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(Recommended by Boris Hasselblatt)

Abstract. Fractional powers and polynomial maps preserving struc-
tured totally positive matrices, one-sided Pólya frequency functions, or
totally positive kernels are treated from a unifying perspective. Besides
the stark rigidity of the polynomial transforms, we unveil an ubiqui-
tous separation between discrete and continuous spectra of such inner
fractional powers. Classical works of Schoenberg, Karlin, Hirschman,
and Widder are completed by our classification. Concepts of proba-
bility theory, multivariate statistics, and group representation theory
naturally enter into the picture.

1. Overview

The purpose of this note is to announce some of the results in a sequence of three
closely related recent papers [4, 45, 6] which study Pólya frequency functions and the
post-composition transforms that preserve them and other classes of totally positive
kernels. Specifically, we complete results in total positivity due to Karlin’s 1964 Transac-
tions [42] and Schoenberg’s 1955 Annals [71] papers by providing extensions and con-
verses. These concern fractional powers of totally non-negative Toeplitz kernels and of
their Laplace transforms. We isolate a spectral-threshold phenomenon in total positivity
which is similar to the structure of Berezin–Gindikin–Wallach-type sets, but which was
discovered in particular situations prior to the work of these mathematicians.

Next, we focus on powers and other polynomial preservers of more general non-
smooth one-sided Pólya frequency (PF) functions. The underlying theme is probabilis-
tic: one-sided PF functions are the density functions of linear combinations

∑
j α j X j of

independent standard exponential random variables: for example, Karlin’s 1964 kernel
is the density of X1 +X2. The densitiesΛα of finite linear combinations

∑m
j=1α j X j were

studied by Hirschman and Widder [38], and we prove that, if the coefficients α= (α j ) ∈
(0,∞)m lie outside a null set then the only polynomials p with the property that p ◦Λα is
a PF function, are homotheties p(x) = cx, where c > 0. A previously unexplored connec-
tion between recovering α from the moments of Λα and the Jacobi–Trudi identity from
symmetric function theory comes as a bonus.

Finally, we study general one-sided PF functions, which are the densities of countable
sums of exponential random variables, as well as other classes of totally non-negative
kernels, including general PF functions and sequences. For these classes of maps, we
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show there are very few preservers beyond positive homotheties p(x) = cx. The culmi-
nation of this line of inquiry is the characterization of preservers of total positivity and
total non-negativity for kernels on X ×Y , where X and Y are arbitrary totally ordered
domains.

In addition, we provide a small correction to Schoenberg’s classification of discontin-
uous PF functions [66].

2. The pervasive nature of Pólya frequency functions

2.1. Total positivity and Pólya frequency functions. Given totally ordered sets X and Y ,
a kernel K : X × Y → R is totally positive if, for all integers n ≥ 1 and all choices of
x1 < ·· · < xn in X and y1 < ·· · < yn in Y , the determinant det(K (xi , y j ))n

i , j=1 is posi-

tive; the kernel K is totally non-negative if these determinants are non-negative. We
refer to such kernels, which are matrices if the domains X and Y are finite, as TP and
TN kernels, respectively. If non-negativity or positivity are only required to hold when-
ever n ≤ p then we speak of TNp or TPp kernels, respectively. (The monographs [43, 61]
refer to strict total positivity and total positivity instead of total positivity and total non-
negativity.)

Total positivity is a long-studied and evergreen area of mathematics. For almost a
century, totally positive and totally non-negative kernels surfaced in the most unex-
pected circumstances, and this trend continues in full force today. Although this chap-
ter of matrix analysis remains somewhat recondite, it has reached maturity due to the
dedicated efforts of several generations of mathematicians. The foundational work by
Gantmacher and Krein [27], the survey [2], the early monograph [28], and the more re-
cent publications [43, 29, 61, 19] offer ample references to the fascinating history of total
positivity, as well as accounts of its many surprising applications. These include analy-
sis [70, 66, 71], differential equations [55], probability and statistics [13, 18, 43, 48], and
interpolation theory [15, 72], to provide a few areas and early references. Total positiv-
ity continues to make very recent impacts in areas such as representation theory and
cluster algebras [8, 9, 25, 26, 56, 57, 64], Gabor analysis [33, 34], combinatorics [11, 12],
as well as integrable systems and positive Grassmannians (the geometric avatar of total
positivity) [50, 49, 63].

The origins of total positivity lie in the property of diminishing variation, which can
be traced back to Descartes (1600s, via his rule of signs [16]), but concretely at least
as far back as Laguerre [52] (1883) and Fekete [23] (1912). Pólya then coined the phrase
‘variationsvermindernd’, and Schoenberg showed in [68] (1930) that TP and TN matrices
have this property of variation diminution. There has been continuing activity for TN
matrices [28, 13, 14], and also for TN kernels on bi-infinite domains, which are the main
focus of this note.

Definition 2.1. A function Λ : R→ R is totally non-negative if the associated Toeplitz
kernel TΛ is totally non-negative, where

TΛ :R×R→R; (x, y) 7→Λ(x − y). (2.1)

If, further, the function Λ is Lebesgue integrable and non-zero at two or more points,
then Λ is a Pólya frequency function. A function Λ : Z→ R whose associated Toeplitz
kernel is totally non-negative is a Pólya frequency sequence.

Following early work by Pólya and Hamburger, Schoenberg has initiated and devel-
oped the theory of Pólya frequency functions in his landmark paper [66] dated 1951
(following announcements in 1947 and 1948 in Proc. Natl. Acad. Sci. USA). In the com-
panion work [70] (published a year earlier), Schoenberg proved that, when viewed as
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convolution integral operators, Pólya frequency functions can be characterized in terms
of the variation-diminishing property. This study led to an explosion of work in numer-
ical analysis and approximation theory, via splines.

2.2. The Laguerre–Pólya class of entire functions. A second notable appearance of
Pólya frequency functions and sequences is within the theory of complex function. We
henceforth refer to these classes of maps as PF functions and PF sequences, respectively.

The Fourier–Laplace transform of a PF function is the reciprocal, on a suitable do-
main of definition, of a Laguerre–Pólya entire function [1, 17, 66]. The natural ques-
tion of characterizing locally uniform limits of sequences of polynomials with only real
roots was answered by Laguerre [51], and completed by Pólya [62]. A related wider pro-
gram of locating the zeros of entire functions was initiated about a century ago by Pólya
and Schur [74]. By now, the topic of Laguerre–Pólya entire functions appears in text-
books [54], reflecting a century of accumulated knowledge passing through early con-
tributions such as [35, 78] and continuing up to the present [3]. Since its inception,
Riemann’s hypothesis was and remains a background theme in studies concerning en-
tire functions of the Laguerre–Pólya class, and so indirectly to Pólya frequency functions
and sequences. We cite here only two recent contributions: [32, 44].

We owe to Schoenberg the aforementioned characterization of PF functions.

Theorem 2.2 (Schoenberg [66]). Given a Pólya frequency functionΛ, its bilateral Laplace
transform

B{Λ}(s) :=
∫
R

e−xsΛ(x)dx

converges for complex s in an open strip containing the imaginary axis, and equals 1/Ψ
on this strip, for an entire function Ψ in the Laguerre–Pólya class. Conversely, any func-
tion Ψ of the above form agrees with the reciprocal of the bilateral Laplace transform of
some Pólya frequency function on its strip of convergence.

In [66], Schoenberg then showed that a PF function either vanishes precisely on a
semi-axis, which may be open or closed, or is non-vanishing on R. These functions are
termed one-sided and two-sided PF functions, respectively. Schoenberg also showed
in [66] that, up to linear transformations, the reciprocals of their Laplace transforms are
respectively in the first Laguerre–Pólya class of entire functions [51, 62] that are non-
vanishing at 0,

Ψ(s) =Ceδs
∞∏

j=1
(1+α j s), with C > 0, δ,α j ≥ 0,

∑
j
α j <∞, (2.2)

and the second Laguerre–Pólya class of functions not vanishing at the origin,

Ψ(s) =Ce−γs2+δs
∞∏

j=1
(1+α j s)e−α j s , with C > 0,γ≥ 0,δ,α j ∈R,

∑
j
α2

j <∞. (2.3)

This remarkable dictionary, established by Schoenberg, provides the building blocks of
Pólya frequency functions. This class of functions is closed under convolution, and has
Gaussian functions, one-sided exponentials and simple fractions with poles on the real
line as generators. The exploitation of this basic observation is paramount for interpola-
tion theory, and the expository lectures by Schoenberg [67] are as fresh and informative
today as they were fifty years ago.

2.3. Group representations. The string of discoveries of the same class of objects does
not stop at entire function theory. The classification of characters of irreducible uni-
tary representations of the infinite symmetric group S(∞) =∪nS(n) and the infinite uni-
tary group U (∞) = ∪nU (n) led Thoma [77] and Voiculescu [81] independently to the
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class of Fourier transforms of Pólya frequency functions. These remarkable findings in
the 1960s and 1970s established the foundations of the representation theory of “big
groups”: see [59, 80] for details.

Not unrelatedly, the computations of spherical functions pointed to orbital-integral
formulae for such character functions, as did the more general question of spectral syn-
thesis on homogeneous spaces. The pioneering work of Gelfand and Naimark [30]
opened a whole chapter of explicit expressions linking orbital integrals to invariants of
finite groups, in the spirit of Weyl’s character formula.

A typical orbital integral has the form

f A : H(n) →C; B 7→
∫
Ω

e i tr(B M)µ(dM), (2.4)

where A ∈ H(n) is a positive semi-definite n ×n complex matrix, Ω denotes its orbit
under conjugation by the unitary group U (n), and µ is a U (n)-invariant measure carried
by Ω. In view of the invariance of the trace under cyclic permutations, f A is invariant
under unitary conjugation:

f A(U BU∗) = f A(B) for all U ∈U (n) and B ∈ H(n).

In particular f A(B) depends only on the eigenvalues of B and is a symmetric function of
these eigenvalues. Furthermore, being a Fourier transform, the function f A is positive
definite.

To bring Pólya frequency functions into view, one considers the inductive limit of
such measures and functions defined on the union H(∞) = ⋃

n H(n) of Hermitian ma-
trices of arbitrary size. These spherical functions, normalized by the condition that
f (0) = 1, form a convex set and the extremal points of this set are multiplicative, in the
sense that

f
(
diag(b1,b2, . . . ,bm)

)= F (b1)F (b2) · · ·F (bm)

for some function of a real variable F . This occurs precisely when the corresponding
unitarily invariant measure µ on the union H(∞) is ergodic. The main classification
theorem [59, Theorem 2.9] asserts the existence of a bijective correspondence between er-
godic, unitarily invariant probability measures on H(∞) and Pólya frequency functions.
To be more precise, F is the Fourier transform of a Pólya frequency function associated
with the ergodic measure µ. Moreover, specific invariant measures provide the building
blocks of the class of Pólya frequency functions [59, Corollaries 2.5 to 2.7].

Let us consider the case when A = diag(a1, . . . , am), where a1, . . . , am are positive,
and let B = E11 = diag(1,0,0, . . . ,0). Passing lightly over the technicalities required to
extend f A , and using the symmetry f A(ixB) = fB (ix A), which follows from the tracial
property, we have that

f A(ixE11) =
∫
Ω′

exp
(
−x

m∑
j=1

a j |z j |2
)
σ(dz) (x > 0), (2.5)

where Ω′ = S2m−1 ∼= U (m)/U (m − 1) is the unit sphere in Cm and σ is the normalized
rotationally invariant measure on the sphere.

Up to proper normalization, the spherical average (2.4) is equal to the Hirschman–
Widder distribution Λα at the point x, where α = (a−1

1 , . . . , a−1
m ). The right-hand side of

the identity (2.5) is known as a Harish-Chandra–Itzykson–Zuber integral [36, 39].
We can go further and establish an explicit link between the orbital integral f A(B)

above and Hirschman–Widder densities. Further details, including complete proofs, are
contained in [59, Section 5]. Let a = (a1, . . . , am) ∈Rm and b = (b1, . . . ,bm) ∈Cm have cor-
responding diagonal matrices A = diaga ∈ H(m) and B = diagb, respectively. As in (2.4),
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we let f A denote the characteristic function of the invariant probability measure µ with
supportΩ, whereΩ is the U (m)-orbit of A under conjugation:

f A(B) :=
∫
Ω

e i tr(B M)µ(dM) =
∫

U (m)
e i tr(BU AU∗) dU .

Since f A is entire and symmetric as a function of the coordinates of b, it admits a Taylor-
series expansion that is convergent everywhere, so also a convergent expansion in terms
of Schur polynomials:

f A(diagb) =∑
ν

cνsν(b),

where the sum runs over Young diagrams with at most m rows. A computation by Ol-
shanski and Vershik, using characters of U (m) and change-of-bases formulas between
symmetric power-sum polynomials and Schur polynomials, provides a closed-form ex-
pression for the coefficient cν: see [59, Theorem 5.1]. This strategy appeared a few
decades earlier, in explicit computations of Gel’fand and Naimark [30], and quite re-
markably (and independently) in multivariate statistics: see James [41] and the com-
ments in [22]. From here, one derives the following expansions: see [59, Corollaries 5.2
and 5.4].

Proposition 2.3. If the tuples a = (a1, . . . , am) ∈ Rm and b = (b1, . . . ,bm) ∈ Cm each have
distinct coordinates and A = diaga then the orbital integral f A is given by the Harish-
Chandra–Itzykson–Zuber formula:

f A(−idiagb) =
∏m−1

j=0 j !

V (a)V (b)
det


eb1a1 eb1a2 · · · eb1am

eb2a1 eb2a2 · · · eb2am

...
...

. . .
...

ebm a1 ebm a2 · · · ebm am

 .

If instead B = diag(1,0, . . . ,0) = E11 then

f A(−ixB) = (m −1)!
∞∑

j=0

h j (a1, . . . , am)

( j +m −1)!
x j ,

where h j is the j th complete homogeneous symmetric polynomial.

In particular, if a1, . . . , am are positive and distinct, and x > 0 then, by the second part
of Proposition 2.3 and the identity (4.5) below,

f A(ixE11) = (m −1)!(−x)1−m
∞∑

n=m−1

hn−m+1(a1, . . . , am)

n!
(−x)n = (m −1)!x1−m

a1 · · ·am
Λα(x),

whereα= (a−1
1 , . . . , a−1

m ).
In conclusion, the Hirschman–Widder density possesses the following integral and

determinantal representations: if x > 0 then

Λα(x) = a1 · · ·am

(m −1)!
xm−1

∫
S2m−1

exp
(
−x

m∑
j=1

a j |z j |2
)
σ(dz)

= a1 · · ·am

V (a)
det


e−a1x e−a2x e−a3x · · · e−am x

1 1 1 · · · 1
a1 a2 a3 · · · am
...

...
...

. . .
...

am−2
1 am−2

2 am−2
3 · · · am−2

m

 .

The second representation can be obtained from the first identity in Proposition 2.3 by
setting b = (−x,0, y1, . . . , ym−2) and taking successively the j th partial derivative at zero
with respect to y j for j = 1 to m −2.



40 Alexander Belton, Dominique Guillot, Apoorva Khare, Mihai Putinar

2.4. Probability theory. The aspects of Pólya frequency functions described above lead
to some natural interpretations of a probabilistic flavor. Here we discuss three such per-
spectives.

First we return to the Hadamard–Weierstrass factorizations of Laplace transforms of
Pólya frequency functions. Suppose we are given some continuous random variables,
whose associated probability density functions admit bilateral Laplace transforms con-
vergent in some common open strip containing the imaginary axis. Linear combina-
tions of these random variables correspond to convolutions of their densities, which in
turn correspond to products at the level of Laplace transforms. From the perspective
of (2.2) and (2.3), Schoenberg’s Theorem 2.2 can be recast using countably many expo-
nential random variables and a Gaussian random variable.

Theorem 2.4. Given a Pólya frequency function Λ : R→ R, exactly one of the following
holds:

(1) Λ is discontinuous at exactly one point x0, and vanishes on one side of x0. More-
over, ignoring the value at x0 and up to a shift of argument and positive rescal-
ing,Λ equals the density of αX , where α ∈R\{0} and X is a standard exponential
random variable with mean 1.

(2) Λ is continuous, vanishes on a semi-axis ±(−∞, x0), and is non-vanishing on the
interior of the complement. In this case, up to a shift in argument and positive
rescaling, Λ equals the density of a linear combination ±∑

j α j X j , where the α j

are positive and summable, and the X j are independent standard exponential
variables.

(3) Λ is non-vanishing on R. In this case, up to a shift in argument and positive
rescaling, Λ equals the density of a linear combination αY ±∑

j α j X j , where
(a) the series

∑
j α

2
j converges, (b) if α= 0 then there exist at least one positive and

one negative α j , (c) the X j are independent standard exponential random vari-
ables, and (d) Y is a standard Gaussian random variable independent of the X j .

As straightforward as it may be, we were unable to find this observation in the liter-
ature. We recorded it in a series of results and remarks in [6, Section 2.4]. In particular,
the observation about the indeterminateness of a PF function at its point of discontinu-
ity revealed a gap in the literature, which is now clarified in [45]; see Theorem 3.8 and
the discussion preceding it.

A second probabilistic interpretation of the density Λα can be derived from random
matrix theory. Consider the diagonal matrix D = diag(a1, . . . , am) with positive non-zero
entries and its orbitΩ under unitary conjugation in the space of m×m positive semidef-
inite matrices. If µ is the normalized U (m)-invariant measure onΩ thenΛα(x)dx is the
distribution of any diagonal entry of a random positive semidefinite matrix of arbitrary
size distributed according to µ. See Section 3 and [59, Section 8], or [20], for details.

The third occurrence of Pólya frequency functions as characteristic functions of prob-
ability distributions arises indirectly from multivariate statistics via orbital integrals.
Such integrals over matrix groups go back to Wishart’s original work, widely considered
to be the origin of modern random matrix theory. The precise calculation of orbital
integrals of the type we discussed above produced closed-form expressions for various
probability distributions of matricial variables. Of particular interest is the setting where
one collects n independent observations X (1), . . . , X (n) from a p-dimensional Gaussian
vector X ∼ N (µ,Σ) with mean µ ∈ Rp and covariance matrix Σ ∈ Rp×p . A fundamental
problem of great interest to applied scientists is to detect non-spurious correlations be-
tween the components of X . If X denotes the n × p matrix whose rows are the vectors
X (1), . . . , X (n), then detecting dependencies between the variables can be performed by
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computing the associated sample covariance matrix, which, up to rescaling, equals XT X.
A large entry in XT X indicates a high level of dependence between the corresponding
variables and understanding the exact distribution of XT X is critical to assessing whether
a large entry arises purely by chance or as the result of a real interaction. Wishart was
able to compute the density of such matrices in closed form via changes of variables
and the calculation of Jacobians. The resulting distribution is named after him. When
the observations X (1), . . . , X (n) have different means µ1, . . . , µn (the non-central case),
computing the density of XT X involves integrals over the orthogonal group and the re-
sult can be written in terms of zonal polynomials [76]. The challenges encountered by
statisticians along this path are well recorded in the monograph by Farrell [22]. It seems
Karlin himself lectured around 1960 on this subject, providing a versatile Haar measure
disintegration formula. No doubt elements of [43] were on his desk at that time.

3. Two atoms: the Berezin–Gindikin–Wallach phenomenon in total positivity

As seen in Theorem 2.4, the ‘atoms’ that make up a general Pólya frequency function
are exponential random variables, together with at most one Gaussian. If we consider
a single atom then it is evident that any positive real power of the associated Pólya fre-
quency function is also in the same class. However, as we now explain, the picture is
markedly different for more than one exponential variable.

The question of which powers of the density of the sum of two standard exponential
variables are totally non-negative is partially answered in the 1964 paper [42] of Karlin.
His results show that all integer powers of the associated PF function Ω are again PF
functions, but the non-integer powers are only shown to be TN of some finite order.

Definition 3.1. Given totally ordered sets X and Y , and an integer p ≥ 1, a kernel K :
X ×Y →R is said to be totally non-negative of order p, denoted TNp , if for all x1 < ·· · < xr

in X and y1 < ·· · < yr in Y , where 1 ≤ r ≤ p, the determinant det(K (xi , y j ))r
i , j=1 ≥ 0.

A functionΛ :R→R is said to be TNp if its associated Toeplitz kernel TΛ given by (2.1)
is TNp . We sayΛ is totally non-negative ifΛ is TNp for all p ≥ 1.

With this notation at hand, the result of Karlin can now be stated. We denote the set
of non-negative integers {0,1,2, . . .} by Z≥0.

Theorem 3.2 (Karlin [42]). LetΩ :R→R; x 7→ 1x≥0 xe−x be the probability density func-
tion for the sum of two independent standard exponential random variables. Given an
integer p ≥ 2 and a scalarα≥ 0, the functionΩα : x 7→Ω(x)α is TNp ifα ∈Z≥0∪(p−2,∞).

In particular, ifα is a non-negative integer power, thenΩα is TN. This case was shown
previously by Schoenberg in [66] as an immediate consequence of Theorem 2.2.

It is natural to ask if the converse to this 1964 result of Karlin holds. To the best of our
knowledge, this question was not answered in the literature, and it is the first result that
we announce in this note. In fact, we prove a twofold strengthening.

Theorem 3.3 ([45]). Given q, r ∈ (0,∞), let Ω(q,r ) be the probability density function for
q X1 + r X2, where X1 and X2 are independent standard exponential random variables.
Now fix an integer p ≥ 2 and a real number α≥ 0.

(1) The function
Ωα

(q,r ) :R→R; x 7→Ω(q,r )(x)α

is TNp if α ∈Z≥0 ∪ (p −2,∞).
(2) If α ∈ (0, p − 2) \Z, then Ωα

(q,r ) is not TNp . More strongly, given arbitrary real
numbers x1 < ·· · < xp and y1 < ·· · < yp , there exists a ∈R such that the matrix

(Ω(q,r )(x j − yk −a)α)p
j ,k=1
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is TP if α > p −2, TN if α ∈ {0,1, . . . , p −2}, and has a negative principal minor if
α ∈ (0, p −2) \Z.

The proof of this result is obtained by exploiting a variant of Descartes’ rule of signs
that was very recently shown and used by Jain [40] in her study of entrywise powers
preserving positive semidefiniteness. Note that Theorem 3.3 strengthens Karlin’s re-
sult: (a) it extends Theorem 3.2 from q = r = 1 to all q , r > 0; (b) it extends the total
non-negativity in Theorem 3.2 to total positivity on a large collection of p ×p matrices,
and (c) it shows that the converse to the extended Theorem 3.2 holds for all q , r > 0.

This last point means that the set of powers preserving the TNp property for one-
sided Pólya frequency functions built out of two exponential variables is comprised of
an arithmetic progression and a semi-infinite axis. In the subsequent decade to Karlin’s
1964 work, this phenomenon was observed in numerous different contexts in mathe-
matics.

• In complex analysis, Rossi and Vergne [79] classified the powers α of a Bergman
kernel on a fixed tube domain D ⊂ Cn which are the reproducing kernels for
some Hilbert space of holomorphic functions on D . They termed this set of
powers the Wallach set, and showed that it equals an arithmetic progression to-
gether with a half-line, precisely as above.

• Rossi and Vergne named the above set following Wallach, who was then fol-
lowing Harish-Chandra and studying holomorphic discrete series of connected
simply connected Lie groups G . Wallach classified in [82] the twist parameters
α of the center of the maximal compact reductive subgroup K of G for which
the K -finite highest weight module over the Lie algebra of G has certain unita-
rizability properties. Once again, α belongs to a similar set.

• In his pioneering work on quantization, Berezin encountered a similar set while
classifying admissible values of Planck’s constant h in deformations of bounded
symmetric domains [10]. Specifically, [10, Theorem 1.1] provides a complete
picture of such admissible h, adapted to Cartan’s four classes of classical sym-
metric domains. As might be expected, these tables display a mixture of contin-
uous and discrete values for h. Moreover, [10, Lemma 1.1] is perfectly aligned
with the classification of fractional powers which preserve the positivity of a
structured kernel: Given a bounded homogeneous domain with associated Berg-
man kernel K , for a real number h to be admissible it is necessary and sufficient
that the kernel K 1/h is positive semidefinite.

• Gindikin worked in [31] with Riesz distributions Rµ associated to symmetric
cones and indexed by a complex parameter µ and showed that Rµ is a positive
measure if and only if µ lies in some similar set.

• Finally, FitzGerald and Horn [24] classified the set of entrywise powers preserv-
ing positive semidefiniteness on p × p matrices, and showed that this set also
equals Z≥0 ∪ (p −2,∞).

It is remarkable that all of the above named authors obtained their results in such di-
verse areas of mathematics within a few years of each other (all in the 1970s). Each of
these works has been followed by tremendous activity. More recently, such a set has
been found in the theory of non-central Wishart distributions (see, for example, [21, 53,
58, 60]). Karlin’s work predated all of these works and results, thus providing an earlier
instance of such a Berezin–Gindikin–Wallach set. We also mention the very recent re-
sult of Sra (see [75, Theorem 2]) obtaining such a spectrum from the characterization of
fractional powers that preserve the positivity of Hua–Bellman matrices.
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In his comprehensive 1968 book [43] on total positivity, Karlin provided a second such
set of powers. Let the set of positive integers {1,2,3, . . .} be denoted by Z>0.

Theorem 3.4 (Karlin [43]). If Λ is a one-sided PF function and p ≥ 2 is an integer, then
B{Λ}α is the Laplace transform of a TNp function for all α ∈Z>0 ∪ (p −1,∞).

Once again, it is natural to ask if the converse holds. We answer this question in the
affirmative, and add a third equivalent condition involving a single test function.

Proposition 3.5 ([45]). Fix an integer p ≥ 2 and a scalar α≥ 1. The following are equiva-
lent:

(1) If Λ is a one-sided PF function, then B{Λ}α is the Laplace transform of a TNp

function.
(2) For the ‘single atom’ PF function

λ1 :R→R; x 7→ 1x≥0 e−x ,

the density of a standard exponential variable, the power x 7→ B{λ1}(x)α is the
Laplace transform of a TNp function.

(3) α ∈Z>0 ∪ (p −1,∞).

That (3) =⇒ (1) was Karlin’s 1968 result above, and it is a consequence of Schoen-
berg’s representation Theorem 2.2 for PF functions. (The implications (1) =⇒ (2) =⇒
(3) are similarly not hard to prove.)

We close this section with a few results related to the topics addressed above. The
first is from Schoenberg’s 1955 work [71] that initiated the study of TNp kernels (which
Schoenberg termed multiply positive functions). In this work, Schoenberg studied the
order of total non-negativity of powers of the Wallis kernel.

Theorem 3.6 (Schoenberg [71]). Let

W :R→R; x 7→ 1|x|≤π/2 cos x.

For any integer p ≥ 2, the power W α is TNp if and only if α≥ p −2.

In analogy with Theorem 3.3, we strengthen the total non-negativity to total positiv-
ity, and the lack thereof to principal minors, on large subsets of arguments.

Theorem 3.7 ([45]). Let p ≥ 2 be an integer. Given arbitrary reals x1 < ·· · < xp and
y1 < ·· · < yp , there exists a ‘multiplicative shift’ m0 ∈ (0,∞) such that the matrices

(W (m(x j − yk ))α)p
j ,k=1, 0 < m < m0

are each TP ifα> p−2, TN ifα ∈ {0,1, . . . , p−2}, and each have a negative principal minor
if α ∈ (0, p −2) \Z.

The other result which we address here is the classification of the discontinuous Pólya
frequency functions. In his 1951 paper [66], as well as the preceding announcements in
Proc. Natl. Acad. Sci. USA, Schoenberg asserts that the only discontinuous Pólya fre-
quency function is the standard exponential density λ1(x) := 1x≥0 e−x “up to changes
in scale and origin” (which includes reflecting about the y axis). This also implies that
the only discontinuous totally non-negative function is the Heaviside function H1(x) :=
1x≥0, up to changes in scale and origin and multiplying by an exponential factor eax+b ,
where a, b ∈R.

It turns out that these statements are not quite true, precisely at the point of dis-
continuity. Our explorations in [4] led us to a family of discontinuous PF functions
{λd : d ∈ [0,1]} that lies outside the above class, and subsequently, to a small correction
of Schoenberg’s classification.
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Theorem 3.8 ([45]). A Pólya frequency function is discontinuous if and only if it equals,
up to changes in scale and origin, the following function λd for some d ∈ [0,1]:

λd :R→R; x 7→


e−x if x > 0,

d if x = 0,

0 if x < 0.

Similarly, a TN function is discontinuous if and only if (up to changes in scale and origin)
it equals x 7→ eax+bλd (x) for some d ∈ [0,1] and a, b ∈R.

Note that the Laplace transform of λd does not depend on d .

4. Three or more atoms: non-smooth Pólya
frequency functions as hypoexponential densities

We now turn from Berezin–Gindikin–Wallach type sets – encountered here in the
study of TNp powers of functions – to transforms of broader classes of Pólya frequency
functions. The preceding result classifies the discontinuous PF functions, following
Schoenberg [66]. In the same paper, Schoenberg classified the non-smooth Pólya fre-
quency functions. In the language of probability theory, they are precisely the densities
of finite linear combinations of independent exponential variables. Such functions were
studied in detail by Hirschman and Widder, first in their 1949 paper [38], and then in
the 1955 memoir [37]. In recent work [6], we further investigate these maps, obtaining
connections to probability and to symmetric function theory; the goal of this section is
to announce some of those results. Here and in [6], we term these frequency functions
Hirschman–Widder densities.

Before we discuss the power preservers of such densities (following Karlin, Schoen-
berg, and the results in the preceding section), we present some pleasing properties of
Hirschman–Widder densities. The preceding section dealt with single exponential ran-
dom variables which led to discontinuous PF functions; thus, in this section we consider
the densities of variables

α1X1 +·· ·+αm Xm , where m ≥ 2 andα := (α1, . . . ,αm) ∈ (R×)m . (4.1)

Here X1, . . . , Xm are independent standard exponential random variables and R× de-
notes the set of non-zero real numbers.

We denote the corresponding density function by Λα. Such functions are known in
probability and statistics as hypoexponential densities, or as Erlang densities if the co-
efficients α j are all equal, and are relevant to several applied fields. However, the con-
nection to the work of Hirschman and Widder seems to not be widely known in the
probability literature.

Here are some of the properties enjoyed by Hirschman–Widder densities.

(1) The function Λα : R→ [0,∞) is the unique continuous function with bilateral
Laplace transform

B{Λα}(s) =
m∏

j=1

1

1+α j s
(4.2)

on the open half-plane {s ∈C : Re s >−α−1
j for j = 1, . . . ,m}.

(2) In particular, Λα is both the probability density function of the random vari-
able (4.1) and a Pólya frequency function.

(3) Λα has an additive representation via one-sided exponential densities, as well
as a multiplicative one via the bilateral Laplace transform, which corresponds
to the convolution of these densities.
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The additive representation is particularly gratifying when the parameters α j are pair-
wise distinct and positive:

Λα(x) = 1x≥0

m∑
j=1

a j e−a j x
∏
k 6= j

ak

ak −a j
, where a j :=α−1

j for all j . (4.3)

4.1. Taylor coefficients, moments, and symmetric functions. We now turn to some
connections between Hirschman–Widder densities and symmetric function theory. As
discussed above, Schoenberg’s results in [66] imply that the densities Λα are the only
one-sided, non-smooth, continuous Pólya frequency functions that vanish on (−∞,0)
and are non-zero on (0,∞).

It is natural to take a closer look at the Taylor expansion of Λα at 0+ and also at the
moments of this density function. The descriptions of both of these quantities involve a
well-known family of symmetric functions, the complete homogeneous symmetric poly-
nomials:

hp (a1, . . . , am) := ∑
1≤ j1≤ j2≤···≤ jp≤m

a j1 a j2 · · ·a jp , for all p ∈Z>0. (4.4)

(We set h0 ≡ 1.) These polynomials are clearly symmetric in their arguments, and equal
Schur polynomials corresponding to tableaux for a single row with p cells and an al-
phabet of size m. In particular, they carry representation-theoretic content: they corre-
spond to the characters of certain polynomial representations of the symmetric group,
or of the special Lie algebra slm(C).

With these polynomials at hand, we provide closed-form expressions for the Maclau-
rin coefficients at 0+, as well as the moments, of Hirschman–Widder densities.

Theorem 4.1 ([6]). Fix an integer m ≥ 2 and parametersα= (α1, . . . ,αm) ∈ (0,∞)m .

(1) The Hirschman–Widder densityΛα has the expansion

Λα(x) =α1 · · ·αm

∞∑
n=m−1

(−1)n−m+1hn−m+1(α−1
1 , . . . ,α−1

m )

n!
xn (4.5)

as its Maclaurin series, convergent for all x ∈ [0,∞). In particular, Λα is smooth
except at the origin, where it is of continuity class C m−2 but not C m−1.

(2) The Hirschman–Widder densityΛα has pth moment

µp :=
∫
R

xpΛα(x)dx = p !hp (α1, . . . ,αm) for all p ≥ 0.

While both the Maclaurin coefficients and the moments are expressed by the same
family of symmetric functions, the arguments are different, involving {a j = α−1

j } and

{α j }, respectively. Corresponding to these are two familiar identities which appear as
byproducts of the proofs in [6]. The first is the ‘local’ version of the well-known generat-
ing function for the symmetric polynomials hp :

∞∑
p=0

hp (α−1
1 , . . . ,α−1

m )zp =
m∏

j=1

1

1−α−1
j z

whenever |z| < min{α j : j = 1, . . . ,m}.

The second is the moment-generating function for the densityΛα of X :=∑m
j=1α j X j :

∞∑
p=0

µp

p !
zp = E[ez X ] =B{Λα}(−z) =

m∏
j=1

1

1−α j z
.

As a final result in this vein, we show in [6] that for each m ≥ 2, the parametersα can be
recovered from finitely many moments or Maclaurin coefficients.
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Theorem 4.2 ([6]). Given m ≥ 2 and α ∈ (0,∞)m , the parameters α may be recovered,
up to permuting its entries, from the first m moments µ1, . . . , µm of the density Λα, and
also from the lowest m +1 non-trivial Maclaurin coefficients of Λα, that is, Λ(k)

α (0+) with
m −1 ≤ k ≤ 2m −1.

The proof crucially relies upon the Jacobi–Trudi identity from symmetric function
theory. As we mention below, this is one of several hitherto unexplored connections
between symmetric functions and positivity that have emerged in recent works.

4.2. Power and polynomial preservers of Hirschman–Widder densities. We now re-
turn to the theme of understanding which transformations preserve the class of Hirsch-
man–Widder densities. As Karlin and Schoenberg have shown, the density of X1 + X2

(with X1 and X2 independent standard exponential random variables) is a PF function,
every positive integer power of which is also a PF function. As we asserted in Theo-
rem 3.3, the situation is identical for α1X1 +α2X2 whenever α1, α2 > 0. More generally,
we have the following result; note that, sinceΛα is symmetric inα, the entries ofαmay
be assumed to be monotonic.

Theorem 4.3 ([6]). Consider the class of probability densities

{Λα :α−1
1 , . . . ,α−1

m are positive and form an arithmetic progression}

of finite linear combinations
∑m

j=1α j X j of independent standard exponential random
variables. This class of densities is closed under taking positive integer powers.

In particular, if m = 2, then all positive integer powers of Λα are Hirschman–Widder
densities, so Pólya frequency functions, so totally non-negative functions.

However, the preceding result is somewhat misleading as far as general parametersα
go. For m ≥ 3 and almost all α, we show that not only do integer powers not remain PF
functions, or even TN functions, but in fact no polynomial transform enjoys this prop-
erty, save for the obvious ones.

Theorem 4.4. Fix an integer m ≥ 3. There exists a set N ⊂ (0,∞)m with zero Lebesgue
measure such that

p ◦Λα :R→R; x 7→ p(Λα(x))

is not a TN function, and so not a Pólya frequency function, for any α ∈ (0,∞)m \ N

and any non-homothetic real polynomial p, that is, any real polynomial not of the form
p(x) = cx for some c > 0.

5. One and two-sided Pólya frequency functions and sequences

Having studied finite linear combinations of exponential random variables and the
transformations that preserve total non-negativity of their densities, we now tackle the
same preserver problem for the general case: one-sided and two-sided Pólya frequency
functions. This is the focus of the third paper [4] that is being announced in the present
note.

In studying these preservers, we were naturally motivated by the celebrated paper of
Schoenberg [69], which classified the preservers of a related notion: positive semidefi-
niteness. Coming from considerations of distance geometry (specifically, positive defi-
nite functions of the form F ◦cos on Euclidean spheres) Schoenberg classified the con-
tinuous functions F : [−1,1] → R which preserve positivity when applied entrywise to
positive semidefinite matrices of all dimensions.
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Theorem 5.1 (Schoenberg [69]). Suppose F : [−1,1] →R is continuous. The following are
equivalent:

(1) The entrywise transform F [A] := (F (ai j ))n
i , j=1 is positive semidefinite for every

positive semidefinite matrix A = (ai j )n
i , j=1 with entries in [−1,1] and every n ≥ 1.

(2) F admits a power-series representation
∑∞

k=0 ck xk on [−1,1] with non-negative
Maclaurin coefficients.

As observed by Pólya and Szegő in 1925, the implication (2) =⇒ (1) essentially follows
from the Schur product theorem [73], and functions which such a representation are
called absolutely monotonic. Schoenberg’s theorem [69] provides the highly non-trivial
converse result, that continuous preservers are precisely the absolutely monotonic func-
tions. The continuity assumption in Theorem 5.1 was subsequently removed by Rudin,
who showed moreover that the test set can be greatly reduced in every dimension, to
low-rank Toeplitz matrices.

Theorem 5.2 (Rudin [65]). Suppose I = (−1,1) and F : I → R. The following are equiva-
lent:

(1) F [A] is positive semidefinite for every positive semidefinite A ∈ I n×n and every
n ≥ 1.

(2) F [A] is positive semidefinite for every positive semidefinite A ∈ I n×n which is
Toeplitz of rank at most 3 and every n ≥ 1.

(3) F is represented by a power series
∑∞

k=0 ck xk on I , with all ck ≥ 0.

Inspired by Schoenberg’s theorem, and with applications to moment problems in
mind, we recently strengthened Theorem 5.1 in a parallel direction to Rudin’s result.

Theorem 5.3 ([7]). The three conditions in Theorem 5.2 are also equivalent to the follow-
ing:

(4) F [A] is positive semidefinite for every positive semidefinite A ∈ I n×n which is
Hankel of rank at most 3 and every n ≥ 1. Equivalently, F [−] preserves the class
of moment sequences of positive measures on I having moments of all orders.

These results can be recast in the language of composition maps CF . A real n ×n
matrix A can be identified with a function A : [n]× [n] → R, where [n] := {1, . . . ,n}. Now,
the entrywise transform F [A] is simply the composition CF (A) := F ◦ A. Thus, the above
results are equivalent to classifying the composition maps CF that preserve the class of
positive semidefinite kernels on an infinite domain X . In particular, Theorem 5.3 classi-
fies the composition maps that preserve positivity on the family of real Hankel kernels
on Z2

≥0.
It is natural to move from studying the preservers of structured Hankel kernels to

those of structured Toeplitz kernels. In this section, we consider endomorphisms of
several different classes of functions: Pólya frequency functions, totally non-negative
functions, and Pólya frequency sequences. We also discuss one-sided variants of these.
We begin by asserting that the classes of Pólya frequency functions and sequences are
as rigid as the class of Hirschman–Widder densities, not just for polynomials, but for
arbitrary composition transforms.

Theorem 5.4 ([4]). Let F : [0,∞) → [0,∞) be a function. Consider the composition trans-
form CF , taking any function of the form Λ : X → [0,∞) to the map CF (Λ) := F ◦Λ : X →
[0,∞).

(1) The composition transform CF preserves the class of Pólya frequency functions if
and only if F is a positive homothety: there exists c > 0 such that F (x) = cx for
all x.



48 Alexander Belton, Dominique Guillot, Apoorva Khare, Mihai Putinar

(2) The transform CF preserves the class of Pólya frequency sequences if and only if
F is a positive homothety or a non-negative constant: either F ≡ 0 or there exists
c > 0 such that F ≡ c or F (x) = cx for all x.

(3) The transform CF preserves the class of totally non-negative functions if and only
if F ≡ 0 or there exists c > 0 such that F ≡ c or F (x) = cx for all x or F (x) = c1x>0

for all x.

We next present a one-sided version of Theorem 5.4. Given a domain X ⊂ R, we say
that a functionΛ : X →R is one sided if there exists x0 ∈R such thatΛ≡ 0 on X ∩(−∞, x0)
orΛ≡ 0 on X ∩ (x0,∞).

Theorem 5.5 ([4]). Suppose F : [0,∞) → [0,∞).

(1) The composition transform CF preserves the class of one-sided Pólya frequency
functions if and only if there exists c > 0 such that F (x) = cx for all x.

(2) The transform CF preserves the class of one-sided Pólya frequency sequences if
and only if F ≡ 0 or there exists c > 0 such that F (x) = cx for all x.

(3) The transform CF preserves the class of one-sided totally non-negative functions
if and only if F ≡ 0 or there exists c > 0 such that either F (x) = cx for all x or
F (x) = c1x>0 for all x.

These results reveal the rigidity of the endomorphisms of several classes of totally
non-negative functions. A similar phenomenon is uncovered when understanding the
endomorphisms of totally positive functions, or of TP Pólya frequency functions or se-
quences. Recall that these are the subsets of the corresponding classes of maps for which
all determinants in the defining conditions are positive instead of just non-negative.

Theorem 5.6 ([4]). Suppose F : (0,∞) → (0,∞). The composition transform CF preserves
any of the following classes (and so all of them) if and only if there exists c > 0 such that
F (x) = cx for all x: (a) totally positive PF functions, (b) totally positive PF sequences, and
(c) totally positive functions.

The proof of Theorem 5.6 involves two interesting ingredients. The first is a density
phenomenon for totally positive Pólya frequency functions.

Proposition 5.7 ([4]). The class of totally positive Pólya frequency functions is dense in
the class of Pólya frequency functionsΛ that are regular, that is, such thatΛ(x) = (Λ(x+)+
Λ(x−))/2 for all x, where Λ(x+) and Λ(x−) are the right-hand and left-hand limits of the
functionΛ at the point x.

The reader may be reminded of the density result of Anne M. Whitney [83], which
asserts that the set of m ×n TPp matrices is dense in that of m ×n TNp matrices, for all
positive integers m, n and p. The proposition above is the analogous result for Toeplitz
kernels arising from Pólya frequency functions.

The second ingredient in its proof is the discontinuous test function λ1/2 from Theo-
rem 3.8, which is indeed a regular Pólya frequency function. In fact, it was in this context
that we first encountered λ1/2 and were led to the more general family of functions λd

and to the classification Theorem 3.8.

6. Preservers of total positivity on arbitrary domains

In this final section, we go from working with structured kernels to arbitrary ones.
Just as the preservers of all positive semidefinite matrices are classified by Schoenberg’s
theorem 5.1 and its strengthenings in [65] and [7], a natural and parallel question is to
understand the preservers of total positivity. Here, we present the complete solution to
the following problems.
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Given non-empty totally ordered sets X and Y and a positive integer p,
classify the composition transforms CF which preserve the classes of TNp ,
TPp , TN, and TP kernels on X ×Y .

Remark 6.1. Two initial observations are in order. First, from the definitions, it is clear
that we can assume X and Y have cardinality at least p, for the TNp and TPp problems,
and are infinite otherwise, to ensure the relevant class is not empty. Second, the kernel
K ≡ 0 is TN and K ′ ≡ 1 is TP1 on any non-empty domain X ×Y , so there are no further
restrictions for the TNp and TP1 classification problems.

As in [4], we examine the totally non-negative and totally positive cases separately.

6.1. Preservers of total non-negativity. It is immediate that the functions F such that
CF preserves the TN1 or TP1 property for kernels are precisely the self maps F : [0,∞) →
[0,∞) or F : (0,∞) → (0,∞) respectively. Thus, in the sequel we will assume p ≥ 2.

To write down systematically all total non-negativity preservers, we first introduce
the following compact notation.

Definition 6.2. Given totally ordered sets X and Y , and a positive integer p, let

F TN
X ,Y (p) := {F : [0,∞) →R | F ◦K is TNp for any TNp kernel K on X ×Y },

F TP
X ,Y (p) := {F : [0,∞) →R | F ◦K is TPp for any TPp kernel K on X ×Y }.

We also let F TN
X ,Y (∞) and F TP

X ,Y (∞) denote the analogous classes of functions for TN and
TP kernels, respectively, and use TN∞ and TP∞ synonymously with TN and TP.

To classify the total non-negativity preservers, we first note that if X and Y have cardi-
nality at least p then every preserver of the set of TNp matrices in Rp×p is automatically
a preserver of the set of TNp kernels on X ×Y , and vice versa. Indeed, one inclusion of
preservers is immediate, and the reverse inclusion follows by padding a p ×p TNp ma-
trix by zeros to yield a TNp kernel on X ×Y . With this observation at hand, we present
the solution to the easier of the two questions posed above.

Theorem 6.3 ([4]). Let X and Y be totally ordered sets with cardinality at least p, where
2 ≤ p ≤∞. Then

(1) F TN
X ,Y (2) = {cxα : c > 0,α> 0}∪ {c : c ≥ 0}∪ {c1x>0 : c > 0},

(2) F TN
X ,Y (3) = {cxα : c > 0,α≥ 1}∪ {c : c ≥ 0}, and

(3) F TN
X ,Y (p) = {cx : c > 0}∪ {c : c ≥ 0} if 4 ≤ p ≤∞.

We briefly remark that proving Theorem 6.3 involves showing that every preserver
of TNp preserves TN2, whence is measurable. Now the problem reduces to solving the
multiplicative Cauchy functional equation in this setting, to deduce that the preserver
is, up to rescaling, a power function or 1x>0.

Remark 6.4. Interestingly, the preserver c1x>0 also features in Theorem 5.4, and the
preservers of PF sequences, which may be thought of as bi-infinite TN Toeplitz matrices,
coincide with those of TNp kernels for 4 ≤ p ≤∞.

Remark 6.5. As Theorem 6.3 shows, there are very few preservers of total non-negativity
of order at least 4. The situation was the same when we considered the preservers of TN
Toeplitz kernels on infinite domains such as R or Z. However, this changes dramatically
upon going from the Toeplitz to the Hankel setting: there are large classes of preservers
of Hankel TN matrices of a fixed dimension or even of all dimensions. We illustrate this
with a few concrete examples.
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(1) The map F : [0,∞) → [0,∞) is such that the composition transform CF preserves
all TN Hankel matrices of all dimensions precisely when it equals a convergent
power series

∑∞
k=0 ck xk on (0,∞) with all ck ≥ 0 and is such that 0 ≤ F (0) ≤ F (0+).

This is similar to the class of preservers in Schoenberg’s Theorem 5.1, and far
larger than the collection of constants and homotheties in Theorem 6.3.

(2) The set of entrywise powers that preserve the class of Hankel TNp matrices co-
incides [7] with the Berezin–Gindikin–Wallach-type setZ≥0∪(p−2,∞) obtained
by Karlin: see Theorems 3.2 and 3.3. The same set of powers also appears as the
set of power preservers of the class of continuous Hankel TNp kernels on arbi-
trary sub-intervals of Rwith positive measure, as shown in [45]. Once again, this
set differs vastly from the one in Theorem 6.3.

(3) In a fixed dimension p ≥ 2, there are polynomial preservers with negative co-
efficients, as obtained in [5, 47]. This line of investigation uncovered unex-
pected connections between positivity and Schur polynomials, which preceded
the findings in Section 4.1: see [6, 46].

6.2. Preservers of finite-order total positivity. We now come to the preservers of totally
positive kernels. There are two distinct cases, when p is finite and when p is infinite, and
each has its own subtleties.

The first observation is that if X and Y each have cardinality at least 2 and there exists
a TP2 kernel on X ×Y , then X and Y necessarily embed into the real line.

Proposition 6.6 ([4]). Let X and Y be non-empty totally ordered sets. The following are
equivalent:

(1) There exists a totally positive kernel on X ×Y .
(2) There exists a TP2 kernel on X ×Y .
(3) At least one of X or Y is a singleton set, or there exist order-preserving embeddings

from X into (0,∞) and from Y into (0,∞).

Thus, the general problem of classifying total positivity preservers reduces to con-
sidering domains embedded in the real line. A key difference with the corresponding
problem for total non-negativity preservers is that one can no longer extend kernels on
smaller domains to the whole of X ×Y by padding with zeros. Thus, TPp preservers of
p ×p matrices will preserve TPp kernels on X ×Y whenever X and Y have cardinality at
least p, but to show the converse we need to develop additional tools.

The following result is the complete classification in the finite-order case.

Theorem 6.7 ([4]). Suppose X and Y are totally ordered sets such that there exists a TPp

kernel on X ×Y for some integer p ≥ 2. Then

(1) F TP
X ,Y (2) = {cxα : c > 0,α> 0},

(2) F TP
X ,Y (3) = {cxα : c > 0,α≥ 1}, and

(3) F TP
X ,Y (p) = {cx : c > 0} if p ≥ 4.

This result should be compared with Theorem 6.3. The proof involves first showing
that every preserver is continuous; we elaborate on this below. Once this is done, when
X and Y are finite, we may invoke Whitney’s density theorem [83], which reduces the
classification of preservers of TPp kernels on X ×Y to the case of TNp kernels, which
was done in Theorem 6.3. Now some matrix analysis completes the proof.

For finite X , Y and p, we still need to show that every preserver is continuous. In fact,
a stronger result holds.
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Proposition 6.8 ([4]). Let X and Y be totally ordered sets such that there exists a TP2

kernel on X ×Y .

(1) Every 2×2 TP matrix can be embedded in arbitrary position into a TP kernel on
X ×Y .

(2) If F : (0,∞) → (0,∞) is such that the composition map CF preserves the class of
TPp kernels on X ×Y for some p ≥ 2 (including p =∞) then F is continuous and
there exist c > 0 and α> 0 such that F (x) = cxα for all x.

The proof of part (1) involves showing that every 2×2 TP matrix is, up to scaling and
taking the transpose, a generalized Vandermonde matrix, and then invoking Proposi-
tion 6.6(3). Moreover, a generalized Vandermonde matrix can easily be embedded in
the TP kernel

R×R→R; (x, y) 7→ exp(x y),

from which part (2) follows easily.
This completes the outline of the proof of Theorem 6.7 when X and Y are finite. How-

ever, the proof techniques used for the results above no longer suffice if at least one of X
and Y is infinite, even after we know that F (x) = cxα as above. The missing ingredient
that is required is an analogue of Whitney’s density theorem for infinite domains. Thus,
we extend that result.

Theorem 6.9 ([4]). Let X and Y be subsets of the real line which each contain at least two
distinct points. If K : X ×Y →R is a bounded TNp kernel for some integer p ≥ 2 then there
exists a sequence of TPp kernels on X ×Y which converges to K locally uniformly on the
set of points in X ×Y where K is continuous.

6.3. Total-positivity preservers on bi-infinite domains. If X or Y is finite, then the TP
kernels on X ×Y are precisely the TPp kernels, where p is the minimum of the cardinal-
ities of X and Y . The preservers in this setting are classified by Theorem 6.7. Thus, the
only remaining case requires X , Y and p to be infinite.

Theorem 6.10 ([4]). If X and Y are infinite totally ordered sets such that there exists a TP2

kernel on X ×Y then the only preservers of TP kernels on X ×Y are the positive homoth-
eties: functions of the form F (x) = cx for some c > 0.

In conjunction with Theorem 6.7, this result completely resolves the problem of clas-
sifying total positivity preservers for kernels on an arbitrary domain X ×Y .

We briefly sketch here the arguments in the proof. The idea is to use the classification
of the preservers of Pólya frequency functions and sequences from a previous section.
To do so, one requires a novel ingredient: order-preserving embeddings of sets contain-
ing arbitrarily long arithmetic progressions. Thus, we introduce the following definition.

Definition 6.11. Two sets X and Y of real numbers are said to form an admissible pair
if for each integer n ≥ 2 there exist n-step arithmetic progressions

x1 < ·· · < xn in X and y1 < ·· · < yn in Y

that are equally spaced: x j+1 −x j = y j+1 − y j for j = 1, . . . ,n −1.
Also, let the Minkowski difference X −Y := {x − y : x ∈ X , y ∈ Y }, and call a kernel

K : X ×Y →R Toeplitz if there exists a function f : X −Y →R such that K (x, y) = f (x − y)
for all x ∈ X and y ∈ Y .

Now the first step in proving Theorem 6.10 is the following common extension of
parts (a) and (b) of Theorem 5.6.
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Proposition 6.12 ([4]). Suppose X , Y ⊂ R form an admissible pair, and let F : (0,∞) →
(0,∞). The composition map CF preserves total positivity for all Toeplitz kernels on X ×Y
if and only if there exists c > 0 such that F (x) = cx for all x.

With this result at hand, the proof of Theorem 6.10 goes as follows. The set X con-
tains an infinite ascending chain or an infinite descending chain. We construct an order-
preserving bijection ϕX : X → X ′, where X ′ ⊂ R is a subset that contains an arithmetic
progression of length 2n and step-size 4−n for each n ≥ 2, and similarly for ϕY : Y → Y ′.
Since X ′ and Y ′ form an admissible pair, Proposition 6.12 says that if F is not a homo-
thety, then F does not preserve some TP Toeplitz kernel K ′ on X ′×Y ′. Transferring the
kernel K ′ back to a totally positive kernel on X ×Y via (ϕX ,ϕY ) shows the contrapositive
of the non-trivial implication in Theorem 6.10.

6.4. Preservers of TP and TN on symmetric kernels. We conclude by mentioning that
there exist symmetrical analogues of all of the results in this section, characterizing the
preservers of symmetric TNp or TPp kernels on X ×X for an arbitrary totally ordered set
X . While the results have similar statements, we are unable to employ Pólya frequency
functions or sequences as test kernels in our proofs, and so are forced to look elsewhere.

Here we discuss only one result: the symmetric version of the final theorem above.

Theorem 6.13 ([4]). Given an infinite totally ordered set X such that there exists a sym-
metric TP2 kernel on X × X , the only preservers of symmetric TP kernels on X × X are the
positive homotheties.

The proof of this result employs all of the above tools and techniques. We conclude
this note with a sketch of it.

First, by the symmetric variant of Proposition 6.8, every preserver is a power func-
tion of the form F (x) = cxα with c > 0 and α > 0. Moreover, as F is continuous, it also
preserves the class of symmetric TN kernels on X × X that are limits of symmetric TP
kernels.

Using the order-preserving bijectionϕX : X → X ′ from Proposition 6.6(3), we transfer
a family of kernels on X ′× X ′, which are Hankel on Zn × Zn for each n-step arithmetic
progression Zn ⊂ X ′, to symmetric TN kernels on X × X . As these Hankel kernels on
X ′ × X ′ are limits of TP Hankel kernels, the preceding paragraph and a variant of the
stronger Schoenberg-type Theorem 5.3 from [7] imply that F is absolutely monotonic.
Hence α ∈Z>0.

We now fix a real number β> 0 and consider the test function

Mβ :R→ (0,∞); x 7→ (β+1)exp(−β|x|)−βexp(−(β+1)|x|).

It follows from Schoenberg’s representation theorem, Theorem 2.2, that Mβ is a PF func-

tion, but that that M k
β

is not a PF function for any integer k ≥ 2. Using convolution with

a family of Gaussian densities, it is readily seen that the Toeplitz kernel associated with
Mβ is the limit of symmetric TP kernels, and so F ◦ Mβ = Mα

β
is TN on X × X by our

assumption on F .
Finally, we suppose α ≥ 2. Employing a discretization technique and using the con-

tinuity of Mβ, we produce an arithmetic progression Z ′ = (z ′
1 < ·· · < z ′

nα ) in R such that
(Mβ(z ′

i , z ′
j )α)nα

i , j=1 is not TN. We transfer this kernel on Z ′×Z ′ first to X ′×X ′, via a change

of scale and origin, then to X × X using ϕX . This shows that Mα
β

is not TN on X × X , a

contradiction, and so the power α cannot be 2 or more, forcing α= 1.
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