THEORIE DES NOMBRES Années 1989/90-1990/91
BESANCON

H. SUZUKI'S GENERALIZATION OF HILBERT'S TH. 94

Katsuya MIYAKE



H. SUZUKI'S GENERALIZATION OF HILBERT'S TH.94

Ketsuya MIYAKE

INTRODUCTION

Recently, H. Suzuki [S] succeeded in giving a proof to the following
theorem and an affirmative answer to a classical problem (cf.eg.
Miyake [M1] ~ [M3] and Jaulent [J]):

Theorem. Let k be an algebraic number field of finite degree, and
K be an unramified abelian extension of k. Then at teast [K:k] idesl
classes of k become principal in K.

in case that K/k is cyclic of prime degree, we have Hilbert's
Theorem 94 in his celebrated “Zahlbericht” [H]. We also have the
principal ideal theorem when K is Hilbert's class field of k. The
content of the present theorem has been confirmed in various
cases, namely, in case that K/k is cyclic in general and in those
cases which Terada’'s theorem is capable to cover; however, it has
also been aware of, by group theoretic examples, that all cases
must not have been covered by these (cf.[M3]).

It may be worth mentioning that Suzuki's proof is rather
elementary; in fact, it consists of a number of analyses of group
rings of a finite abelian group and nothing else.
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THE TRANSLATION INTO GROUP THEORY BY ARTIN'S RECIPROCITY LAW

Let k and K be as in the theorem, and ¢ and £ be their absolute
class fields, respectively. Put

H = Gal{k/K), A = Gal{x/K), and G = Gal(K/k) = H/A.
Then we have the transfer homomorphism
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where [HH] i the commutator subgroup of H which is equal to
Gal(K/k). Therefore, the quotient group H/IHH] = Gal(k/k}) is
isomorphic to the absolute ideal class group Ci(k) of k. The kernel
of Vy_ 4 corresponds exactly to the subgroup of Ci(k) consisting

of those classes whose ideals become principal in K.

It is also known that everything can be reduced to “p-primary
parts” for prime factors of [CI1(k)|.

ARTIN'S SPLITTING MODULE. Through inner automorphisms of H, G
acts on A; here we use additive notation for the G-module A. Let
c(g,h) € A, g, h € G, be a 2-cocycle belonging to the 2-cohomology
class of the group extension

l-A-H-=06-1.

Let B= @ }Z.b(g) be a free abelian group generated by @

ge b6 - {1
set of symbols{b{g)lge G - {1}}, and put M:= A & B. Then we have
a well-defined action of G on M by setting
g.bh ) = b{gh) - b{g) + c(g,h), g,h € G.
Since cigh) lies in A, we also have an exact sequence of
G-modules,
0-A-M-=I—0,
with nat: M — |, defined by nat(b{(g)} = g-1, g € G, where |; is the
augmentation ideal of Z[G].
It is easy to see that the guotient module M/i.M is isomorphic to
H/[H,H]. Let
Tr.:M/I. M- M
be the G-homomorphism obtained by multiplication of
Tre= Eg - g € 2[6].
Then it is clear that Im(Tr;) lies in Ker{nat) = A. Hence we have a
commutative diagram,

VW%
H/HH ——> A C H
\LZ D “ wlentity
MAGM —mm A G N



in particular, we have '
“(Ef'(vH_a A)I = HY(G,M)|.

Our purpose is to show
{(3.1) the order |G| of G divides JH{G,M)|.

THE FIRST REDUCTION. Fix a basis v,, i = 1,..,m’, of the finite
abelian group M/1,.M (zH/[H,H] = CI{k)) so that it is a direct product
My _

Put g,= |(n,). Take a transversal n,of each n,in M and choose n, €
IM, j =m'+1,.., m, so that n,,...,n, generate whole M over 2[G]. Put
q=1,j=m+1,.,m Let®"., Z[G] be & direct sum of m copies of

2[G] and define a surjective G-homomorphism p: @" Z[G]— Mby

U
ple,)=1,,e,=(0,.0,1,0,.,0)c&]., Z[6].
e have a commutative diagram of exact sequences with ¢ =natop,

0—> Ker 0= &" 2[6] 5 1= 0
4 ¥ [
0> A = M 91,50
1 !
0 0

Since ¢ is @ G-homomorphism, the image of Tr,: &" Z[G] - &" Z[G]
lies in Ker(g). For each i, 1 ¢ i < m, p(q, e,) belongs to
I..M = p{@"l,); therefore there exists u,c Ker(p) such that

u=g,.e, moda®"l,i=1,.. m
Let U= u,,... U, ) be the G-submodule of M which is generated by
these u,over Z[G]. Then p induces an isomorphism

p: @" Z[G)/(U+ &"1,) - M/1.M,
and maps

Ker(Tr,: " Z[G}/{U+ ®"I,) - Ker{g)/U)
injectively into
Ker(Tr;M/1,M - A).

Therefore, it is sufficient, for our purpose, to show



4

Lemma 1. Suppose that a surjective G-homomorphism
9. ®"Z[G] = I,
is given Let g, 1 = 1,..,m, be positive integers and U = {U,,... U,
be a Z[G)-submodule of Ker{p) such that
u=q,e mod®"l,,i=1,.m
Then IG! divides [H{(G,w,) where
W,:= &"Z[G]/U.

A TINY TRICK. Put n = |G|. It is sufficient to prove Lemma 1 under an
additional condition,

(5.1) Eachg,isamultipleof nfori=1,..m

In fact, let & @"2[G) — &"Z[G] be an injective G-homomorphism
such that
t(x) =nx, xe &"Z[6).
Put U= £(U) and W, := &"2[G)/U'. Then we have
HYG,W,) =~ W (6,U),
HYG,w,) =~ H{G,U),
and also
H(G,U) = H°(G,U)
because U and U’ are isomorphic. Hence we have
HYG,W,) =~ HYG,W, ).
For U in @"Z[G], we have the condition (5.1).
The merit of (5.1} is to make the structure of
LWL W s (ke W/l W, (nx = 0}
simple enough for us to handle it; under (5.1), this is isomorphic
to @"Z2/nZ, and generated by
ante,i=1,..m
From the congruence, Tr, = n mod |, it follows that
Ker(Trow./1. W, — Ker{o)/U) = (W,/ 1.W,)
and
Im (Tr. W./l.W, ) — Ker(g)/U) - Ker(g) ~{U+@&" |, )/
Hereafter, we assume (5.1).
It should be also noted that we have
Un &" 1, = 1,.U;
in fact, we easily see this from the facts,
u l,lu=a"2,




q

UWun @ l,=U+sa" 1 )/ 8", 28" 2,
and
lLUcuna™ I,

THE SECOND REDUCTION. Now put
y:=Treq.nle-u,i=1..m,

and denote the Z[G)-submodule of &" 2 [G] which is generated by
these y, by Y. Then we have

Y= (,....Un < &" 1;n Ker(p)
and

Y=l U=Una" I,
Therefore, we have a natural isomorphism
Ker(o) n( U+ &" I.)/U = Ker{o) n @™ I./UNn&" |, nKer{g)
=Ker(p) na@" I,/ 1;.Y

because U lies in Ker{g), and a commutative diagram

Tr,

AW /1. W) — Ker{o) n (U + @™ 1,)/U = Ker{o)/U

N T

Ker{p) n&™ [./Una" |,

l

g" 2/ — YAl ¥
n

where n is the homomorphism which maps the i-th generator

(0,..,0,1,0,..,0)of @ Z2/nZ toy modl,.¥,i=1,..m Since
Ker{Tr,W,/1,.w, — Ker{g)/U)
is isomorphic to Ker(n), it is now sufficient to show

Lemma 2 For an m-generated Z[G]-module Y of Ker{p) n &" |,
the order | ¥/ I,.Y | divides n" 1.

THE THIRD REDUCTION. Our Z[G]-homomorphism ¢ induces an exact
sequence,

0= Ker{p)na" I,—= "1, = 120,
and then |



0— (Ker(p) n@" 1) ®-0—= (@" 1} @-0— L8>0 — 0.
Let us naturally consider |, ® >0 a submodule of Q[G]. Put

gz 1= 1/nTr..
Then I,;®{: coincides with the subalgebra ¢,. Q[G] of Q[G] because
£,4g-1) = g-1 for g € G. Moreover, we have

& =gz 1/n. Egeﬁ(l-g),

and hence I: ®0 = |,®0 . Since representations of G over ¢ are
completely reducible, the lest exact sequence shows that there
exists a Q[G]-isomorphism

p: (Ker(p) n @™ 1) ® 50— (&™) @0,

We fix such a p and identify ¥ = ,,...,U with p(¥) = ¢ ply,),...,plU.)}
for simplicity.
Now we construct a good m-generated 2[G]-submodule

LEER{! R iy
of (&"1,) ® © with & surjective Z2[G]-homomorphism n: ¥' — ¥,
then we see that

(7.1) |¢/1.¥) divides |¥'/1.Y7;

hence it is sufficient to show Lemma 2 for ¥' in place of ¥: Since
I, ® & is & direct sum of {commutative) fields over @, let F be a
simple component of it and € be the corresponding idempotent,

We have F = e.(l; ® D) = € O[G], € = e € T[6).

Then ¢ { ®" 1) ® Q] is a vector space over F of dimension m-1.
Therefore (Y ® Q) is a subspace of dimension at most m-1.

Suppose that
e[yl - 1 ) OO =Y @ 1)
where 4, ,..., Y,-,) is the {m-1)-generated 2[G]-submodule of Y.
Then ey,,... £ U,-,8re lingarly dependent over F. Therefore, if we
choose Ne N, = 0, so that Nee 2[6], and some i, 1 (i «¢m=-1, we
have
ele M MANEY Yoo o, Uny ®p0] = efY ® Q).
If necessary, we replace the first m-1 elements of the generators
of Y in this manner for every simple component F of |, ® Q. Then
we may assume that
(T PORN | Ry @z(D =¥Y®D

for simplicity. Define a Q{G]-homomorphism



n{g"liel— Yol
by setting &
n(ed=y,=00,.,0%,0,.0),i=1,.m-1,
and take an element y € { &™*1,) ® G such that n(y) = y,, . Then the
Z[G}-submodule
Yz (e, em M)

{5 the desired one.

Note also that I..Y' contains &I, because we have ¢,.(g-1) = g-1
forgeB.
To analyse Y'/1..Y", let
prr{a" el — (" e L/ & 1|,
be the natural projection. We identify the last G-module with
(@"1,) ®(0/Z) (c (®"'Z[G]) ®-(0/Z)).

Then we have

pr{ €)= 1/n. zgeG {1-g).e, ={1 - 1/nTry).e, mod 8",

foriz1,.. m-1.1tis clear that we have
gpried=prie), i=1,.m,
for every g € G. Furthermore, we can easily see, in a straight
forward way, that
[( &1 1) Q2 = prie),.. pric,.); = &"1 Z/n2.
Let M:= (pr{yu) be the mono-generated Z[G]-submodule of ("1 1,)
®{(D/Z). Then we have
WM = M+ pride,),. prie, /1M
=|(M + (&™) &L/ ZI) 71.M|
=M /1ML M + [(@" ) ®(Q/2)F )M
=M /1M (@ ) @0/ 2P (M (@™ H,) @0/ 20T
=1 H (6 MY HC (G M)
Hence, it is sufficient to show

Lemma 3 Let G be & finite abelian group and M be 3
mono-generated Z[G]-module of finite order. Then the order of
H1(G6,M) divides that of H'(G,M).
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THE FINAL STEP. We give a proof to Lemma 3.
Fix a positive integer r, and consider the group ring Z/rZ[G] over
the finite ring Z/rZ. We have a standard perfect pairing
ZIrZ|G] x 2/rZ[G) — /2
by setting
{gh)y=1/r.8
yhere ag,h is 8 Kronecker &. Let

Qh’ g,hEG,

inv. Z/rZ[61— Z/rZ2[G]

be an automorphism of the group ring given by
inv(g) =g, ge G

Note that G is abelian.
For a direct sum &" Z/rZ[G], we also have a perfect pairing

(v, W)= 2:": , (w,w))

w={w,,. .. wJ), w=(w,, w.)e & Z/rZ[G]

For the given M of Lemma 3,, take a Z2/rZ[G]-presentation of rank
m (say) of its dual M for some r and m. Then we have an
injective Z[G]-homomaorphism

iiM— &" Z/rZ[6]

because of the perfect pairing of the last algebra. Take a

generator v = (v,,...vJ) e & Z/r2(G] of M.

Then for w = (w,,....w) € &" Z/rZ[G), and for a € Z[G), we have
(ay,w)=0forvaec Z[G]

= ZT: ({av,,w)=0forvac Z[G]
& (g, 20 nviv)w )=0 vae Z[6]
= z?’: , inviv lw, = 0.

Hence the orthogonal M- of Mis given by
ML = Ker(inv(v).. @ Z/rZ[G) — Z/rZ[G))
where inv(v). is the homomorphism defined by
inv(v)w= 20 = | inviv,)w,,
w=({w,,... . w)e & 2/rZ[G)

Then we have
M = Im{inv{v).)



and
(M3 = Im{inv(v).)/ 1. Iminv(y).).

Furthermore, since we have inv(l,} = |,, the automorphism
inv. Z[G] -~ Z[G] induces an isomorphism

(M) = Imlv.)/1,.Im(v.)
where v.. @" Z/rZ[G]—> Z/rZ[G] is the homomorphism defined in
the same way as inv(v). was. Put g = M| Then we have

g = (M) = [Im{v.)/ 15 Im{v ).

Now there exist two matrices U e M{m,Z} and J € M(m,I;) such
that

yU=vJ anddet (U)=q
because

Imiv.)z vy, Mo)= 28,4 2y + 1] (V)

and

o ddv) = Loy, +..+ Ly,
Therefore we have

det{l - J).v = 0 in 2/rZ[G].
This implies
g.M/A .M =0

because det(U - J) = det{U) = g mod [,. Since we have

M=z 2[6)lv=2v+I1.M,
M/1.M is a cyclic group whose order divides g = |M°|.
Furthermore we have

M/Ker{Tri: M — M)} = [Tr,M|
because |M < «. Therefore we see
IH*(G,M} = g/ TreM = (g1 MA 1M T MA T MM Ker(Tr )
= (Q/1 M/ 1. M. H TG, MY

Since qfIM/1; .M is an integer as was seen above, this proves
Lemma 3.

Hence, at the same time, Lemmas 1 and 2 are also proved, and so
is our theorem.
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