\prod_i \langle \overline{\eta}_i \rangle$.

Put $q_i = |\langle \overline{\eta}_i \rangle|$. Take a transversal η_i of each $\overline{\eta}_i$ in M and choose $\eta_i \in I_e M$, j = m'+1,...,m, so that $\eta_1,...,\eta_m$ generate whole M over $\mathbb{Z}[G]$. Put $q_i = 1$, j = m'+1,...,m. Let $\bigoplus_{i=1}^m \mathbb{Z}[G]$ be a direct sum of m copies of $\mathbb{Z}[G]$ and define a surjective G-homomorphism $\rho: \bigoplus_i \mathbb{Z}[G] \to M$ by

$$\rho(e_1) = \eta_1, e_2 = (0,...,0,1,0,...,0) \in \bigoplus_{i=1}^m \mathbb{Z}[G].$$

We have a commutative diagram of exact sequences with ϕ =natop,

$$0 \to \text{Ker } \phi \to \oplus^m \mathbb{Z}[G] \xrightarrow{\varphi} I_s \to 0$$

$$\downarrow \qquad \qquad \downarrow^p \qquad \qquad ||$$

$$0 \to A \rightarrow M \rightarrow I_s \to 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \qquad 0$$

Since φ is a G-homomorphism, the image of $Tr_{\mathfrak{g}} : \mathfrak{G}^m \mathbb{Z}[G] \to \mathfrak{G}^m \mathbb{Z}[G]$ lies in $Ker(\varphi)$. For each $i, 1 \leqslant i \leqslant m$, $\rho(q, e_i)$ belongs to $I_{\mathfrak{g}} : M = \rho(\mathfrak{G}^m I_{\mathfrak{g}})$; therefore there exists $u_i \in Ker(\rho)$ such that

$$u_i = q_i.e_i \mod \bigoplus^m I_{g_i} i = 1,...,m.$$

Let U:= $\langle u_1, ..., u_m \rangle$ be the G-submodule of M which is generated by these u_i over $\mathbb{Z}[G]$. Then ρ induces an isomorphism

$$\rho: \bigoplus^m \mathbb{Z}[G]/(U+\bigoplus^m I_G) \xrightarrow{\sim} M/I_G.M,$$

and maps

$$\text{Ker}(\text{Tr}_{\text{s}}; \oplus^{\text{m}} \mathbb{Z}[\text{G}]/(\text{U+} \oplus^{\text{m}}\text{I}_{\text{s}}) \to \text{Ker}(\phi)/\text{U})$$

injectively into

Therefore, it is sufficient, for our purpose, to show

Lemma 1. Suppose that a surjective G-homomorphism

$$\varphi: \oplus^m \mathbb{Z}[G] \to I_6$$

is given. Let q_i , i=1,...,m, be positive integers and $U=\langle u_1,...,u_m\rangle$ be a $\mathbb{Z}[G]$ -submodule of $Ker(\phi)$ such that

$$u_i = q_i \cdot e_i \mod \bigoplus^m l_n$$
, $i = 1,...,m$.

Then |G| divides |H-1(G,Wa)| where

$$W_0 := \bigoplus^m \mathbb{Z}[G]/U$$
.

- 5. **A TINY TRICK.** Put n = |G|. It is sufficient to prove Lemma 1 under an additional condition,
 - (5.1) Each q is a multiple of n for i = 1,...,m.

In fact, let $\xi\colon \oplus^m \mathbb{Z}[G]\to \oplus^m \mathbb{Z}[G]$ be an injective G-homomorphism such that

$$\xi(x) = n.x, x \in \bigoplus^m \mathbb{Z}[G].$$

Put U':= $\xi(U)$ and W':= $\oplus^m \mathbb{Z}[G]/U'$. Then we have

$$H^{-1}(G,W_{\circ}) \simeq H^{\circ}(G,U),$$

 $H^{-1}(G,W_{\circ}') \simeq H^{\circ}(G,U'),$

and also

$$H^{\circ}(G,U) \simeq H^{\circ}(G,U')$$

because U and U' are isomorphic. Hence we have

$$H^{-1}(G,W_{\circ}) \simeq H^{-1}(G,W_{\circ}^{*}).$$

For U' in $\oplus^m \mathbb{Z}[G]$, we have the condition (5.1).

The merit of (5.1) is to make the structure of

$$_{n}(W_{o}/I_{e}.W_{o}):=\{x\in W_{o}/I_{e}.W_{o}\mid n.x=0\}$$

simple enough for us to handle it; under (5.1), this is isomorphic to $\oplus^m \mathbb{Z}/n\mathbb{Z}$, and generated by

$$q_i n^{-1}$$
. e_i , $i = 1,...,m$.

From the congruence, $Tr_6 = n \mod l_6$, it follows that

$$Ker(Tr_e:W_o/I_e.W_o \rightarrow Ker(\phi)/U) \subset {}_n(W_o/I_e.W_o)$$

and

$$\operatorname{Im} (\operatorname{Tr}_{\mathfrak{s}^{\perp}_{\mathfrak{o}}} \operatorname{W}_{\mathfrak{o}} / \operatorname{I}_{\mathfrak{s}^{\perp}} \operatorname{W}_{\mathfrak{o}}) \to \operatorname{Ker}(\mathfrak{o}) / \operatorname{U}) \subset \operatorname{Ker}(\mathfrak{o}) \cap (\operatorname{U} + \oplus^{m} \operatorname{I}_{\mathfrak{s}^{\perp}}) / \operatorname{U}.$$

Hereafter, we assume (5.1).

It should be also noted that we have

$$U \cap \bigoplus^{m} I_{e} = I_{e}.U;$$

in fact, we easily see this from the facts,

$$U/|I_{\mathfrak{s}}.U\simeq \oplus^m \mathbb{Z}_+$$

$$U/U \cap \oplus^m I_s \simeq (U + \oplus^m I_s)/\oplus^m I_s \simeq \oplus^m \mathbb{Z}_s$$

and

$$I_{\mathbf{g}}, \mathbf{U} \subset \mathbf{U} \cap \boldsymbol{\oplus}^{\mathsf{m}} I_{\mathbf{g}}$$

6. THE SECOND REDUCTION. Now put

$$y_i := Tr_{\sigma}.q_i n^{-1}.e_i - u_{i,j}, i = 1,...,m_i$$

and denote the $\mathbb{Z}[G]$ -submodule of $\oplus^m \mathbb{Z}[G]$ which is generated by these y, by Y. Then we have

$$Y = \langle y_1, \dots, y_m \rangle \subset \bigoplus^m I_{\mathfrak{g}} \cap \operatorname{Ker}(\varphi)$$

and

$$I_{e} \cdot Y = I_{e} \cdot U = U \cap \bigoplus^{m} I_{e}$$

Therefore, we have a natural isomorphism

$$\mathsf{Ker}(\varphi) \cap (\mathsf{U} + \oplus^{\mathsf{m}} \mathsf{I}_{\mathsf{s}})/\mathsf{U} \simeq \mathsf{Ker}(\varphi) \cap \oplus^{\mathsf{m}} \mathsf{I}_{\mathsf{s}}/\mathsf{U} \cap \oplus^{\mathsf{m}} \mathsf{I}_{\mathsf{s}} \cap \mathsf{Ker}(\varphi)$$
$$= \mathsf{Ker}(\varphi) \cap \oplus^{\mathsf{m}} \mathsf{I}_{\mathsf{s}}/\mathsf{I}_{\mathsf{s}}. \mathsf{Y}$$

because U lies in $Ker(\phi)$, and a commutative diagram

where η is the homomorphism which maps the i-th generator

$$(0,...,0,1,0,...,0) \text{ of } \oplus^m \mathbb{Z}/n\mathbb{Z} \text{ to y, mod } I_6.Y, i=1,...,m. \text{ Since } \\ \text{Ker}(\text{Tr}_6:W_0/I_6.W_0 \longrightarrow \text{Ker}(\phi)/U)$$

is isomorphic to $Ker(\eta)$, it is now sufficient to show

Lemma 2. For an m-generated $\mathbb{Z}[G]$ -module Y of Ker(ϕ) $\cap \oplus^m I_{\epsilon}$, the order $|Y|/|I_{\epsilon}|$. Y | divides n^{m-1} .

7. THE THIRD REDUCTION. Our $\mathbb{Z}[G]$ -homomorphism φ induces an exact sequence.

$$0 \to \operatorname{Ker}(\varphi) \cap \oplus^{m} I_{n} \to \oplus^{m} I_{n} \to I_{n}^{2} \to 0,$$

and then

$$0 \to (\mathsf{Ker}(\varphi) \cap \oplus^m \mathsf{I}_6) \otimes_{\mathbb{Z}} \mathbb{Q} \to (\oplus^m \mathsf{I}_6) \otimes_{\mathbb{Z}} \mathbb{Q} \to \mathsf{I}_6^2 \otimes_{\mathbb{Z}} \mathbb{Q} \to 0.$$

Let us naturally consider I, $\otimes_{\mathbb{Z}}\mathbb{Q}$ a submodule of $\mathbb{Q}[G]$. Put

$$\varepsilon_0 := 1 - 1/n$$
. Tr₆.

Then $I_6\otimes\mathbb{Q}$ coincides with the subalgebra ϵ_o . $\mathbb{Q}[G]$ of $\mathbb{Q}[G]$ because ϵ_o .(g-1)=g-1 for $g\in G$. Moreover, we have

$$\varepsilon_{o}^{z} = \varepsilon_{o} = 1/n$$
, $\sum_{g \in G} (1-g)$,

and hence $I_6^2 \otimes \mathbb{Q} = I_6 \otimes \mathbb{Q}$. Since representations of G over \mathbb{Q} are completely reducible, the last exact sequence shows that there exists a $\mathbb{Q}[G]$ -isomorphism

$$\rho\colon (\mathsf{Ker}(\varphi) \cap \oplus^m | I_{\mathfrak{s}}) \otimes_{{\mathbb Z}} \mathbb{Q} \xrightarrow{\sim} (| \oplus^{m-1} I_{\mathfrak{s}}) \otimes_{{\mathbb Z}} \mathbb{Q}.$$

We fix such a ρ and identify Y = $\langle y_1, \ldots, y_m \rangle$ with $\rho(Y)$ = $\langle \, \rho(y_1), \ldots, \rho(y_m) \rangle$ for simplicity.

Now we construct a good m-generated $\mathbb{Z}[G]$ -submodule

$$Y':=\langle y_1',\ldots,y_m'\rangle$$

of $(\oplus^{m-1}I_{\mathfrak o})\otimes \mathbb Q$ with a surjective $\mathbb Z[G]$ -homomorphism $\pi\colon Y'\to Y;$ then we see that

(7.1) |Y/I_e.Y| divides |Y'/I_e.Y'|;

hence it is sufficient to show Lemma 2 for Y' in place of Y: Since $I_c\otimes \mathbb{Q}$ is a direct sum of (commutative) fields over \mathbb{Q} , let F be a simple component of it and ϵ be the corresponding idempotent.

We have $F = \epsilon.(I_6 \otimes \mathbb{Q}) = \epsilon. \mathbb{Q}[G], \epsilon^{\epsilon} = \epsilon \in \mathbb{Q}[G].$

Then $\epsilon[(\oplus^{m-1}I_s)\otimes\mathbb{Q}]$ is a vector space over F of dimension m-1. Therefore $\epsilon(Y\otimes_{\mathbb{Z}}\mathbb{Q})$ is a subspace of dimension at most m-1. Suppose that

$$\mathcal{E}[(y_1,...,y_{m-1})\otimes_{\mathbb{Z}}\mathbb{Q}]\neq\mathcal{E}.(Y\otimes\mathbb{Q})$$

where $\langle y_1,...,y_{m-1}\rangle$ is the (m-1)-generated $\mathbb{Z}[G]$ -submodule of Y. Then $\epsilon.y_1,...,\epsilon.$ y_{m-1} are linearly dependent over F. Therefore, if we choose $N\in\mathbb{N}, \neq 0$, so that $N.\epsilon\in\mathbb{Z}[G]$, and some $i,1\leqslant i\leqslant m-1$, we have

$$\epsilon[\langle y_1, ..., y_{_{m-1}}, y, + N.\epsilon. y_m, y_{_{m-1}}, y_{_{m-1}}\rangle \otimes_{\mathbb{Z}} \mathbb{Q}] = \epsilon(Y \otimes \mathbb{Q}).$$

If necessary, we replace the first m-1 elements of the generators of Y in this manner for every simple component F of $I_s\otimes \mathbb{Q}.$ Then we may assume that

$$\langle y_1, ..., y_{m-1} \rangle \otimes_{\mathbb{Z}} \mathbb{Q} = Y \otimes \mathbb{Q}$$

for simplicity. Define a $\mathbb{Q}[\mathsf{G}]$ -homomorphism

$$\pi: (\oplus^{m-1} |_{\mathfrak{s}}) \otimes \mathbb{Q} \longrightarrow \vee \otimes \mathbb{Q}$$

bu setting

$$\pi(\ \widetilde{e}_{\cdot})=y_{\cdot,\cdot}\ \widetilde{e}_{\cdot,=}\ (0,\dots,0,\varepsilon_{0},\ 0,\dots,0),\ i=1,\dots,m-1,$$

and take an element $y\in (\oplus^{m-1}I_s)\otimes \mathbb{Q}$ such that $\pi(y)=y_m$. Then the $\mathbb{Z}[G]\text{-submodule}$

$$Y' = \langle \widetilde{e}_1, ..., \widetilde{e}_{m-1}, y \rangle$$

is the desired one.

Note also that $I_6.Y'$ contains $\oplus^{m-1}I_6$ because we have $\epsilon_o.(g-1)=g-1$ for $g\in G.$

To analyse Y'/I_s.Y', let

$$\operatorname{pr:} \left(\right. \oplus^{\operatorname{m-1}} \mathsf{I}_{\operatorname{e}} \right) \otimes \mathbb{O} \xrightarrow{} \left. \left(\right. \oplus^{\operatorname{m-1}} \mathsf{I}_{\operatorname{e}} \right) \otimes \mathbb{O} / \left. \oplus^{\operatorname{m-1}} \right. \mathsf{I}_{\operatorname{e}}$$

be the natural projection. We identify the last G-module with

$$(\oplus^{m\cdot 1}I_6)\otimes_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z})\ (\in (\oplus^{m\cdot 1}\mathbb{Z}[G])\otimes_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z})).$$

Then we have

$$pr(|\hat{e}_i|) \equiv 1/n. \sum_{g \in G} (1-g).e_i \equiv (1-1/n.Tr_s).e_i \mod \mathfrak{B}^{m-1}I_s$$

for i = 1,...,m-1. It is clear that we have

g.
$$pr(\tilde{e}_i) = pr(\tilde{e}_i)$$
, $i = 1,...,m$,

for every $g \in G$. Furthermore, we can easily see, in a straight forward way, that

$$[(\oplus^{m-1} I_6) \otimes (\mathbb{D}/\mathbb{Z})]^6 = \langle \operatorname{pr}(\widetilde{e}_1), \dots, \operatorname{pr}(\widetilde{e}_{m-1}) \rangle \simeq \oplus^{m-1} \mathbb{Z}/n\mathbb{Z}.$$

Let M:= $\langle pr(y) \rangle$ be the mono-generated $\mathbb{Z}[G]$ -submodule of $(\oplus^{m-1} I_G) \otimes (\mathbb{Q}/\mathbb{Z})$. Then we have

$$\begin{split} |Y'/I_{6},Y'| &= |(M+\langle pr(\ (\widetilde{e}_{1}),\ldots,pr(\widetilde{e}_{m-1})\rangle)/I_{6},M| \\ &= |(M+[(\oplus^{m-1}I_{6})\otimes(\mathbb{Q}/\mathbb{Z})]^{6})\ /I_{6},M| \\ &= |M/I_{6},M|,|(M+[(\oplus^{m-1}I_{6})\otimes(\mathbb{Q}/\mathbb{Z})]^{6})/M| \\ &= |M/I_{6},M|,|[(\oplus^{m-1}I_{6})\otimes(\mathbb{Q}/\mathbb{Z})]^{6}|/|(M\cap[(\oplus^{m-1}I_{6})\otimes(\mathbb{Q}/\mathbb{Z})]^{6}| \\ &= n^{m-1}.|H^{-1}(G,M)|/|H^{0}(G,M)|. \end{split}$$

Hence, it is sufficient to show

Lemma 3. Let G be a finite abelian group and M be a mono-generated $\mathbb{Z}[G]$ -module of finite order. Then the order of $H^{-1}(G,M)$ divides that of $H^{0}(G,M)$.

8. THE FINAL STEP. We give a proof to Lemma 3.

Fix a positive integer r, and consider the group ring $\mathbb{Z}/r\mathbb{Z}[G]$ over the finite ring $\mathbb{Z}/r\mathbb{Z}$. We have a standard perfect pairing

$$\mathbb{Z}/r\mathbb{Z}[G] \times \mathbb{Z}/r\mathbb{Z}[G] \to \mathbb{Q}/\mathbb{Z}$$

by setting

$$(g,h){:=}\ 1/r,\,\delta_{q,h},\ g,h\in G,$$

where $\delta_{q,h}$ is a Kronecker δ . Let

inv:
$$\mathbb{Z}/r\mathbb{Z}[G] \to \mathbb{Z}/r\mathbb{Z}[G]$$

be an automorphism of the group ring given by

$$inv(g) = g^{-1}, g \in G.$$

Note that G is abelian.

For a direct sum $\oplus^m \mathbb{Z}/r\mathbb{Z}[G]$, we also have a perfect pairing

$$(w,w'):=\sum_{i=1}^{m}(w_{i},w_{i}')$$

 $w=(w_{1},...,w_{m}'), w'=(w_{1},...,w_{m}')\in \oplus^{m}\mathbb{Z}/r\mathbb{Z}[G].$

For the given M of Lemma 3,, take a $\mathbb{Z}/r\mathbb{Z}[G]$ -presentation of rank m (say) of its dual M^ for some r and m. Then we have an injective $\mathbb{Z}[G]$ -homomorphism

because of the perfect pairing of the last algebra. Take a generator $v=(v_1,\ldots,v_m)\in \oplus^m \mathbb{Z}/r\mathbb{Z}[G]$ of M.

Then for $w = (w_1, ..., w_m) \in \mathfrak{B}^m \mathbb{Z}/r\mathbb{Z}[G]$, and for $a \in \mathbb{Z}[G]$, we have

$$(a.v,w) = 0 \text{ for } \forall a \in \mathbb{Z}[G]$$

$$\Leftrightarrow \sum_{i=1}^{m} (a.v_i, w_i) = 0 \text{ for } \forall a \in \mathbb{Z}[G]$$

$$\Leftrightarrow$$
 $(a, \sum_{i=1}^{m} \text{inv}(v_i).w_i) = 0 $\forall a \in \mathbb{Z}[6]$$

$$\Leftrightarrow \sum_{i=1}^{m} inv(v_i).w_i = 0.$$

Hence the orthogonal M^{\perp} of M is given by

$$\mathsf{M}^{\perp} = \mathsf{Ker}(\mathsf{inv}(\mathsf{v}) :: \oplus^{\mathsf{m}} \ \mathbb{Z}/\mathsf{r}\mathbb{Z}[\mathsf{G}] \longrightarrow \mathbb{Z}/\mathsf{r}\mathbb{Z}[\mathsf{G}])$$

where inv(v), is the homomorphism defined by

inv(v).w:=
$$\sum_{i=1}^{m}$$
 inv(v,).w,,

$$W=(W_1,\ldots,W_m)\in \ \oplus^m \ \mathbb{Z}/r\mathbb{Z}[G].$$

Then we have

$$M^{\triangle} \simeq Im(inv(v).)$$

and

$$(M^s)^{\triangle} \simeq Im(inv(v).)/I_s$$
. $Im(inv(v).)$.

Furthermore, since we have inv(I₆) = I₆, the automorphism inv: $\mathbb{Z}[G] \to \mathbb{Z}[G]$ induces an isomorphism

$$(M^6)^{\wedge} \simeq Im(v.)/I_6.Im(v.)$$

where v.: $\oplus^m \mathbb{Z}/r\mathbb{Z}[G] \longrightarrow \mathbb{Z}/r\mathbb{Z}[G]$ is the homomorphism defined in the same way as inv(v). was. Put $q = |M^\circ|$. Then we have

$$q = |(M^6)^{\land}| = |Im(v.)/I_6.Im(v.)|.$$

Now there exist two matrices $U\in M(m,\mathbb{Z})$ and $J\in M(m,I_s)$ such that

$$v.U = v.J$$
 and det $(U) = q$

because

$$Im(v.) = \langle v_1, \dots, v_m \rangle = \mathbb{Z}.v_1 + \dots + \mathbb{Z}.v_m + I_s.I_m(v.)$$

and

$$I_{g}.I_{m}(v_{\cdot}) = I_{g}.v_{1} + ... + I_{g}.v_{m}$$

Therefore we have

$$det(U-J).v = 0 \text{ in } \mathbb{Z}/r\mathbb{Z}[G].$$

This implies

$$q.(M/I_6.M) = 0$$

because $det(U - J) = det(U) = q \mod I_s$. Since we have

$$M = \mathbb{Z}[G].v = \mathbb{Z}.v + I_{G}.M,$$

 $M/I_6.M$ is a cyclic group whose order divides $q = |M^6|$. Furthermore we have

$$|M/Ker(Tr_s: M \rightarrow M)| = |Tr_s.M|$$

because $|M| < \infty$. Therefore we see

$$|H^{\circ}(G,M)| = q/|Tr_{\epsilon}M| = (q/|M/I_{\epsilon}M|). |M/I_{\epsilon}M|/|M/Ker(Tr_{\epsilon})| = (q/|M/I_{\epsilon}M|). |H^{-1}(G,M)|.$$

Since $q/|M/I_{\rm g}.M|$ is an integer as was seen above, this proves Lemma 3.

Hence, at the same time, Lemmas 1 and 2 are also proved, and so is our theorem.

REFERENCES

- [H] D. Hilbert. Die Theorie der algebraischen Zahlkörper, Jber. dt. Math.-Ver.4 (1897), 175-546 = Gesam. Abh. I, 63-363.
- [J] J.-F. Jaulent. L'état actuel du problème de la capitulation, Séminaire de Théorie des Nombres de Bordeaux, Année 1987-1988- Exposé n° 17.
- [M1] K. Miyake. The application of the principal ideal theorem to p-groups, Nagoya Math. Jour. 99 (1985), 73-88.
- [M2] ______. The capitulation problem, Sugaku Exposition 1 (1988), 175-194.
- [M3] ______. Algebraic investigations of Hilbert's Theorem 94, the principal ideal theorem and the capitulation problem, Expo. Math. 7 (1989), 289-346.
- [S] H. Suzuki. A generalization of Hilbert's Theorem 94, Tokyo Metropolitan Univ. Math. Preprint Series 1990: No.6, Dept. Math., Tokyo Metropolitan Univ., Tokyo, 1990; *to appear* in Nagoya Math. Jour. 121 (1991).

Department of Mathematics College of General Education Nagoya University Nagoya 464-01, Japan