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Digit permutations revisited

par David GOSS†

Résumé. Nous considérons ici les fonctions L en caractéristique
p ainsi que le groupe S(q) qui se trouve agir comme des symétries
de ces fonctions. Nous expliquons diverses actions de S(q) qui ap-
paraissent naturellement dans la théorie ainsi que les extensions
de ces actions. En général de telles extensions semblent haute-
ment arbitraires, mais dans le cas où les zéros sont non-ramifiés,
l’extension est unique (et il est raisonnable de s’attendre à l’uni-
cité seulement dans ce cas-là). Avoir des zéros non-ramifiés est le
mieux que l’on puisse espérer en caractéristique positive, et semble
êtere un avatar de l’hypothèse de Riemann dans ce contexte. Voir
Section 8 pour des discussions plus détaillées.

Abstract. We discuss here characteristic p L-series as well
as the group S(q) which appears to act as symmetries of these
functions. We explain various actions of S(q) that arise naturally
in the theory as well as extensions of these actions. In general such
extensions appear to be highly arbitrary but in the case where the
zeroes are unramified, the extension is unique (and it is reasonable
to expect it is unique only in this case). Having unramified zeroes
is the best one could hope for in finite characteristic and appears
to be an avatar of the Riemann hypothesis in this setting; see
Section 8 for a more detailed discussion.

1. Introduction
The publication of V. G. Drinfeld’s seminal paper Elliptic modules [7] in

1974 has lead to the emergence of a true “analytic theory of numbers” in-
volving analysis in finite characteristic. This work, together with previously
little known work by L. Carlitz starting in the 1930’s (see for instance [8,
Chapter 3]), allow one to create very viable analogs of the classical special
functions of complex arithmetic. Thus, for instance, we are able to construct
analytic characteristic-p valued L-series and zeta functions which possess
special values extremely similar to those of classical L-series (such as an
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analog, due to Carlitz, of Euler’s great formula for ζQ(2m) for m a posi-
tive integer). We also present here some new functions originally defined
by B. Anglès (Subsection 5.2).

These analogies, along with others not mentioned here, encourage us to
look for a deeper theory associated to these functions. In particular, it is
completely reasonable to search for a deeper theory of the zeroes of these
functions and, as of this writing, such a theory is still very much in its
infancy. However, there have been a few notable victories in this regard.
For instance, in the 1990’s, based on earlier work of D. Wan, J. Sheats [17]
was able to establish that the zeroes of ζFq [θ](s) are simple and lie “on the
line” Fq((1/θ)). This clearly is similar to what is expected for the Riemann
zeta function.

Of course, basic to the study of the Riemann hypothesis, and, indeed, all
complex valued L-series are their functional equations which are symmetries
under the transformation s 7→ m− s for some positive integer m. In finite
characteristic it was realized very early on that no such simple symmetry
would be satisfied. However, in 1995 Dinesh Thakur [19] published some
calculations that led the present author to construct a certain huge group
S(q) (see Section 7 and [10]) which appears to act as symmetries of the
characteristic p L-series (but in a way that is still far from clear).

It is our purpose here to revisit S(q) as well as the zeroes in finite char-
acteristic. We will establish the ubiquity of S(q), as well as its naturality,
by expressly presenting many different actions of S(q) on spaces (such as
Zp or Fq((1/θ))), functions on these spaces and measures on these spaces,
see Section 7. In some cases, these actions are remarkably simple; see, for
instance, Corollary 7.5 or Proposition 7.10. Along the way, we obtain a new
p-adic congruence for binomial coefficients in Proposition 7.6.

It is well-known that every entire function over a nonarchimedean field
is determined up to a constant by its zeroes. Using this, it was pointed
out in [11] that the best one could hope for, at least in the case where the
base ring A = Fq[θ] is to have the zeroes lie in a constant field extension
of Fq((1/θ)). In other words, the zeroes should be unramified. As we point
out in Subsection 8.1, if one views the classical Riemann hypothesis from
the viewpoint of the Carlitz module, it also becomes a statement that the
zeroes are unramified!

We originally defined the action of S(q) on Fq((1/θ)). But as mentioned
the zeroes will not always be in this field. They will, however, always be
algebraic over Fq((1/θ)) and so, with a choice of basis of an finite algebraic
extension, we show how to further extend the action of S(q) (in an extremely
noncanonical fashion). It is expected that this action is indeed highly depen-
dent on the choice of basis chosen. However, when the extension is given by
a constant field extension (that is the zero lies in an unramified extension),
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the action can be chosen to be just the usual extension by scalars (via the
tensor product). The constant field extension can then be obtained as the
commutator algebra of this extension.

In other words, the action of S(q) appears to allow us to precisely detect
unramified zeroes.

In the final section of [5], A. Connes quotes Galois to support his con-
tention that the classical Riemann hypothesis should somehow be the be-
ginning and not the end of the understanding of zeta zeroes. It is precisely
in this optic that we view the potential action of S(q) (presented here and
in [11]) on the zeroes in characteristic p as it seems to portend a much
deeper understanding of these zeroes.

2. Review of basic Carlitz theory
We recall here some basic ideas of L. Carlitz that can be found in [8].

2.1. The Carlitz factorial. As mentioned, we have A = Fq[θ] where
q = pm0 and p is prime and k = Fq(θ) its quotient field.

Definition 2.1. Let i be a positive integer. We set [i] := θq
i − θ.

Clearly d[i]
dθ = −1 and so [i] is separable. Standard theory of finite fields

then readily establishes

(2.1) [i] =
∏
f

f ,

where f runs over the monic prime polynomials whose degree divides i.

Definition 2.2.
(1) We set D0 := 1, and for i > 0, Di := [i][i− 1]q · · · [1]qi−1 .
(2) We set L0 := 1, and for i > 0, Li := [i][i− 1] · · · [1] .

Notice that Li = [i]Li−1 and Di = [i]Dq
i−1. The next result follows

directly using (2.1).

Proposition 2.3. We have Di is the product of all monic polynomials in
θ of degree i. Moreover, Li is the least common multiple of all such monic
polynomials.

Let j be a nonnegative integer written q-adically as j =
∑m
t=0 ctq

t where
0 ≤ ct < q for all t.

Definition 2.4. We set

Π(j) :=
m∏
t=0

Dct
t .

Notice, of course, that Π(qe) = De.
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Proposition 2.5. We have

Π(qj − 1) = (D0 · · ·Dj−1)q−1 = Dj

Lj
= (−1)j

∏
α

α ,

where α runs over all nonzero polynomials in A of degree < j.

Proof. The first product is simply the definition of Π(qj − 1). The second
equality follows from repeatedly using Di = [i]Dq

i−1 and the third equality
follows upon expressing the product over all nonzero elements of degree < j
as a corresponding product over the monic polynomials of degree < j. �

2.1.1. A determinant formula. Here we will explain how the special
factorials Π( q

m−1
q−1 ) can be obtained as a determinant of Vandermonde type.

We begin with a very clever observation of F. Voloch [20] relating dif-
ferentiation and q-th powers. Let f(θ) ∈ A be a polynomial in θ and
let ∂j = ∂θ,j be the j-th divided derivative in θ of f(θ). So one has
f(x) =

∑
j ∂jf(θ)(x− θ)j upon expanding about x = θ.

Proposition 2.6. With f(θ) as above, and i a nonnegative integer, we
have

f q
i(θ) =

∑
j

∂jf(θ)[i]j .

Proof. One simply uses the above Taylor expansion, substitutes θqi for x,
and notes that f(θqi) = f q

i(θ). �

Now let m be a fixed positive integer and {x0, . . . , xm} ⊂ A have degree
≤ m. Set

M = M(x0, . . . , xm) :=



x0 x1 x2 x3 . . . xm
xq0 xq1 xq2 xq3 . . . xqm
xq

2

0 xq
2

1 xq
2

2 xq
3

3 . . . xq
2
m

...
...

...
...

...
...

xq
m

0 xq
m

1 xq
m

2 xq
m

3 . . . xq
m

m

 ,

V = V (0, [1], . . . , [m]) :=


1 0 0 0 . . . 0
1 [1] [1]2 [1]3 . . . [1]m
1 [2] [2]2 [2]3 . . . [2]m
...

...
...

...
...

...
1 [m] [m]2 [m]3 . . . [m]m

 ,
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and,

W = W (x0, . . . , xm) :=


x0 x1 x2 x3 . . . xm
∂1x0 ∂1x1 ∂1x2 ∂1x3 . . . ∂1xm
∂2x0 ∂2x1 ∂2x2 ∂2x3 . . . ∂2xm
...

...
...

...
...

...
∂mx0 ∂mx1 ∂mx2 ∂mx3 . . . ∂mxm

 .

Notice, of course, that M is an example of a Moore matrix, V a matrix
of Vandermonde type and W a Wronskian. As M. Papanikolas has com-
municated to the author [13], Proposition 2.6 immediately implies the next
result relating these three famous types of matrices.
Proposition 2.7. With the above notations, we have

M = VW .

Now choose xj = θj , for j = 0, . . . ,m.
Corollary 2.8. We have

Π
(
qm − 1
q − 1

)
= detV (0, [1], . . . , [m]) .

Proof. Note that theWronskian for our choice of functions is now unipotent.
So from Proposition 2.7 we obtain, with the obvious notation, detM =
detV . But Moore’s result (Section 1.3 of [8]) now establishes that

Π
(
qm − 1
q − 1

)
= detM(1, θ, . . . , θm). �

Remarks 2.9. Corollary 2.8 is quite remarkable in that it shows that
for arbitrary choices of {xi} the Wronskian determinant and the Moore
determinant always differ by Π((qm−1)/(q−1)). Moreover, we also deduce
that our matrix V is invertible. Therefore, and more remarkably, we see
that one can always express the divided derivatives of elements in A<m+1
in terms of their qj-th powers with denominator at most Π((qm−1)/(q−1)).
2.2. The Carlitz polynomials. Classically, one passes from n! to the bi-
nomial coefficient functions

(s
n

)
defined, as usual, by

(s
n

)
:= s(s−1)···(s−n+1)

n·(n−1)···1 .
Clearly

(s
n

)
is a polynomial of degree n in s and is well-known to take on

integer values for integer arguments.
As

(s
n

)
has degree n, the collection {

(s
n

)
} forms a basis for the vector

space of polynomials in s over any field of characteristic 0. Let p(s) be a
polynomial of degree d which we write as p(s) =

∑d
k=0 ap,k

(s
k

)
. It is further

well known that

ap,k =
k∑
j=0

(−1)k−j
(
k

j

)
p(j) .
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The Carlitz polynomials, recalled here, play the role for the Carlitz fac-
torial that is played by

(s
n

)
for n!. It will be convenient to begin with some

definitions.

Definition 2.10.
(1) Let Ad be the polynomials in A of degree d.
(2) Let A+ be the monic polynomials of A and Ad,+ the monic polyno-

mials in A of degree d.
(3) Let A<d be the polynomials in A of degree strictly less than d.

Definition 2.11. We set e0(x) := x and, for an integer t > 0,

(2.2) et(x) :=
∏

α∈A<t

(x− α) .

Since the roots of ej(x) are a finite dimensional Fq-vector space of di-
mension t, and it is separable, it is well-known that is therefore an Fq-linear
function of degree qt in x.

Proposition 2.12. Let h be any monic polynomial of degree t. Then
et(h) = Dt.

Proof. This follows immediately from (2.2) and Proposition 2.3. �

Let j be a nonnegative integer written q-adically as j =
∑m
t=0 ctq

t, as
above.

Definition 2.13.
(1) We set gj(x) :=

∏
t et(x)ct .

(2) We set

Gj(x) :=
∏
t

(
et(x)
Dt

)ct

= gj(x)
Π(j) .

Notice that both gj(x) and Gj(x) have degree j in x. Moreover, if ζ ∈ Fq,
then gj(ζx) = ζjgj(x) and Gj(ζx) = ζjGj(x) for all j.

Proposition 2.14. Let α ∈ A. Then Gj(α) ∈ A for all α ∈ A.

Proof. The values {Gqt(α) = et(α)
Dt
} occur as the coefficients of the Carlitz

module Cα(τ) where τ is the q-th power mapping; as such they are in A.
Consequently, Gj(α) ∈ A for all α ∈ A also. �

Let y be another indeterminate. With j as above, we then have

(2.3) (x+ y)j =
∑

w+v=j

(
j

v

)
xvyw = (x+ y)

∑
ctqt =

∏
t

(xqt + yq
t)ct .

Notice, obviously, that et(x+y) = et(x)+et(y). The addition formulas now
follow from (2.3) and are given by our next result.
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Proposition 2.15. We have:

gj(x+ y) =
∑

w+v=j

(
j

v

)
gv(x)gw(y) ,

and
Gj(x+ y) =

∑
w+v=j

(
j

v

)
Gv(x)Gw(y) .

In other words, both {gj(x)} and {Gj(x)} satisfy the binomial theorem.
We call them “the Carlitz polynomials,” and we will now define their duals.
Definition 2.16.

(1) Let 0 ≤ v < q and t ≥ 0. We set

ĝvqt(x) :=
{
et(x)v if v < q − 1
et(x)q−1 −Dq−1

t if v = q − 1 .

We set Ĝvqt(x) := ĝvqt (x)
Dv

t
for all v and t.

(2) Now let c =
∑
ctq

t with 0 ≤ ct < q for all t. We set ĝc(x) :=∏
t ĝctqt(x) and Ĝc(x) :=

∏
t Ĝctqt(x).

Remarks 2.17. Note that Gj(x) = gj(x)
Π(j) and Ĝj(x) = ĝj(x)

Π(j) for all j.
Note also that both ĝ(q−1)qt(x) and Ĝ(q−1)qt(x) vanish on all polynomials
of degree t.

Proposition 2.18. Let j =
∑
ctq

t be as above.
(1) Let ζ ∈ Fq. Then ĝj(ζx) = ζj ĝj(x) and Ĝj(ζx) = ζjĜj(x).
(2) Let α ∈ A. Then Ĝj(α) ∈ A also.
(3) Let m be a positive integer. Then

em(x)
x

= ĝqm−1(x) .

Proof. Part (1) follows directly from the definitions. Part (2) follows from
Proposition 2.14. Finally, by the remark just above, one sees that both
em(x)/x and ĝqm−1(x) are monic of the same degree and with the same
zeroes; thus they are equal. �

Proposition 2.19. We have for j ≥ 0

ĝj(x+ y) =
∑

e+f=j

(
j

e

)
ge(x)ĝf (y) =

∑
e+f=j

(
j

e

)
ĝe(x)gf (y) ,

and

Ĝj(x+ y) =
∑

e+f=j

(
j

e

)
Ge(x)Ĝf (y) =

∑
e+f=j

(
j

e

)
Ĝe(x)Gf (y) .
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Proof. The proof of Proposition 2.15 works here also. �

The following simple lemma is, of course, very well-known.

Lemma 2.20. Let m be a positive integer. Then for any 0 ≤ j ≤ qm − 1,
we have (

qm − 1
j

)
≡ (−1)j (mod p) .

Proof. Note that in characteristic p, (1 + z)qm−1 = (1 + z)qm(1 + z)−1 =
(1 + zq

m)(1 + z)−1. Now use the geometric series to expand (1 + z)−1. �

As an immediate corollary, we obtain the next result.

Corollary 2.21. Let m be a positive integer. We then have:
(1) gqm−1(x+ y) =

∑
e+f=qm−1

(−1)ege(x)gf (y) .

(2) gqm−1(x− y) =
∑

e+f=qm−1
ge(x)gf (y) .

(3) Gqm−1(x+ y) =
∑

e+f=qm−1
(−1)eGe(x)Gf (y) .

(4) Gqm−1(x− y) =
∑

e+f=qm−1
Ge(x)Gf (y) .

Proof. Recall that gj(−y) = (−1)jgj(y) and Gj(−y) = (−1)jGj(y) and the
result follows immediately. �

The same argument immediately establishes the next essential result.

Corollary 2.22. Let m be a positive integer. Then

ĝqm−1(x− y) =
∑

e+f=qm−1
ge(x)ĝf (y) =

∑
e+f=qm−1

ĝe(x)gf (y) .

Let L be any field containing A and let f(x) ∈ L[x] be a polynomial of de-
gree d. Since gj(x) and ĝj(x) have degree j in x, we deduce two expressions
for f(x) in terms of these polynomials:

(2.4) f(x) =
d∑
i=0

af,igi(x) =
d∑
i=0

âf,iĝi(x) .

We will now deduce two “integrals” (actually finite sums) for the coefficients
{ai} and {âi(x)}.

Choose m such that qm > d.

Theorem 2.23. We have

(2.5) (−1)mDm

Lm
f(x) =

∑
α∈A<m

f(α)em(x)
x− α

.
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Proof. Let h(x) be the sum on the right hand side of (2.5). Note that since
em(α) = 0 for α ∈ A<m, we deduce em(x)/(x − α) is a polynomial in x of
degree qm − 1. Thus h(x) has degree in x at most qm − 1. Moreover, for
α ∈ A<m we have h(α) = f(α) em(x)

x−α |x=α.
But

em(x)
x− α

|x=α = em(x− α)
x− α

|x=α = em(x)
x
|x=0 .

Moreover by Proposition 2.5, em(x)
x |x=0 = (−1)mDm

Lm
. Now both h(x) and

(−1)mDm
Lm

f(x) are polynomials of degree at most qm − 1 that agree on the
qm points in A<m; thus they are equal. �

Theorem 2.24. Let f(x) and {af,i} be as in (2.4). Let qm > d where d is
the degree of f(x). Then we have

(−1)mDm

Lm
af,i =

∑
α∈A<m

f(α)ĝqm−1−i(α) .

Proof. Theorem 2.23 assures us that

(−1)mDm

Lm
f(x) =

∑
α∈A<m

f(α)em(x)
x− α

=
∑

α∈A<m

f(α)em(x− α)
x− α

.

By the third part of Proposition 2.18 we can rewrite this last sum as∑
α∈A<m

f(α)ĝqm−1(x− α) ,

But by Corollary 2.22, we have

ĝqm−1(x− α) =
∑

e+f=qm−1
ge(x)ĝf (α) .

The result follows upon collecting terms. �

The same proof also gives the following dual result.

Theorem 2.25. With the hypotheses of Theorem 2.24 we have

(−1)mDm

Lm
âf,i =

∑
α∈A<m

f(α)gqm−1−i(α) .

Our next result presents the compatibility between the various expres-
sions for the coefficients given in Theorem 2.24.
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Proposition 2.26. Let qm1 > i and qm2 > i. Then

(2.6) (−1)m1 Lm1

Dm1

∑
α∈A<m1

ĝqm1−1−i(α)f(α)

= (−1)m2 Lm2

Dm2

∑
α∈A<m2

ĝqm2−1−i(α)f(α) .

Proof. Write i q-adically as
∑e
t=0 ctq

t with ce 6= 0. We will show that both
sides of (2.6) are equal to

(−1)e+1 Le+1
De+1

∑
α∈A<e+1

ĝqe+1−1−i(α)f(α) .

Without loss of generality, set m = m1. Now, by definition, ĝqm−1−i(α) = 0
for all α of degree > e and < m. Thus

(−1)m Lm
Dm

∑
α∈A<m

ĝqm−1−i(α)f(α) = (−1)m Lm
Dm

∑
α∈A<e+1

ĝqm−1−i(α)f(α) .

Now notice that, by definition,

ĝqm−1−i(α) = (−1)m−e−1(De+1 · · ·Dm−1)q−1ĝqe+1−1−i(α).

The result follows upon noticing that Π(qm − 1) = Dm
Lm

. �

Remarks 2.27. The above compatibility formula, Proposition 2.26, has
some important corollaries. In particular, we can give formulae for the co-
efficients {af,j} which are independent of d. Indeed, let f(x) be a polynomial
of degree d, and write f(x) =

∑d
i=1 af,igi(x), also as before. Let i be a fixed

integer ≤ d which we write q-adically, as
∑e
t=0 ctq

t with ce 6= 0 as above.
Notice then the values of f(x) on the points x ∈ A<e depends only on the
truncation of the expansion of f(x) given by

∑qe+1−1
i=0 af,igi(x) simply be-

cause the other elements in the sum vanish on these values. Proposition 2.26
implies that af,i = (−1)e+1 Le+1

De+1

∑
α∈A<e+1 f(α)ĝqe+1−1−i(α) which does not

depend on d in any fashion. It does not appear possible to present similar
formulae for the dual coefficients.

Next we present a formula for the coefficients {af,i} and {âf,i} that
involves summing over monics of a given degree. We begin with an analog
of Theorem 2.23. As before, let f(x) be a polynomial of degree d and let m
be chosen so that qm > d.

Theorem 2.28. With the above hypotheses, we have

(2.7) (−1)mDm

Lm
f(x) =

∑
h∈Am,+

f(h)em(x)−Dm

x− h
.
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Proof. The sum on the right of (2.7) is a polynomial of degree at most
qm − 1. As before we see that it, and (−1)mf(x), have the same values at
the points in Am,+. Thus they must be equal. �

Let f(x) of degree d be written in terms of the gj(x) and their duals as
in (2.4) and let qm > d.

Theorem 2.29. We have

(−1)mDm

Lm
af,i =

∑
h∈Am,+

f(h)ĝqm−1−i(h) ,

and

(−1)mDm

Lm
âf,i =

∑
h∈Am,+

f(h)gqm−1−i(h) .

Proof. The result follows as before upon noting that, for h ∈ Am,+, we have
em(x)−Dm = em(x− h). �

Expanding the Carlitz polynomial gj(x) leads to the following orthogo-
nality formulae.
Theorem 2.30.

(1) For l < qm and j arbitrary∑
α∈A<m

ĝl(α)gj(α) =
{

0 if l + j 6= qm − 1
(−1)mDm

Lm
if l + j = qm − 1 .

(2) For l < qm, j < qm∑
h∈Am,+

ĝl(h)gj(h) =
{

0 if l + j 6= qm − 1
(−1)mDm

Lm
if l + j = qm − 1 .

We now pass to the corresponding formulae for Gi(x) and Ĝi(x) which
are, in fact, simpler than those given for gi(x) and ĝi(x).

Recall that in (2.4) we expressed a polynomial f(x) in terms of both
{gi(x)} and {ĝi(x)} as

f(x) =
d∑
i=0

af,igi(x) =
d∑
i=0

âf,iĝi(x) .

We now write

(2.8) f(x) =
d∑
i=0

Af,iGi(x) =
d∑
i=0

Âf,iĜi(x) .

From the definitions, we immediately conclude that
Π(i)af,i = Af,i and Π(i)âf,i = Âf,i .
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Now recall that by Proposition 2.5 we have Dm
Lm

= Π(qm − 1). But notice
Π(qm − 1) = Π(i)Π(qm − 1 − i). Thus from Theorem 2.24, Theorem 2.25,
and Theorem 2.29, we obtain the next fundamental theorem.

Theorem 2.31. With the hypotheses of Theorems 2.24, 2.25 and 2.29 we
have:

(1) (−1)mAf,i =
∑

α∈A<m

f(α)Ĝqm−1−i(α) ,

(2) (−1)mÂf,i =
∑

α∈A<m

f(α)Gqm−1−i(α) ,

(3) (−1)mAf,i =
∑

h∈Am,+

f(h)Ĝqm−i−1(h) ,

(4) (−1)mÂf,i =
∑

h∈Am,+

f(h)Gqm−1−i(h) .

Corollary 2.32. Both {Gi(x)} and {Ĝi(x)} are bases for the A-module of
elements f(x) ∈ k[x] such that f(α) ∈ A for all α ∈ A.

Proof. Just express f(x) using the theorem. �

We leave the obvious orthogonality formulae for Gi(x), Ĝi(x), which fol-
low immediately from Theorem 2.30 to the reader.

3. v-adic continuous functions
3.1. Basic notions. We begin with some notation that we will use throu-
ghout the paper. Let X,Y be two topological spaces. Then we denote the
set of continuous functions f : X → Y by C(X,Y ).

The binomial theorem implies that the binomial polynomials {
(s
j

)
} take

the nonnegative integers to themselves as was mentioned above. Let p be a
prime number. Since the p-adic integers, Zp, form a compact (and therefore
closed) algebra, continuity implies that the binomial polynomials also map
Zp into itself. It is a fundamental result, due to K. Mahler, [12] that the
set {

(s
j

)
} forms an orthogonal basis for the nonarchimedean Banach space

C(Zp,Qp). In this section we will briefly recall the theorem of C. G. Wag-
ner [21] which establishes a similar result for the Carlitz polynomials.

In keeping with the theme of this paper, we will sketch a “modern” proof
of this result following the excellent paper [6] by K. Conrad. We begin by
recalling a well known result of J.-P. Serre [16]. Let {K, | · |} be a local
field with ring of integers O (i.e., a finite extension of Qp for some prime p
or a formal Laurent series field over a finite field), and maximal ideal M .
Let (E, ‖ · ‖) be a Banach space over K and we assume that ‖ · ‖ and | · |
have the same value group. We set E0 := {x ∈ E : ‖x‖ ≤ 1}, which is an
O-module, and set Ē := E0/ME0. Clearly Ē is a vector space over the field
F := O/M .
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Examples 3.1.
(a) Let Ec = C(O,K) equipped with the norm

‖f‖ := sup
x∈O
{|f(x)|}.

Clearly both Ec and K have the same value groups. Moreover,
Ec,0 = C(O,O) ⊂ C(O,K) and thus Ēc,0 ' C(O,F) where F has
the discrete topology.

(b) Let K have positive characteristic and let F be its field of constants
(and so we identify F and O/M in the usual fashion) where the
cardinality of F is q. Let El := HomF(O,K) be the F-vector space
of F-linear, continuous functions from O to K equipped with the
sup norm as in Part (a). Clearly El is a closed sub Banach space of
Ec and one sees readily that Ēl,0 = HomF(O,F), the vector space
of continuous F-linear functions from O to F with F again having
the discrete topology.

As usual, given E, as above, and a sequence E := {e0, e1, . . .} of elements
of E, we say that E is an orthonormal basis for E if and only if every
x ∈ E can be written x =

∑∞
i=0 ciei with {ci} ⊂ K, ci → 0 as i → ∞

and ‖x‖ = supi{|ci|}. If E is an orthonormal basis, a moment’s reflection
assures one that the above expansion for x is unique.

The following basic and well-known result is due to J.-P. Serre [16].

Lemma 3.2. Let {K,E, ‖ · ‖} be as in Part (a) of Examples 3.1. Let E =
{e0, e1, . . .} be a sequence of elements in E. Then a necessary and sufficient
condition for E to be an orthonormal basis for E is that ei ∈ E0 for all i
and the reductions {ēi} ⊂ Ē form a basis for Ē as an F-vector space.

The import of Lemma 3.2 is that it allows us to find orthonormal bases
for a Banach space E by finding vector space bases of Ē.

3.2. The basic construction. Let K be our local field of characteristic
p > 0 and let Ec = C(O,K) all as in Examples 3.1. Let q = pn0 be the
order of F and let E = {e0, e1 . . .} be an orthonormal basis for El. Our next
definition is based on the construction of the Carlitz polynomials given in
Definition 2.13.

Definition 3.3. Let j be a nonnegative integer written q-adically as j =∑α
t=0 ctq

t with 0 ≤ ct < q all t. We set gj :=
∏α
t=0 e

ct
t and we put G = {gj}.

We say that G is the extension of E via q-adic digits.
The next basic result is due to Conrad [6].

Theorem 3.4. With the above definitions, G is an orthonormal basis for
Ec = C(O,K).
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Sketch of proof. Note first that by continuity C(O,F) = lim
−→

Maps(O/M j ,F)
and HomF(O,F) = lim

−→
HomF(O/M j ,F) whereO/M j has the discrete topol-

ogy.
Now let E = {e0, e1, . . .} be our orthonormal basis for HomF(O,K)

with reductions ēi and set Hi = ∩ic=0 ker ēc; one sees readily that Hi

has codimension i. Since the {Hi} give a basis for the topology at the
origin in O, we further deduce that C(O,F) = lim

−→
Maps(O/Hi,F) and

HomF(O,F) = lim
−→

HomF(O/Hi,F).
We are thus reduced to the following combinatorial problem: Let V be

a vector space over F of dimension n and let φi be a basis for the dual
space of V . Let Φ be the set of functions on V created out of {φi} via digit
expansions (as above) for 0 < j < qn − 1. We need to show that Φ is then
an F-basis for Maps(V,F). It is sufficient to show that Φ spans Maps(V,F).
To see this, let v ∈ V . Then Conrad explicitly constructs an element hv in
Span(Φ) with the property that hv(v) = 1 but hv(w) = 0 for w 6= v. These
elements clearly span all maps from V to F and the proof is complete. �

We also have the following generalization of the above theorem which is
established in a similar fashion.
Theorem 3.5. Let K, F be as above and let F0 ⊆ F be a subfield of car-
dinality q0 (so that q = qn0

0 ). Let E = {e0, e1, . . .} be an orthonormal basis
of HomF0(O,K) such that ∩in0−1

j=0 ker ēj has codimension in0 for all i ≥ 1.
Let G be the extension of E using q0-adic digits. Then G is an orthonormal
basis for C(O,K).
3.3. Applications to v-adic continuous functions. We now return to
the case of the Carlitz polynomials of Subsection 2.2 and use the results of
the previous subsection to obtain orthonormal bases.

As in Subsection 2.2 we let A = Fq[θ] and k = Fq(θ). Let K = k(θ) be
the completion of k at the prime (θ) and let O ⊂ K = Fq[[θ]] be the ring of
integers. Let {et(x)} be as in Definition 2.11 and set E := {et(x)/Dt}.
Proposition 3.6. The set E forms an orthonormal basis for HomFq (O,K) .

Proof. By Lemma 3.2, it suffices to show that the reductions {et(x)/Dt}
form a vector space basis of the continuous Fq-linear maps from O to Fq
equipped with the discrete topology. Notice that et(x)/Dt vanishes at θi
for i < t and et(θt)/Dt = 1. Thus {ei(x)/Di}t−1

i=0 forms a basis for the dual
of Fq[[θ]]/(θt) and the result is established. �

Let G := {Gj(x)} where Gj(x) is the Carlitz polynomial of Defini-
tion 2.13.
Corollary 3.7. The Carlitz polynomials G form an orthonormal basis for
C(O,K).
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Proof. This is exactly the content of Theorem 3.4. �

Let v now be any prime of A with completions O := Av and K = kv.
Very similar arguments give the following essential result.

Theorem 3.8. The sequence E forms an orthonormal basis for the space
HomFq (O,K). The sequence G forms an orthonormal basis for C(O,K).

Theorem 3.8 is the direct analog of Mahler’s theorem for binomial coef-
ficients.

Let Ĝ be the sequence of dual Carlitz polynomials of Definition 2.16.

Corollary 3.9. The sequence Ĝ is an orthonormal basis for C(O,K).

Proof. Notice that Gt(x) and Ĝt(x) have the same degree and both sets
of polynomials are bases for the space of A-valued polynomials with coeffi-
cients in k. Thus the result follows from Lemma 3.2 and Theorem 3.8. �

Let f ∈ C(O,K). By Corollaries 3.7 and 3.9 we can write

f(x) =
∞∑
i=0

Af,iGi(x) =
∞∑
i=0

Âf,iĜi(x) ,

as in (2.8) with the coefficients tending to 0 as i goes to infinity.
Write i q-adically as

∑e
t=0 ctq

e with 0 ≤ ct < q all t and ce 6= 0. Then
the discussion of Remarks 2.27 immediately gives the next result.

Proposition 3.10. We have

(−1)e+1Af,i =
∑

α∈A<e+1

f(α)Ĝqe+1−1−i(α) .

As remarked before there is no obvious analog of Proposition 3.10 for
the dual coefficients.

4. Measure theory
The previous section has equipped us with a good description of contin-

uous functions on the completions of A. Here we will use that to give a dual
description of the algebra of measures on these completions. We begin by
recalling the corresponding theory of p-adic measures on subsets of Zp.

4.1. Distributions and measures. Let X be any compact open subset
of the p-adic numbers such as Zp or Z∗p.

Definition 4.1. A p-adic distribution ν on X is a finitely additive Qp-
valued function on the compact-open subsets of X.
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More precisely, let {U1, . . . , Um} be a collection of pair-wise disjoint
compact-open subsets of X. Then we have

µ

 m⋃
j=1

Uj

 =
m∑
j=1

µ(Uj) .

Definition 4.2. Let µ be a p-adic distribution. If the values µ(U) ∈ Qp

are bounded for all compact-open subsets U ⊂ X (i.e., all such values lie
in a compact subset of Qp), then we say that µ is a p-adic measure.

Example 4.3. Let α ∈ X and let U ⊆ X be a compact-open. We define

δα(U) =
{

1, if α ∈ U
0, otherwise .

Clearly δα is a measure called the Dirac measure at α.

4.2. Integration. Let µ be a measure on X as in our previous subsection
and let f : X → Qp be a continuous function. For each a+pjZp ⊆ X choose
a point xa,j ∈ a+pjZp and let Xj := {xa,j}. We can then form the Riemann
sum

SXj :=
∑

a+pjZp⊆X
f(xa,j)µ(a+ pjZp) .

Recall that, as X is compact, every continuous function on X is auto-
matically uniformly continuous. Using this, one can directly prove the next
basic result.

Theorem 4.4. As j → ∞, the Riemann sums converge to an element∫
X f(x) dµ(x) ∈ Qp which does not depend upon the choice of Xj.

Examples 4.5.
(a) Let α ∈ X and let δα be the Dirac measure at α. Then∫

X
f(x) dδα(x) = f(α) .

(b) Let U ⊆ X be a compact open with characteristic function 1U (with
values 1 on U and 0 elsewhere). Note that 1U is continuous on all
of X and that

∫
X 1U dµ(x) = µ(U).

For now we restrict X = Zp. Let f : Zp → Qp be a continuous function.
As mentioned above, the classical Theorem of Mahler tells us that f(x)
may be expressed as

f(x) =
∞∑
i=0

ai

(
x

i

)
,
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where {ai} ⊂ Qp and ai → 0 as i → ∞. Let µ be a measure on Zp and
let Bµ be an upper bound for |µ(U)| where U runs over the compact-open
subsets of X. One easily checks that∣∣∣∣∣

∫
Zp

f(x) dµ(x)
∣∣∣∣∣ ≤ Bµ‖f‖ .

Now put for all i ≥ 0

vµ,i :=
∫
Zp

(
x

i

)
dµ(x) ,

and notice that {vµ,i} is bounded since one knows, by Mahler, that {
(x
i

)
}

is an orthonormal basis for the Banach space of continuous functions. We
therefore deduce that ∫

Zp

f(x) dµ(x) =
∞∑
i=0

aivµ,i ,

which converges as ai → 0 as i → ∞. Conversely, let V := {vi} ∈ Qp be
a bounded sequence. Set

∫
Zp
f(x) dµV (x) :=

∑
i aivi. As the characteristic

functions of compact open subsets are continuous on all of Zp and the
locally constant functions are dense in C(Zp,Qp), we obtain a measure by
setting µV (U) =

∫
1U dµV (u). We thus obtain the next result.

Proposition 4.6. The mapping µ 7→ {
∫ (x

i

)
dµ(x)} is a vector space iso-

morphism between the space of Qp-valued measures and the vector space of
bounded sequences {vi}∞i=0.

Note that as the locally constant functions are dense in the space of con-
tinuous functions, if µ is a Qp-valued measure and f : X → Qp is continuous
then f(x)µ(x) is also a Qp-valued measure.

4.3. Convolutions. We continue with the p-adic set-up of the previous
two subsections and we now restrict to having X = Zp. Let µ and ν be two
Qp-valued measures on X.

Definition 4.7. We define the convolution µ ∗ ν of µ and ν by∫
Zp

f(x) dµ ∗ ν(x) :=
∫
Zp

∫
Zp

f(x+ y) dµ(x) dµ(y) ,

for continuous Qp-valued functions on Zp.

One checks readily that the convolution of two measures is also a measure
and that with this definition the vector spaceMZp,Qp ofQp-valued measures
on Zp forms a Qp-algebra. We want to identify this algebra. The first thing
to notice is that MZp,Qp = MZp,Zp ⊗ Qp where the latter is the space of
Zp-valued measures on Zp.



710 David Goss†

Let T be an indeterminate and Zp[[T ]] be the formal power series algebra
in T .

Definition 4.8. Let µ ∈MZp,Zp . We define theMahler transform TM (µ) ∈
Zp[[T ]] of µ by

TM (µ) :=
∫
Zp

(1 + T )x dµ(x) :=
∞∑
i=0

(∫
Zp

(
x

i

)
dµ(x)

)
T i .

Proposition 4.9. The Mahler transform TM is an algebra isomorphism
betweenMZp,Zp and Zp[[T ]].

Proof. This follows from the definition of the convolution product and the
addition formula for binomial coefficients. Indeed, the addition formula pre-
cisely corresponds, via convolution, to the product of the associated power
series. �

Let tM : Zp[[T ]]→MZp,Zp be the inverse of TM .

Proposition 4.10. Let g(T ) ∈ Zp[[T ]] and put µg = tM (g). We then have
for k ≥ 0

TM (xkµg) = Dkg(T ) ,

where D is the continuous operator (1 + T ) d
dT on Zp[[T ]].

Proof. Note that Dk(1 + T )x = xk(1 + T )x. Now by definition we have∫
Zp

(1 + T )x dµg(x) = g(T ) .

Now applying Dk gives∫
Zp

Dk(1 + T )x dµg(x) = Dkg(T ) ,

or ∫
Zp

(1 + T )x xk dµg(x) = Dkg(T ) .

and the result follows. �

Proposition 4.10 is obviously the analog of well-known results in the
classical Fourier transform.

4.4. The v-adic theory. We now return to the case where A = Fq[θ] and
v is a prime of A with completion Av. Let X now be a compact open subset
of Av. The basic definitions of v-adic measures etc., on X follow directly
mutatis mutandis from the theory of Subsections 4.1 and 4.2. We therefore
focus here on the v-adic version of Subsection 4.3.
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Therefore let X = Av and let f : Av → kv be a continuous function. By
the theorem of Wagner, Corollary 3.7, we have an expression

f(x) =
∞∑
i=0

ajGj(x) ,

where {aj} ⊂ kv and aj → 0 as j → ∞. If µ is a v-adic measure then µ is
determined by the bounded sequence {

∫
Av
Gj(x) dµ(x)}∞j=0. Conversely any

such bounded sequence determines a v-adic measure. Under convolution of
measures, such sequences form a kv-algebra denotedMAv,kv and we would
like to identify this algebra. As in the p-adic case, we immediately reduce
to identifying the algebraMAv,Av of Av-valued measures on Av.

Let
{
ui

i!

}∞
i=0

be the divided power elements. These are formal symbols
with the usual multiplication rule

ui

i! ·
uj

j! :=
(
i+ j

i

)
ui+j

(i+ j)! =
(
i+ j

j

)
ui+j

(i+ j)! ,

so that the multiplication is well defined in any characteristic.

Definition 4.11. We define Av{{u}} to be the algebra of formal divided
power series

∞∑
i=0

ai
ui

i!

with the obvious addition and with multiplication given above.

Definition 4.12. Let µ ∈MAv,Av . We set

TW (µ) :=
∞∑
j=0

(∫
Av

Gj(x) dµ(x)
)
uj

j! ∈ Av{{u}} .

We call TW (µ) the Wagner transform of µ.

The addition formula for Gj(x) given in Proposition 2.15 immediately
gives our next result which is the analog of Proposition 4.9.

Proposition 4.13. The Wagner transform TW : MAv,Av → Av{{u}} is an
algebra isomorphism.

Remarks 4.14.
(a) The present author had used the addition formula to calculate the

convolution of measures which Greg Anderson realized was isomor-
phic to the algebra of formal divided series.

(b) There is another equivalent representation of the above algebra. Let
R = Av[z] be the polynomial ring in z. Let ∂j = ∂z,j : R→ R be the
j-divided derivative operator defined, as usual, by ∂jzi :=

(i
j

)
zi−j .
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Note that ∂i∂j =
(i+j
i

)
∂i+j . Let Av{{∂}} be the algebra of formal

divided derivatives formed in the obvious fashion (which obviously
acts on R). One then readily sees that Av{{∂}} is isomorphic to
Av{{u}}.

Definition 4.15. Let f ∈ C(Av, kv) and let µ ∈MAv,kv . we set

µ ∗ f(x) :=
∫
Av

f(x+ y) dµ(y) ∈ C(Av, kv) .

As in [9], we can now present an analog of Proposition 4.10 in the finite
characteristic theory. Let z be a variable, as above, and let kv〈〈z〉〉 be the
Tate algebra of kv power series

∑
i aiz

i where ai ∈ kv → 0 as i→∞. Such
power series converge on those z ∈ kv with v-adic absolute value |z|v ≤ 1
(i.e., z ∈ Av). The algebra Av{{∂}} acts on kv〈〈z〉〉 in the natural fashion.

Definition 4.16. Let z ∈ Av and let µz be the measure whose Wagner
transform is

∑
i z
i ui

i! . If f ∈ C(Av, kv) we set

f̂(z) :=
∫
Av

f(t) dµz(t) ∈ kv〈〈z〉〉 .

Thus if f(x) =
∑
aiGi(x) then f̂(z) =

∑
aiz

i. Moreover, the map f 7→ f̂
is a Banach space isomorphism between C(Av, kv) and kv〈〈z〉〉.

Finally, by a small abuse of notation, let us also denote by “ui

i! ” the
measure whose Wagner transformation is ui

i! . The following, which is an
analog of Proposition 4.10, also follows directly from the addition formula
in Proposition 2.15.

Proposition 4.17. Let f be a continuous kv-valued function on Av. With
the above definitions, we have

ûi

i! ∗ f = ∂if̂ .

In other words, convolution transforms into differentiation.

Remarks 4.18. The very important work of B. Anglès, F. Pellarin and
others (see [3] for instance) uses Tate algebras in many variables t1, . . . , tm
to study L-series, where m can be an arbitrary positive integer and this
suggests that one might need a multi-variable transform. On the other hand,
while we have not stressed it here, it is well-known that the convolution
algebra of p-adic measures on Zp is isomorphic to the completed group
algebra Zp[[Zp]]. Similarly the algebra of v-adic measures on Av is isomorphic
to the completed group ring Av[[Av]], etc.

However, as a topological group Av is isomorphic to the infinite prod-
uct of Fq with itself equipped with the product topology. As such, Av is
therefore isomorphic to Amv as topological groups, and this isomorphism
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clearly extends to the complete group rings. This suggests, therefore, that
one should be able to construct versions of Propositions 4.13 and 4.17 for
many variables {z1, . . . , zm} and probably in many different ways.

5. L-series
In this section we review the definitions of L-series for A = Fq[θ], and

k = Fq(θ). Let ∞ be the infinite prime of k with normalized absolute
value |?|∞ and completion k∞. We set C∞ to be the completion of a fixed
algebraic closure k̄∞ equipped with the canonical extension of |?|∞.

5.1. Exponentiation. In order to define exponentiation of elements, we
must begin with a notion of “positivity” in k∞. Let π ∈ k∞ with |π|∞ = 1.
Let x ∈ k∗∞ be expressed as

∑∞
i=e ciπ

i where {ce} ⊆ Fq, e is an integer
(positive, negative or 0), and ce 6= 0.

Definition 5.1. We set sgn(x) := ce and say that x is positive (or monic)
if and only ce = 1 We call −e the degree of x and denote it deg x.

Remarks 5.2.
(1) It is easy to see that sgn is a homomorphism from k∗∞ → Fq∗ which

is the identity on Fq∗ and 1 on principal units (elements of the form
1+cπ+· · · , with c ∈ Fq). This mapping sgn is called a sign function.

(2) Conversely given a homomorphism sgn as in Part (1), we deduce
an associated notion of positivity.

(3) Notice that the positive elements k∞,+ form a subgroup of k∗∞, but
are obviously not closed under addition.

(4) The notion of degree given above agrees with the usual notion of
degree in A.

Convention. For simplicity we now fix the unique sign function sgn with
sgn θ = 1.

Definition 5.3. We let π ∈ k∞ be a fixed positive uniformizing element
at ∞.

As an example, one could choose π := 1/θ; in general, of course,
|π|∞ = |1/θ|∞.

Let α ∈ k∞,+. With the above definitions we then deduce a canonical
decomposition

(5.1) α = π− degα〈α〉 ,

where 〈α〉 ≡ 1 (mod π). Of course 〈α〉 depends on π but we shall not
explicitly mention this for simplicity once π is chosen.

Now let s = (x, y) where x ∈ C∗∞, and y ∈ Zp.
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Definition 5.4. We set
αs := xdegα〈α〉y ,

where 〈α〉y is defined, as usual, via the binomial theorem.

The elements s form a group under the obvious definitions whose opera-
tion will be written additively. One then sees that, as usual, (αβ)s = αsβs

and αs0+s1 = αs0αs1 .

Definition 5.5. We set S∞ := C∗∞ × Zp with the obvious structure as a
topological additive group.

Remarks 5.6. Let i ∈ Z and set si := (1/πi, i) ∈ S∞. Let α ∈ k∞,+. Then
by definition one sees that αsi = αi where αi has its usual meaning.

Definition 5.7. We call a formal sum L(s) :=
∑
a∈A+ caa

−s, where {ca} ⊂
C∞ and s ∈ S∞ a Dirichlet series.

The convergence properties of such a Dirichlet series L(s) are determined
by the x ∈ C∗∞ coordinate. In practice one ends up with a family of entire
power series in x−1 which is continuous on all of S∞; see, for example, [8,
Section 8] or [9] for more details.

Example 5.8. We set ζA(s) :=
∑
a∈A+ a

−s and call it the zeta function of
A. It is a standard exercise to express ζA(s) as an Euler product over all
the monic irreducible elements in A.

Let L(s) =
∑
a∈A+ caa

−s be a Dirichlet series. By definition we have

L(s) =
∞∑
d=0

x−d

 ∑
deg a=d

ca〈a〉−y


where s = (x, y) ∈ S∞. The convergence properties of L(s) are then deter-
mined by the convergence properties of the above family of power series in
x−1. In all known cases, these power series are shown to be entire.

Remarks 5.9.
(a) Our theory starts with a choice of a positive uniformizer π0. Given

another uniformizer π1, clearly u = π1/π0 is a 1-unit at ∞.
Conversely, given a 1-unit u the element uπ0 is another positive
uniformizer. Moreover πdegα

1 α = (π1/π0)degαπdegα
0 α so that the

“gauge” π1/π0 tells us how to pass between the various choices
of positive uniformizer [10].

(b) The general theory of Drinfeld modules is defined for all rings A
given as the algebra of regular functions outside a fixed point ∞
on a smooth projective geometrically connected curve over Fq. In
this case, just exponentiating elements is not sufficient but in fact
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our definitions may be readily extended to exponentiating general
nonzero ideals of A, see for instance [10].

5.2. A generalization due to B. Anglès. We briefly present here a re-
markable generalization of the zeta function of Example 5.8 recently com-
municated to us by Anglès [1] (see also [2]) which we follow rather closely
with his permission.

Therefore let F be a field containing Fq which is complete for a valuation
v : F → R ∪ {+∞}.

Definition 5.10. Let n be a positive integer. We set
SF,n := F ∗ × Znp ,

with the obvious structure as an additive topological group.

Clearly SC∞,1 = S∞ where the latter is defined in Definition 5.5.
Now let t be a variable and put A := Fq[t] with A+ being the subset of

monics and A+,d being those of degree d. Mimicking our earlier construc-
tions for A = Fq[θ] (and π = 1/θ) for a(t) ∈ A+

〈a〉 = t− deg aa .

Definition 5.11.
(a) Let {z1, . . . , zn} ⊂ F with v(zi) < 0 for all i (so that 〈a(zi)〉 =
〈a〉|t=zi converges to an element of F ). Let s = (x, y1, . . . , yn) ∈
SF,n. We set

as(z1, . . . , zn) = xdeg a〈a(z1)〉y1 · · · 〈a(zn)〉yn .

(b) We set

ζ(s)(z1, . . . , zn) :=
∑
a∈A+

a−s(z1, . . . , zn) .

Example 5.12. With F = C∞, n = 1, and z1 = θ, we recover ζA(s).

Notice that by definition ζ(s)(z1, . . . , zn) converges for all s with v(x) < 0
(as before). Note also that we have

ζ(s)(z1, . . . , zn) =
∑
d≥0

x−d

 ∑
a∈A+,d

〈a(z1)〉−y1 · · · 〈a(zn)〉−yn

.
Proposition 5.13. The function ζ(s)(z1, . . . , zn) converges (in F ) for all
s ∈ SF,n.

Proof. Let {t1, . . . , tj} be j ≥ 1 indeterminates. Standard estimates ([8,
Chapter 8]) show that for k < d(q − 1) we have

∑
a∈A+,d

∏k
i=1 a(ti) = 0

(which is sometimes referred to as Simon’s Lemma). Notice, of course, that
we are free to substitute tq

ei

i for ti. Now letm =
∑
i ciq

i be a positive integer
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written q-adically (so that 0 ≤ ci < q all i) with `q(m) :=
∑
i ci the sum of

its q-adic digits. We then conclude that if m1, . . . ,mn are positive integers
with

∑n
i=1 `q(mi) < d(q − 1) then

(5.2)
∑

a∈A+,d

a(z1)m1 · · · a(zn)mn = 0 .

Now let {yi}ni=1 ⊂ Zp and express −yi q-adically as −yi =
∑
j ui,jq

j

Pick a positive integer l and write −yi = mi+ri where mi =
∑l
j=0 ui,jq

j .
Notice that

〈a(zi)〉ri = cz−q
l+1

i + {higher terms} ,
where c ∈ Fq. Note also that `q(mi) ≤ (l + 1)(q − 1) so that

∑
`q(mi) ≤

n(l + 1)(q − 1). Thus, using the definition of 〈a(t)〉 and (5.2), we conclude
that ∑

a∈A+,d

〈a(z1)〉m1 · · · 〈a(zn)〉mn = 0

for d such that n(l+ 1)(q − 1) < d(q − 1) or d > (l+ 1)n. Moreover in this
case we conclude that

v

 ∑
a∈A+,d

〈a(z1)〉−y1 · · · 〈a(zn)〉−yn

 ≥ ql+1 inf{−v(zi)} .

Let [x] be the greatest integer of a real number x and choose l so that
l = [d/n]− 2 (which ensures d > (l + 1)n). We then conclude

v

 ∑
a∈A+,d

〈a(z1)〉−y1 · · · 〈a(zn)〉−yn

 ≥ q[d/n]−1 inf{−v(zi)} ,

which is much stronger than what is needed to conclude everywhere con-
vergence. �

As a corollary, one immediately obtains the analytic continuation of
ζA(s). But there are other, higher order, corollaries of Proposition 5.13
that we now turn to.

Definition 5.14. Let Tn(C∞) be the Tate algebra of power series in
t1, . . . , tn converging in the unit polydisc in Cn∞.

In other words, let J = {j1, . . . , jn} be a multi-index; set tJ :=
∏
i t
j1
i and

‖J‖ :=
∑
ji. Then Tn(C∞) consists of those power series f(t) =

∑
J cJ t

J

with |cJ |∞ → 0 as ‖J‖ → ∞. We set ‖f‖ = maxJ{|cJ |∞} which is the
Gauss norm.

Definition 5.15. Let a ∈ A+,d. We set

〈a(ti + θ)〉◦ := a(ti + θ)
θdeg a .
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Notice that 〈a(ti + θ)〉◦ is a deformation of the definition of 〈a(θ)〉 given
in (5.1) with π = 1/θ. Indeed,

〈a(ti + θ)〉◦|ti=0 = 〈a(θ)〉 .

Notice also that 〈a(ti + θ)〉◦ ∈ 1 + 1
θFq[ti][

1
θ ].

As in Subsection 2.1.1, we let ∂j = ∂θ,j be the j-th divided derivative in
θ of f(θ) and set f (m) = ∂mf(θ). Therefore if a ∈ A+, then a(ti + θ) =∑
m a

(m)tmi (as usual from calculus).
Let s = (x, y1, . . . , yn) ∈ SC∞,n and let a ∈ A+.

Definition 5.16.
(1) We set

as◦ := xdeg a〈a(t1 + θ)〉y1
◦ · · · 〈a(tn + θ)〉yn

◦ .

Note that as◦ ∈ Tn(C∞).
(2) We set

L◦n(s) :=
∑
a∈A+

a−s◦ .

Unwinding the definition gives immediately

L◦n(s) =
∞∑
d=0

x−d

 ∑
a∈A+,d

〈a(ti + θ)〉−y1
◦ · · · 〈a(tn + θ)〉−yn

◦

.
The Gauss norm gives an absolute value on the quotient field of Tn(C∞)

and we now let F be the completion under this norm.

Lemma 5.17. As functions on SF,n we have

(5.3) L◦n(s) = ζ

(
x ·

n∏
i=1

(1 + ti/θ)−yi , y1, . . . , yn

)
(t1 + θ, . . . , tn + θ) .

Proof. Note that ‖ti+θ‖ = |θ|∞ > 1 so that under the additive valuation v
associated to the Gauss norm, we have v(ti + θ) < 0. The rest of the proof
involves unraveling the definitions. �

We then have the following extremely important corollary.

Corollary 5.18. Let n be a positive integer and let {mi}ni=1 and {kj}nj=1
be two collections of n nonnegative integers. Then the following function
on S∞ (defined via the uniformizer π := 1/θ)

(5.4)
∞∑
d=0

∑
a∈A+,d

a−s(a(m1))k1 · · · (a(mn))kn

is entire (i.e., is a continuous family of entire power series in x−1).
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Proof. Notice that

L◦n+1(θ−nx,−1, . . . ,−1, y)|tn+1=0

=
∑

i1,...,in

 ∞∑
d=0

x−d
∑

a∈A+,d

〈a〉−ya(ii) · · · a(in)

 ti11 · · · tinn .

The result now follows from Lemma 5.17 and Proposition 5.13. �

Remarks 5.19.
(1) Note also that

L◦n+1(θ−nx,−1, . . . ,−1, y)|tn+1=0 =
∑
d

∑
a∈A+,d

a(t1 + θ) · · · a(tn + θ)a−s

for s = (x, y) ∈ S∞. This is similar to certain L-series previously
discussed in [14] and [3].

(2) The fundamental estimates of [8, Chapter 8], show that the sum
in (5.3) is “essentially algebraic.” Indeed, let v be a prime of A.
Then variants of the arguments given here establish that the series
in (5.4) can also be interpolated to entire v-adic functions on the
appropriate v-adic analog of S∞.

6. Continuous functions on Zp into finite characteristic complete
algebras

Let L be a finite extension ofQp with ring of integersO equipped with the
canonical topology. Let f : Zp → O be a continuous function. As mentioned
f has a canonical expansion f(y) =

∑∞
j=0 aj

(y
j

)
where {aj} ⊂ O and aj → 0

as j →∞; conversely any such sequence {aj} uniquely defines a continuous
function. As Zp is compact, one readily deduces Mahler expansions for all
continuous L-valued functions on Zp.

In [8, Section 8.4] it is shown that the obvious variant of Mahler’s The-
orem also holds true if O is a complete algebra over Z/(p) where now

(y
j

)
is reduced modulo p to obtain a function from Zp to O.

6.1. Dirichlet series on Zp. Let s = (x, y) ∈ S∞ and let

L(s) =
∑
a∈A+

caa
−s

be an L-series as in the previous section. Write 〈a〉 = 1 + va where va ≡ 0
(mod 1/θ) so that (1+va)−1 = 1+wa where wa = −va+v2

a+ · · · . Therefore
〈a〉−y = (1 + wa)y and its Mahler expansion is then immediate from the
binomial expansion. In this fashion the Mahler coefficients of L(x, y) can
be computed in terms of {ca} and powers of x.
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Definition 6.1. Let L be a finite extension of k∞ = Fq((1/θ)) with ring of
integers O := OL. Let D := D(Zp,O) be the closure in the Banach space
C(Zp, L) (of continuous functions from Zp to L) of O-linear combinations
of functions of the form y 7→ uy for u ∈ OL a principal unit. Following
W. Sinnott [18], we call the elements of D Dirichlet series on Zp with
values in OL.

The following three fundamental results are then established in [18] and
we refer the reader there for details. To begin, let U1 ∈ O be the group
of principal units u; i.e., u ≡ 1 (mod M) where M ⊂ O is the maximal
ideal. As in Subsection 4.4, one has the now obvious notion of L-valued
measures on U1 equipped with the standard notion of convolution (using the
multiplicative group action on U1). LetM(U1, L) (respectively,M(U1,O))
the space of measures with coefficients in L (respectively, O).

Definition 6.2. Let µ ∈M(U1,O). We define its Γ-transform Γµ : Zp → O
by

Γµ(y) :=
∫
U1
uy dµ(u) .

Theorem 6.3. The Gamma-transform is an isomorphism of topological
O-modules betweenM(U1,O) and D(Zp,O).

Theorem 6.4. The L-span of D is dense in C(Zp, L).

The next, and last result of [18] we mention, is remarkable because it
shows that, in some sense, the elements of D exhibit behavior similar to
that of analytic functions.

Theorem 6.5. Let f, g ∈ D. Suppose that f and g coincide in a neighbor-
hood of a point in Zp. Then f = g.

7. The group S(q)

The analogy with the complex theory leads one to look for functional
equations (i.e., symmetries) of our L-series. Looking at the special values
of the special case ζA(s) =

∑
a∈A+ a

−s, it is apparent that if there are
symmetries, they will not be of the classical form s 7→ 1− s.

In [19], D. Thakur presented some calculations related to trivial zeroes
of zeta functions for some non-polynomial base rings. Based on these cal-
culations we were led to the following construction.

Definition 7.1. Let ρ be a permutation of {0, 1, . . .} and let y ∈ Zp be
written q-adically as

∑∞
j=0 cjq

j , 0 ≤ cj < q all j. We set

ρ∗y :=
∞∑
j=0

cjq
ρj .
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Clearly y 7→ ρ∗y is a bijection of Zp; the set of these bijections forms a
group denoted S(q) with the cardinality of continuum.

In [10] the following result is established.

Proposition 7.2.
(1) The map y → ρ∗y is a homeomorphism of Zp.
(2) The mapping y → ρ∗y stabilizes both the nonnegative and nonposi-

tive integers.
(3) Let y0, y1 be two p-adic integers such that y0 + y1 has no carryover

of q-adic digits. Then ρ∗(y0 + y1) = ρ∗(y0) + ρ∗(y1).
(4) Let n be a nonnegative integer with sum of q-adic digits `q(n). Then

`q(n) = `q(ρ∗n).
(5) Let n be an integer. Then n ≡ ρ∗n (mod q − 1).
(6) Let n, j be two nonnegative integers. Then

(n
j

)
≡
(ρ∗n
ρ∗j

)
(mod p).

Note that the last statement of the proposition follows directly from
Lucas’ congruence.

7.1. The first action of S(q) on continuous O-valued functions. As
the action of S(q) on Zp consists of homeomorphisms, we obtain a natural
action on the space of continuous functions C(Zp,O).

Definition 7.3. Let f ∈ C(Zp,O) and ρ∗ ∈ S(q). We define fρ1 ∈ C(Zp,O)
by fρ1(y) := f(ρ−1

∗ y).

Note that this action is an automorphism of the algebra C(Zp,O).

Proposition 7.4. As functions from Zp to O, we have
(y
j

)ρ1 =
( y
ρ∗j

)
.

Proof. By Part (6) of Proposition 7.2 we have, as functions from Zp to O,(ρ−1
∗ y

ρ−1
∗ j

)
=
(y
j

)
. Now substitute ρ∗j for j. �

Corollary 7.5. Let f ∈ C(Zp,O) have Mahler expansion f(y) =
∑
j cj
(y
j

)
.

Then

fρ1(y) =
∑
j

cj

(
y

ρ∗j

)
.

7.2. An associated congruence. We begin here by considering binomial
coefficients as taking values in Zp. Let a, b be two nonnegative integers.
Then the function y 7→

(y
a

)(y
b

)
is also a continuous function from Zp to itself

and therefore has a well-known associated Mahler expansion (see Section 1.4
in [15], or the Wikipedia page on binomial coefficients, etc.):

(7.1)
(
y

a

)(
y

b

)
=

a∑
k=0

(
a+ b− k

k, a− k, b− k

)(
y

a+ b− k

)
.
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Proposition 7.6. Let ρ∗ ∈ S(q). Let n,m be nonnegative integers and
y ∈ Zp. Set

s1 :=
m∑
k=0

(
m+ n− k

k,m− k, n− k

)(
y

ρ∗(m+ n− k)

)
,

and

s2 :=
ρ∗m∑
k=0

(
ρ∗m+ ρ∗n− k

k, ρ∗m− k, ρ∗n− k

)(
y

ρ∗m+ ρ∗n− k

)
.

Then s1 ≡ s2 (mod p).

Proof. The first sum, s1, arises from applying ρ to the reduction modulo p
of (7.1). Next, note that, as functions from Zp to O, we have((

y

m

)(
y

n

))ρ1

=
(
y

m

)ρ1(
y

n

)ρ1

=
(

y

ρ∗m

)(
y

ρ∗n

)
,

using Proposition 7.4. Now substituting ρ∗n for b and ρ∗m for a in (7.1).
As both sums represent the same function modulo p, we are finished. �

In general, the sums in Proposition 7.6 do not have the same number
of elements. Indeed, the reader can easily construct examples where the
difference between ρ∗m and m is arbitrarily large.

7.3. The space D is not stable under the first action of S(q). Recall
that in Definition 6.1 we presented Sinnott’s space D of Dirichlet series on
Zp with values in O. By example we show here that the space D is not
stable under S(q).

Example 7.7. Let ρ be the permutation of {0, 1, . . .} obtained by exchang-
ing 0 and 1 and fixing all other integers. Let O = Fq[[1/θ]], u = 1 + 1/θ
and f(y) := uy ∈ D. Let g(y) := fρ1(y) = f(ρ∗y) (as ρ2 = 1). Clearly
f(y) = g(y) for y ≡ 0 (mod q2). Thus if g ∈ D, we would have f = g by
Theorem 6.5 which is easily seen to be false.

In Subsection 7.6 we will present an action of S(q) which does preserve
the space D.

7.4. The first action of S(q) on measures. Recall that in Proposi-
tion 4.13 we showed that the Wagner transform gave an isomorphism be-
tween the algebra of measures on Av and the Av algebra of divided power
series. Here we establish a natural action of S(q) on the algebra of formal
divided power series over a ring R of characteristic p.

Let u be an indeterminate. Let i be a nonnegative integer and ρ∗ ∈ S(q).

Definition 7.8. We set
ρ∗u

i := uρ∗i .
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Clearly ρ∗, as just defined, extends to an R-module automorphism of
R[[u]]. Note that if i, j are two nonnegative integers with no carryover of q-
adic digits in i+ j, then ρ∗ui+j = ρ∗u

i ·ρ∗uj by Part (3) of Proposition 7.2.
This is easily seen to be false in general when there is carryover.

Now let ui/i! be the divided power element and R{{u}} the R-algebra
of formal divided power series over R.

Definition 7.9. We set

ρ∗

(
ui

i!

)
:= uρ∗i

(ρ∗i)!
,

and extend linearly to all of R{{u}}.

Proposition 7.10. The map h 7→ ρ∗h of Definition 7.9 is an R-algebra
automorphism of R{{u}}.

Proof. Let i, j be two nonnegative integers. Suppose first that i + j has
no carryover of q-adic digits. Then

(i+j
i

)
≡
(ρ∗(i+j)

ρ∗i

)
(mod p) by Lucas. As

such, by the argument given after Definition 7.8, we see

(7.2) ρ∗

(
ui

i! ·
uj

j!

)
= ρ∗

(
ui

i!

)
· ρ∗

(
uj

j!

)
.

If there is carryover of digits, then(
i+ j

i

)
≡
(
ρ∗i+ ρ∗j

ρ∗i

)
≡ 0 (mod p) .

As such we again deduce the equality in (7.2) as both sides now vanish. �

If µ is a measure on O, we denote the measure T−1
W ρ∗TW (µ) by µρ1 ; we

shall describe another action of S(q) on measures in Subsection 7.6.

7.5. The action of S(q) on k∞. Let a ∈ A+ and let s = (x, y) ∈ S∞.
Recall that in Definition 5.4 we defined a−s through the use of the choice
of positive uniformizer π. Also, as mentioned in Part (2) of Proposition 7.2,
the elements of S(q) stabilize both the nonnegative and nonpositive integers.
This allows us to make the next definition.

Definition 7.11. Let x ∈ k∞ be written π-adically as x =
∑
j�−∞ cjπ

j

with cj ∈ Fq. Let ρ∗ ∈ S(q). Then we set

ρ∗x :=
∑

j�−∞
cjπ

ρ∗j .

It is readily seen that x 7→ ρ∗x is a continuous automorphism of k∞ as
Fq-vector space.
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7.6. Further actions on measures and functions. We will present
here a number of other actions on functions and measures. As of this writing
we do not know how they are related.

Let O = Fq[[π]] and U ⊂ O be the group of units and U1 ⊆ U the group
of units ≡ 1 (mod (π)). Let ρ∗ ∈ S(q). Note that by definition ρ∗0 = 0. The
next result is then obvious.

Proposition 7.12. As sets, O, U and U1 are stable under ρ∗.

Let X be one of {O, U, U1}. Let f : X → k∞ be a continuous function.
We then set fρ1(x) := f(ρ−1

∗ x) (in analogy with our definition for functions
on Zp); as before this is an action on the space of continuous functions and
is an automorphism of the algebra of such continuous functions.

One can use the Carlitz polynomials in Fq[π] (as in Subsection 2.2) to
obtain a Banach basis for the continuous functions on O. However, unlike
the simple Corollary 7.5, we do not know how to easily compute Gρ1

i (x) as
of this writing.

As we have an action on the spaces of continuous functions, we deduce
associated actions on the space of measures. Again, let X be as above and
let µ be an O-valued measure on X.

Definition 7.13. We let µρ2 be the measure defined by∫
X
f(x) dµρ2(x) :=

∫
X
f(ρ−1
∗ x) dµ(x) .

Let f : Zp → O be a Dirichlet series on Zp. In Example 7.7 we established
that, in general, fρ1(y) = f(ρ−1

∗ y) will not be a Dirichlet series on Zp. On
the other hand, by Theorem 6.3 we are guaranteed that f(y) =

∫
U u

y dµ(u)
for some measure µ.

Definition 7.14. We set

fρ2(y) :=
∫
U
uy dµρ2(u) .

Clearly f 7→ fρ2(y) is an O-linear automorphism of the space D of Dirichlet
series on Zp.

Now let X = O and let µ ∈M(O,O).

Proposition 7.15. The map µ 7→ µρ2 is an automorphism of the convolu-
tion algebra of measures.

Proof. This follows because the map x 7→ ρ∗x on O is Fq-linear. �

We have no idea of any relationship between the above action and the
action µ 7→ µρ1 arising from the Wagner transform and Proposition 7.10.
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There is an obvious third action of S(q) on C(Zp,O) (including the above
action on Dirichlet series) by fρ3(y) := ρ∗f(y). If f(y) =

∑∞
j=0 cj

(y
j

)
then

(7.3) fρ2(y) =
∞∑
j=0

ρ∗(cj)
(
y

j

)
.

Let f ∈ C(O,O) be continuous. We obtain a second action of S(q) by
fρ2(x) := ρ∗f(x). Further let f : O → O have the Wagner expansion∑
cjGj(x) where cj → 0 as j 7→ ∞. We obtain fρ2(x) =

∑
ρ∗cjGj(x).

However, we obtain yet a third Fq-linear action on C(O,O) by

(7.4) fρ3(x) :=
∑

ρ∗(cj)Gj(x) ,

which is guaranteed to converge as ρ∗cj → 0 as j →∞ (and compare (7.3)
and (7.4)).

We leave to the reader the appropriate definitions for actions on the
subspaces of Fq-linear functions.

Finally let µ ∈ C(O,O) have expansion
∑
dj

uj

j! dual to the above Wagner
expansions of continuous functions. We set

µρ3 :=
∑

ρ∗(dj)
uj

j! .

The map µ→ µρ3 is again Fq-linear.
As of this writing, we do not know how these various actions interact.

7.7. The action on S(q). In [10] we defined an action of S(q) on S∞ which
we recall here.

Definition 7.16. Let y ∈ Zp and ρ∗ ∈ S(q). Then we set

ρ̂∗(y) := −ρ∗(−y) .

Clearly, Part (2) of Proposition 7.2 implies that ρ̂∗ also stabilizes both
the nonnegative and nonpositive integers.

Recall that by definition S∞ = C∗∞ × Zp. Let L ⊆ C∞ be a subfield.

Definition 7.17. We define

SL,∞ = L∗ × Zp ⊆ S∞ .

Definition 7.18. Let s = (x, y) ∈ Sk∞,∞. We set

ρ∗s = (ρ∗x, ρ̂∗y) ∈ Sk∞,∞ .

Recall (see Remarks 5.6) that, for an integer i, we set si = (π−i, i) ∈
Sk∞,∞ with the property that asi = ai. From Definition 7.17 we obtain

ρ∗s−i = s−ρ∗i .
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In particular, if i ≡ 0 (mod q − 1) then so is ρ∗i (by Part (5) of Proposi-
tion 7.2).

In [17], J. Sheats established that the zeroes of ζA(s) =
∑
a∈A+ a

−s all
lie in k∞ and are simple. The remarks just given imply, in particular, that
our action on Sk∞,∞ permutes the trivial zeroes of ζA(s). For a further
discussion of the interaction of S(q) and the zeroes of ζA(s) we refer the
reader to [10].

In general (for arbitrary A) there will be zeroes of L-functions which do
not lie in k∞ and, as such, we need to extend the action of S(q) further. On
the other hand, one knows that all zeroes will be algebraic over k∞ and
one suspects that, for a fixed y ∈ Zp, the zeroes will lie in a finite extension
of k∞.

Therefore let L ⊂ C∞ be a finite extension of k∞ and set m = [L : k∞].
We do not as yet have any procedure to continuously extend the action
of S(q) Fq-linearly to L, L arbitrary, in a canonical way (or in a way that
produces only finitely many extensions such as with Galois theory). Never-
theless one can always get continuous extensions in the following fashion.
Let B = {α1, α2, . . . , αm} be a k∞-basis of L where we always assume
α1 = 1. Via B, note that L is isomorphic to km∞.
Definition 7.19. Let β ∈ L be written

∑m
e=1 keαe with {ke} ⊂ k∞. We set

ρ∗β :=
∑
e

ρ∗(ke)αe .

We call this the extended action of S(q) on L given by B.
The reader will note that Definition 7.19 is essentially the coordinate-

wise action of ρ∗ on km∞.
If, however, L is a totally unramified extension of k∞ obtained by a

finite field extension, F/Fq, we can F-linearly canonically extend the action
of S(q). The next example explains the connection with Definition 7.19.
Example 7.20. Let F ' Fqm ⊂ C∞ be the finite field of qm elements. Let
L := k∞(Fqm) so that L ' Fqm ⊗Fq k∞. Choose a basis B = {1, . . .} for
L/k∞ consisting of elements in Fqm . Then the extension to L of ρ∗ given
in Definition 7.19 is just the obvious Fqm-linear extension of ρ∗. As such it
is independent of the basis B ⊂ Fqm .

Note, again, that the class of constant field extensions is precisely the
class of unramified extensions of k∞.

Let L ⊂ C∞ be a finite extension of k∞ as above equipped with some
continuous extension ρ of S(q) to Fq-linear automorphisms of L.
Definition 7.21. Let Lρ ⊂ L be the set of those α ∈ L which commute
with the action of S(q) given by ρ.
Proposition 7.22. The set Lρ ⊂ L is an Fq-subfield.
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8. The Riemann Hypothesis as a ramification statement.
Let ζ(s) =

∑∞
n=1 n

−s be, as usual, Riemann’s zeta function with its
meromorphic continuation to the complex plane C. Let Γ(s) be Euler’s
gamma function and, again as usual, put

Ξ(s) := 1/2π−s/2s(s− 1)Γ(s/2)ζ(s) .
Riemann showed that Ξ(s) is entire and satisfies the functional equation
Ξ(s) = Ξ(1− s). The Riemann Hypothesis states that all zeroes of Ξ(s) are
of the form s = 1/2 + it for some real number t. Following Riemann, put
Ξ̂(t) := Ξ(1/2 + it), so that the functional equation becomes Ξ̂(t) = Ξ̂(−t)
and the Riemann Hypothesis becomes the statement that the zeroes of
Ξ̂(t) are real. This “reality” statement is precisely echoed by the Theorem
of Sheats [17] mentioned above and underlies this section.

8.1. The Riemann Hypothesis from the viewpoint of the Carlitz
module. Let exp(z) =

∑∞
i=0

xi

i! be the exponential function with period
2πi. Note simply that

C = R(2πi) .

Now let expC(x) be the exponential of the Carlitz module with period ξ̄ ∈
C∞. Let K = k∞(ξ̄). As is well-known K/k∞ is Galois with Galois group
isomorphic to Fq∗ = A∗ (much as the Galois group of C/R is isomorphic
to Z∗ = {±1}). More importantly for our purposes, K is totally ramified
over k∞.

This analogy between C and K suggests very strongly that we view
(morally at least!) C as being totally ramified over R. Thus, from the optic
of the Carlitz module, the Riemann Hypothesis becomes the statement “the
zeros of Ξ̂(t) are unramified.”

8.2. The Riemann Hypothesis in Characteristic p. Here we will
be somewhat speculative as the subject is still far from mature. First of
all, as noted, unramified extensions of k∞ are precisely the constant field
extensions. Moreover, on the one hand, we know from Sheats that the zeroes
of ζFq [θ](s) are simple and in k∞; on the other, we know from Böckle [4]
that there are other base rings A where the zeroes are not all in k∞ (but
for a given y ∈ Zp in fact almost all of those computed are).

Therefore, in general, we should not expect that the zeroes lie in k∞.
Suppose now that k is a finite abelian extension of k and for simplicity

suppose that [k : k] is prime to p. Let O ⊂ k be the ring of A-integers. Let
I be a nontrivial ideal of O and let nI ∈ A+ be the monic generator of the
ideal theoretic norm of I. In the classical fashion we define

ζO(s) :=
∑
I⊂O

nI−s .
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Furthermore, exactly as in classical theory, one has the factorization

(8.1) ζO(s) =
∏
ψ

L(ψ, s) ,

where ψ runs over all C∞-valued characters of Gal(k/k) and L(ψ, s) is
defined in the obvious fashion. Note that (Chapter 8, [8]) all functions
in (8.1) can be shown to be entire on S∞. Let k∞(ψ) be the finite unramified
(constant field) extension obtained by adjoining the values of ψ.

If the zeroes of L(ψ, s) were all in k∞ then, by completeness, all the
coefficients of L(ψ, s) would be also and this is not true in general. That
is, the best one might hope for is that all the roots lie in k∞(ψ); i.e. are
unramified.

Remark 8.1. Let α ⊂ C∞ be algebraic and let L = k∞(α); set n =
[L : k∞]. If L ' Fqn⊗Fqk∞ and ρ is the canonical action of S(q) via extension
of scalars, then Lρ (given in Definition 7.21) is Fqn .

It is reasonable to believe that the above Remark precisely characterizes
the class of unramified extensions in terms of extensions of the action of S(q).

So to summarize, as a first approximation, it seems that one might expect
the roots of general arithmetic L-series to be unramified and this appears
to be detectable via the extensions of the action of S(q). We know from
examples that for general A this will not be true of all zeroes, but perhaps
it does always hold for almost all zeroes for a given y ∈ Zp. Of course
one wants to ultimately understand the arithmetic properties of all zeroes
including the ramified ones as well as the zeroes of the v-adic interpolations
of such L-series at the finite primes v of A.
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