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Binary quadratic forms as dessins

par A. Muhammed ULUDAĞ, Ayberk ZEYTIN et Merve DURMUŞ

Résumé. Nous montrons que la classe de toute forme quadra-
tique binaire indéterminée et primitive est représentée de façon
naturelle par un graphe infini (appellé çark) avec un unique cycle,
plongé dans une couronne conforme. Ce cycle est appelé le rachis
du çark. Le choix d’un arc d’un çark donné spécifie une forme
quadratique binaire indéterminée dans la classe représentée par le
çark. Les formes réduites dans la classe représentée par un çark
correspondent à certains arcs distingués sur son rachis. La réduc-
tion de Gauss est le processus de déplacement de l’arc vers la
direction du rachis du çark. Les classes ambiguës et réciproques
sont représentées par des çarks ayant une symétrie. Les çarks pé-
riodiques représentent les classes des formes non-primitives.

Abstract. We show that the class of every primitive indefinite
binary quadratic form is naturally represented by an infinite graph
(named çark) with a unique cycle embedded on a conformal an-
nulus. This cycle is called the spine of the çark. Every choice of an
edge of a fixed çark specifies an indefinite binary quadratic form
in the class represented by the çark. Reduced forms in the class
represented by a çark correspond to some distinguished edges on
its spine. Gauss reduction is the process of moving the edge in
the direction of the spine of the çark. Ambiguous and reciprocal
classes are represented by çarks with symmetries. Periodic çarks
represent classes of non-primitive forms.

1. Introduction

The Euclidean algorithm is the process of comparison of commensurable
magnitudes and the modular group PSL2(Z) is an encoding of this algo-
rithm. Since the intellect is ultimately about comparison of magnitudes,
it should come as no surprise that the modular group manifests itself in
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diverse contexts through its action on mathematical objects, no matter
what our level of abstraction is. Among all manifestations of PSL2(Z) the
following four classical actions are of fundamental nature:

(1) its left-action on the infinite trivalent plane tree,
(2) its left action on the upper half plane H by Möbius transformations,
(3) its right-action on the binary quadratic forms, and
(4) its left-conjugation action on itself.

Our aim in this paper is to clarify the connections between these four
actions. See [23] or [24] for an overview of the related subjects from a
wider perspective. In particular, the actions in consideration will play a
crucial role in observing non-trivial relations between Teichmüller theory
and arithmetic. Such a point of view will be taken in a forthcoming paper
where we construct a global groupoid whose objects are (roughly speaking)
all ideal classes in real quadratic number fields and morphisms correspond
to basic graph transformations known as flips. And this work can also be
considered as an introduction to this upcoming work.

Let us turn back to our list of actions. The first one is transitive but not
free on the set of neither edges nor vertices of the tree in question. In order
to make it free on the set of edges, we add the midpoints as extra vertices
thereby doubling the set of edges and call the resulting infinite tree the
bipartite Farey tree F . The modular group action is still transitive on the
edge set of F . Now since PSL2(Z) acts on F by automorphisms; freely on the
set of edges of F , so does any subgroup Γ of PSL2(Z), and by our definition
a modular graph1 is simply a quotient graph Γ\F . This is almost the same
thing as a trivalent ribbon graph, except that we consider the midpoints
as extra 2-valent vertices and pending edges are allowed. Modular graphs
parametrize subgroups up to conjugacy and modular graphs with a base
edge classify subgroups of the modular group.

The second action is compatible with the first one in the following sense:
The tree Ftop ⊂ H which is built as the PSL2(Z)-orbit of the arc connecting
two elliptic points on the boundary of the standard fundamental domain, is
a topological realization of the Farey tree F . Consequently, Γ\Ftop ⊂ Γ\H
is a topological realization of the graph Γ\F , as a graph embedded in the
orbifold Γ\H. This latter has no orbifold points if Γ is torsion-free but
always has punctures due to the parabolic elements of Γ, or it has some
boundary components. These punctures are in one-to-one correspondence
with the left-turn circuits in Γ\F . Widening these punctures gives a defor-
mation retract of the ambient orbifold to the graph, in particular the upper

1Contributing to the long list of names and equivalent/dual notions with various nuisances:
trivalent diagrams, cyclic trivalent graphs, cuboid tree diagrams, Jacobi diagrams, trivalent rib-
bon graphs, triangulations; more generally, maps, ribbon graphs, fat graphs, dessins, polygonal
decompositions, lozenge tilings, coset diagrams, etc.
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(a) A dessin (linienzug of Klein) from 1879 [12] (b) A çark in its ambient annulus

Figure 1.1

half plane H retracts to the Farey tree Ftop. To recover the orbifold from
the modular graph one glues punctured discs along the left-turn paths of
the graph.

If Γ is torsion-free of finite index, then Γ\H is an algebraic curve which
can be defined over a number field since it is a finite covering of the modular
curveM = PSL2(Z)\H. According to Bely̆ı’s theorem, [1], any arithmetic
surface can be defined this way, implying in particular that the action of the
absolute Galois group defined on the set of finite coverings {Γ\H → M}
is faithful. But these coverings are equivalently described by the graphs
Γ\F . This striking correspondence between combinatorics and arithmetic
led Grothendieck to study dessins from the point of view of the action
of the absolute Galois group, see [14]. However, explicit computations of
covering maps Γ\H → M required by this approach turned out to be
forbiddingly hard if one wants to go beyond some basic cases and only a
few uniform theorems could be obtained. In fact, dessins are more general
graphs that correspond to finite coverings of the thrice punctured sphere,
which is equivalent to a subsystem of coverings ofM since P1\{0, 1,∞} is
a degree-6 covering ofM.

The third action in our list is due to Gauss. Here PSL2(Z) acts on the
set of binary quadratic forms via change of variables in the well-known
manner. Orbits of this action are called classes and forms in the same class
are said to be equivalent. Here we are interested in the action on indefinite
forms. This action always has a cyclic stabilizer group, which is called the
proper automorphism group of the form f and denoted 〈Mf 〉. Indefinite
binary quadratic forms represent ideal classes in the quadratic number field
having the same discriminant as the form and hence are tightly related to
real quadratic number fields [4]. We provide a succinct introduction to
binary quadratic forms later in the paper.
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The correspondence between forms and dessins can be described briefly
as follows: to an indefinite binary quadratic form f we associate its proper
automorphism group 〈Mf 〉 and to 〈Mf 〉 we associate the infinite graph
〈Mf 〉\F , which is called a çark2. Via the topological realization of F , this
is a graph embedded in the annulus 〈Mf 〉\H. The form fM corresponding to
the matrixM ∈ PSL2(Z) is found by homogenizing the fixed-point equation
ofM . Çarks are infinite “transcendental” graphs whereas the dessins litera-
ture consider only finite graphs. (“transcendental” since they correspond to
non-algebraic extensions of the function field of the modular curve). This
transcendence implies that çarks go undetected in the algebraic fundamen-
tal group approach, nevertheless we shall see that this does not keep them
away from being arithmetic objects.

Equivalent forms have conjugate stabilizers (automorphism groups) and
conjugate subgroups have isomorphic quotient graphs. It turns out that the
set of classes is exactly the set of orbits of hyperbolic elements of PSL2(Z)
under the fourth (conjugation) action in our list. This set of orbits can be
identified with the set of bracelet diagrams with beads of two colors.

In fact, çarks can be thought of as Z-quotients of periodic rivers of Con-
way [5] or graphs dual to the coset diagrams of Mushtaq, [18]. As we shall
see later in the paper, çarks provide a very nice reformulation of various
concepts pertaining to indefinite binary quadratic forms, such as reduced
forms and the reduction algorithm, ambiguous forms, reciprocal forms, the
Markoff value of a form, etc. For example, çarks of reciprocal classes ad-
mit an involutive automorphism, and the quotient graph gives an infinite
graph with two pending edges. These graphs parametrize conjugacy classes
of dihedral subgroups of the modular group. Çarks also provide a more
conceptual way to understand the relation between coset diagrams and
quadratic irrationalities and their properties as studied in [18] or in [16].

Figure 1.2. The graph of a reciprocal class. Edges of this
graph parametrize the reciprocal forms in this class.

For us the importance of this correspondence between çarks and forms
lies in that it suggests a concrete and clear way to consider modular graphs
as arithmetic objects viz. Gauss’ binary quadratic forms, as it was much

2Turkish çark (pronounced as “chark”) is borrowed from the Persian, and it has a common
etymology with Indian chakra, Greek kyklos and English wheel.
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solicited by Grothendieck’s dessins school. The graph language provides
us with new points of view on the classical and deep questions concerning
the behavior of class numbers. Yet the structure of class groups via such
graphs is still a mystery. Moreover, the second named author, in [27], has
presented an improvement of the age-old reduction algorithm of Gauss and
gave an algorithmic solution to the representation problem of binary qua-
dratic forms. The language of çarks might also provide a new insight to the
real multiplication project of Manin and Marcoli, see [17].

Our computations concerning forms and their reduction are done in
PARI/GP [22] with certain subroutines of our own (source code is available
upon request, [28]).

2. Farey tree and modular graphs

It is well known that the two elliptic transformations S(z) = −1/z and
L(z) = (z−1)/z, respectively of orders 2 and 3, generate a group of Möbius
transformations which is isomorphic to the projective group of two by two
integral matrices having determinant 1, the modular group [3]. It is also
well-known that PSL2(Z) ∼= 〈S〉 ∗ 〈L〉 = Z/2Z ∗Z/3Z. Let us now consider
the graph F (the bipartite Farey tree), given by the following data:

E(F) = {{W} : W ∈ PSL2(Z)}
V (F) = V⊗(F) t V•(F);

where

V⊗(F) = {{W,WS} : W ∈ PSL2(Z)},
V•(F) = {{W,WL,WL2} : W ∈ PSL2(Z)}.

is an edge between a vertex v = {W,WS} ∈ V⊗(F) and another vertex
v′ = {W ′,W ′L,W ′L2} if and only if {W,WS} ∩ {W ′,W ′L,W ′L2} 6= ∅.
There are no other edges. Thus the edge connecting v and v′ is v ∩ v′,
if this intersection is non-empty. Observe that by construction the graph
is bipartite. The edges incident to the vertex {W,WL,WL2} ∈ V•(F) are
{W}, {WL}, {WL2}, and these edges inherit a natural cyclic ordering from
the vertex. Thus the Farey tree F is an infinite bipartite ribbon graph3. It
is a tree since PSL2(Z) is freely generated by S and L.

3A ribbon graph is a graph together with an ordering of the edges that are incident to each
vertex in the graph.
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The group PSL2(Z) acts on F from the left, by ribbon graph automor-
phisms, where M ∈ PSL2(Z) acts by

{W} ∈ E(F) 7→ {MW} ∈ E(F)
{W,WS} ∈ V⊗(F) 7→ {MW,MWS} ∈ V⊗(F)

{W,WL,WL2} ∈ V•(F) 7→ {MW,MWL,MWL2} ∈ V•(F)
Notice that the action on the set of edges is nothing but the left-regular ac-
tion of PSL2(Z) on itself and therefore is free. On the other hand the action
is not free on the set of vertices: The vertex {W,WS} is fixed by the order-2
subgroup generated by M = WSW−1, and the vertex {W,WL,WL2} is
fixed by the order-3 subgroup generated by M = WLW−1.

Let Γ be any subgroup of PSL2(Z). Then Γ acts on F from the left and
to Γ we associate a quotient graph Γ\F as follows:

E(Γ\F) = {Γ · {W} : W ∈ PSL2(Z)}
V (Γ\F) = V⊗(F/Γ) ∪ V•(F/Γ);

where

V⊗(Γ\F) = {Γ · {W,WS} : W ∈ PSL2(Z)}, and
V•(Γ\F) = {Γ · {W,WL,WL2} : W ∈ PSL2(Z)}.

It is easy to see that the incidence relation induced from the Farey tree gives
a well-defined incidence relation and gives us the graph which we call amod-
ular graph. Thus the edge connecting the vertices v = Γ ·{W,WS} and v′ =
Γ · {W ′,W ′L,W ′L2} is the intersection v u v′, which is of the form Γ · {M}
if non-empty. There are no other edges. Observe that by construction the
graph is bipartite. The edges incident to the vertex Γ · {W,WL,WL2} are
Γ ·{W},Γ ·{WL},Γ ·{WL2}, and these edges inherit a natural cyclic order-
ing from the vertex4. In general Γ\F is a bipartite ribbon graph possibly
with pending vertices that corresponds to the conjugacy classes of ellip-
tic elements that Γ contains. Conversely, any connected bipartite ribbon
graph G, with V (G) = V⊗(G) t V•(G), such that every ⊗-vertex is of de-
gree 1 or 2 and every •-vertex is of degree 1 or 3, is modular since the
universal covering of G is isomorphic to F . It takes a little effort to define
the fundamental group of Γ\F so that there is a canonical isomorphism
π1(Γ\F ,Γ · {I}) ' Γ < PSL2(Z), with the canonical choice of Γ · {I} as a
base edge. In general, subgroups Γ of the modular group (or equivalently
the fundamental groups π1(Γ\F)) are free products of copies of Z, Z/2Z
and Z/3Z, see [13]. Note that two distinct isomorphic subgroups Γ1, Γ2 of
the modular group may give rise to non-isomorphic ribbon graphs Γ1\F
and Γ2\F . We shall see shortly that çarks constitute good examples of this

4The ribbon graph structure around vertices of degree 2 is trivial.
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phenomena. In other words, the fundamental group does not characterize
the graph. Another basic invariant of Γ\F is its genus, which is defined
to be the genus of the surface constructed by gluing discs along left-turn
paths. This genus is the same as the genus of the Riemann surface H/Γ.

⊗
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(a) The fundamental region for the mod-
ular curve in the upper half plane model.
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⊗

(b) The modular curve. Note that there
are two triangles, the second is on the
back of the page, glued to this one.

Figure 2.1

The set of edges of Γ\F is identified with the set of right-cosets of Γ,
so that the graph Γ\F has [PSL2(Z) : Γ] many edges. In case Γ is a finite
index subgroup, the graph Γ\F is finite. In case Γ = PSL2(Z), the quotient
graph PSL2(Z)\F is a graph with one edge that looks like as follows:

PSL2(Z) · {I,S}
⊗

PSL2(Z) · {I}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

PSL2(Z) · {I,L,L2}•

Figure 2.2. The modular arc.

We call this graph the modular arc, see Figure 2.2. It is a graph whose
fundamental group is PSL2(Z) and whose universal cover is the Farey tree
F . In other words modular graphs are coverings of the modular arc. If
we consider the action of the modular group on the topological realiza-
tion Ftop of F mentioned in the introduction, the topological realization of
PSL2(Z)\F is the arc PSL2(Z)\Ftop in the modular curve connecting two
elliptic points, see Figure 2.1b.

Every modular graph Γ\F has a canonical “analytical” realization Γ\Ftop
on the Riemann surface Γ\H with edges being geodesic segments. Equiva-
lently, these edges are lifts of the modular arc by Γ\H −→ PSL2(Z)\H. If
instead we lift the geodesic arc connecting the ⊗- elliptic point to the cusp
to the surface Γ\H, then we obtain another graph on the surface, which is
called an ideal triangulation. Lifting the remaining geodesic arc gives rise
to yet another type of graph, called a lozenge tiling, see Figure 2.1a. So
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there is a triality, not just duality, of these graphs, see Figure 2.3 in which
the bold figures represent the members of the triality.

(a) A triangulation (b) its dual graph (c) and its lozenge

Figure 2.3. Triality of graphs

In topology, there is a well-known correspondence between subgroups
of the fundamental group of a space and the coverings of that space. The
following two results are orbifold (or “stacky”) analogues of this correspon-
dence for coverings of the modular curve, stated in terms of graphs.

Proposition 2.1. If Γ1 and Γ2 are conjugate subgroups of PSL2(Z), then
the graphs Γ1\F and Γ2\F are isomorphic as ribbon graphs. Hence there
is a 1-1 correspondence between modular graphs and conjugacy classes of
subgroups of the modular group.

Proof. Let Γ2 = MΓ1M
−1. The desired isomorphism is then the map

ϕ : E(Γ1\F)→ E(Γ2\F)
Γ1 · {W} 7→ Γ2 · {MW}.

Note that one has ϕ(Γ1 ·{I}) = Γ2 ·{M}. Suppose now that ϕ : E(Γ1\F)→
E(Γ2\F) is a ribbon graph isomorphism and let ϕ(Γ1 · {I}) = Γ2 · {M}.
This induces an isomorphism of fundamental groups

ϕ∗ : π1(Γ1\F ,Γ1 · {I}) ' π1(Γ2\F ,Γ2 · {M})

Since ϕ is a ribbon graph isomorphism, these two groups are also isomor-
phic as subgroups of the modular group. The former group is canonically
isomorphic to Γ1 a whereas the latter group is canonically isomorphic to

M−1π1(Γ2\F ,Γ2 · {I})M 'M−1Γ2M �

Therefore modular graphs parametrize conjugacy classes of subgroups
of the modular group, whereas the edges of a modular graph parametrize
subgroups in the conjugacy class represented by the modular graph. In
conclusion we get:
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Theorem 2.2. There is a 1-1 correspondence between modular graphs with
a base edge (G, e) (modulo ribbon graph isomorphisms of pairs (G, e)) and
subgroups of the modular group (modulo the isomorphisms induced by con-
jugation in PSL2(Z)).

Theorem 2.3. There is a 1-1 correspondence between modular graphs
with two base edges (G, e, e′) (modulo ribbon graph isomorphisms of pairs
(G, e, e′)) and cosets of subgroups of the modular group (modulo the iso-
morphisms induced by conjugation in PSL2(Z)).

3. Çarks

A çark is a modular graph of the form ÇM := 〈M〉\F where M is a
hyperbolic element of the modular group. One has

π1(〈M〉\F) = 〈M〉 ' Z,

so the çark 〈W 〉\F is a graph with only one circuit, which we call the spine
of the çark. Every çark has a canonical realization as a graph 〈M〉\Ftop
embedded in the surface 〈M〉\H, which is an annulus since M is hyper-
bolic. In fact 〈M〉\H is the annular uniformization of the modular curve
M corresponding to M ∈ π1(M). Again by hyperbolicity of M , this graph
will have infinite “Farey branches” attached to the spine in the direction
of both of the boundary components of the annulus5. By Proposition 2.1
the graphs ÇM and ÇXMX−1 are isomorphic for every element X of the
modular group and by Theorem 2.2 we deduce the following result, see [6]:

Theorem 3.1. There are one-to-one correspondences between
(i) çarks and conjugacy classes of subgroups of the modular group gen-

erated by a single hyperbolic element, and
(ii) çarks with a base edge and subgroups of the modular group generated

by a single hyperbolic element.

A çark is said to be directed if we choose an orientation for the spine.

Corollary 3.2. There are one-to-one correspondences between
(i) hyperbolic elements in the modular group and directed çarks with a

base edge, and
(ii) conjugacy classes of hyperbolic elements in the modular group and

directed çarks.

5IfM is parabolic, then 〈W 〉\F has Farey branches attached to the spine in only one direction,
and its topological realization 〈M〉\Ftop sits on a punctured disc. If M is elliptic, 〈W 〉\F is a
tree with a pending edge which abut at a vertex of type ⊗ when M is of order 2 and of type •
when M is of order 3. Its topological realization 〈M〉\Ftop sits on a disc with an orbifold point.
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Figure 3.1. The çark F/〈SL2SL〉.

3.1. Counting Çarks. Çarks are infinite graphs, and each edge of a çark
carries a name which is an infinite coset. In fact, all the combinatorial
information of a çark can be encoded in a finite storage as follows: First
remove all ⊗-vertices of the çark. Next, turn once around the spine. Upon
meeting a •-vertex on which a branch attached by L, cut that branch and
tag that •-vertex with a “0”. In a similar fashion, upon meeting a •-vertex
on which a branch attached by L2, cut that branch and tag that •-vertex
with a “1”. We obtain a finite graph called a binary bracelet which is by
definition an equivalence class of binary strings under cyclic permutations
(i.e. rotations) and reversals. As a çark has Farey branches expanding in
the direction of both boundaries the corresponding bracelet has to have
at least one 0 and one 1. Conversely, by using the convention 0 ↔ L and
1 ↔ L2 we can reconstruct the çark from its bracelet provided it contains
at least one 0 and one 1, see Figure 3.2.

Rotations and reversals generate a finite dihedral group, and a binary
bracelet may equivalently be described as an orbit of this action.

(a) (b)

Figure 3.2. From çarks to bracelets

For n = 1, 2, ..., 15 the number of binary bracelets with n vertices is
2, 3, 4, 6, 8, 13, 18, 30, 46, 78, 126, 224, 380, 687, 1224.
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This is sequence A000029 (M0563) in OEIS [21]. The number of binary
bracelets (çarks) of length n is

B(n) = 1
2N(n) + 3

42n/2

if n is even and

B(n) = 1
2N(n) + 1

22(n+1)/2

if n is odd where N(n) is the number of binary necklaces of length n. An
equivalence class of binary strings under rotations (excluding thus reversals)
is called a binary necklace, or a cyclic binary word. They are thus orbits of
words under the action of a cyclic group and they correspond to directed
çarks. For n = 1, 2, ..., 156 the number of binary necklaces of length n is

N(n) = 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352, 632, 1182, 2192,
which is sequence A000031 (M0564) in OEIS. The number of necklaces
(directed çarks) of length n is given by MacMahon’s formula from 1892
(also called Witt’s formula, see [2], [15]):

N(n) = 1
n

∑
d|n

ϕ(d)2n/d = 1
n

n∑
j=1

2gcd(j,n)

where ϕ is Euler’s totient function.
A çark is called primitive if its spine is not periodic. Aperodic binary

necklaces correspond to primitive directed çarks. For n = 1, 2, ..., 15 the
number of aperiodic necklaces of length n is

L(n) = 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182,
which is sequence A000031 (M0564) in the database. There is a formula for
the number of aperiodic necklaces of length n in terms of Möbius’ function
µ:

L(n) = 1
n

∑
d|n

µ(d)2n/d = 1
n

∑
d|n

µ(n/d)2d

As mentioned, binary necklaces (or cyclic binary words or directed çarks)
may be viewed as orbits of words under the action of the cyclic group.
Choosing an ordering of our letters {0, 1} (i.e. 0 < 1) and imposing the
lexicographic ordering of the words, one may choose a minimal represen-
tative in each orbit. The minimal representative of a primitive (aperiodic)
word is called a Lyndon word. They were first studied in connection with
the construction of bases for free Lie algebras and they appear in numerous
contexts. In our case they are

0, 1, 01, 001, 011, 0001, 0011, 0111, 00001, 00011, 00101, 00111, 01011 . . .
6n = 1 case is included for completeness. As remarked above there is no çark for n = 1 case.
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One can similarly find representatives for aperiodic binary bracelets
(=primitive indefinite binary quadratic forms; see below). There are ef-
fective algorithms to list all primitive necklaces and bracelets up to a given
length (i.e. Duval’s algorithm [7], the algorithm due to Fredricksen, Kessler
and Maiorana [8], Sawada’s algorithm [20], etc). Translated into the lan-
guage of binary quadratic forms, this means that it is possible to single
out a unique reduced representative in each class of a primitive indefinite
binary quadratic form and that it is possible to effectively enumerate all
classes of primitive indefinite binary quadratic forms by specifying those
reduced representatives.

To sum up, we may represent primitive çarks by primitive bracelets. In
order to shorten this representation further, we may count the number of
consecutive 0’s and 1’s and represent çarks as sequences of natural num-
bers (n0, n1, . . . n2k)0,1, if we agree that7 this sequence encodes a bracelet
that starts with a 0 if the exponent is 0 and 1 if the exponent is 1. This
representation is directly connected to the “minus” continued fractions (see
Zagier [25]).

A primitive word may have two types of symmetries: invariance under
the swap of symbols 0 ↔ 1 and invariance under reversal, i.e. palindromic
symmetry. The first symmetry corresponds to ambiguous binary quadratic
forms and the second symmetry corresponds to reciprocal binary quadratic
forms, as we shall see. The swap of symbols 0↔ 1 corresponds to inversion
in the class group.

3.2. Çark Invariants. There are several natural invariants associated to
a çark Ç. The combinatorial length lc(Ç ) of its spine is an invariant. A
hyperbolic invariant of a çark is the metric length lh(Ç ) of the closed ge-
odesic in the annular surface under its hyperbolic metric induced by the
çark. A conformal invariant of a çark is the modulusm(Ç ) of the associated
annulus. Finally, the discriminant ∆(Ç ) of the associated form and the ab-
solute value of the trace τ(Ç ) of the associated matrix are two arithmetic
invariants with ∆ = τ2 − 4. One has

lh(Ç ) = 2 arccosh (τ/2), m(Ç ) = exp

 π2

log | τ±
√

∆
2 |


The modulus is found as follows: Any hyperbolic element M ∈ PSL2(R)
is conjugate to an element of the form

N := XMX−1 =
(
α 0
0 1

α

)
where α is the multiplier of M . Since the trace is invariant under conjuga-
tion, one has τ := tr(M) = α+ 1/α⇒ α2 − τα+ 1 = 0⇒ α = τ±

√
τ2−4
2 .

7Note that a Lyndon word always start with a 0 and ends with a 1.
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Now N acts by Möbius transformation z 7→ α2z, and the quotient map
is f(z) = z2πi/ logα2 with the annulus f(H) = {z : e−2π2/ logα2

< |z| <
1} as its image. Hence the modulus of the ambient annulus of the çark
is e2π2/ logα2 = eπ

2/ log |α|. It is possible to write down the uniformization
UM : H → ÇM explicitly, which is a quite involved expression. The annular
uniformization ÇM → PSL2(Z)\H can be written as j ◦ U−M .

4. Binary Quadratic Forms and Çarks

A binary quadratic form is a homogeneous function of degree two in two
variables f(x, y) = Ax2 + Bxy + Cy2 (denoted f = (A,B,C) or in the
matrix form:

(4.1) Wf =
(

A B/2
B/2 C

)
so that f(x, y) = (x, y)Wf (x, y)t). If the coefficients A,B,C are integers the
form is called integral with discriminant ∆(f) = B2− 4AC. If f is integral
and gcd(A,B,C) = 1 then f is called primitive. Following Gauss we will
call a form f = (A,B,C) ambiguous if B = kA for some k ∈ Z. Finally a
form f = (A,B,C) will be referred to as reciprocal whenever C = −A, [19].

Note that ∆(f) = −4 det(Wf ). Given a symmetric two by two matrix
we write fW to denote the binary quadratic form associated to W . Recall
that a form f is called

• positive definite if and only if ∆(f) < 0 and A > 0,
• negative definite if and only if ∆(f) < 0 and 0 > A,
• indefinite if and only if ∆(f) > 0.

The group PSL2(Z) acts on the set of all integral binary quadratic forms
by

Forms × PSL2(Z)→ Forms
(f, U) 7→ U · f := f(U(x, y)t) = (x, y)U tWfU(x, y)t

We call two binary quadratic forms equivalent if they belong to the same
PSL2(Z) orbit under the above action, under which discriminant is invari-
ant. Let us denote the PSL2(Z)-orbit (or the equivalence class) of f by [f ].
The stabilizer of f is called its automorphism group, denoted by Aut(f), and
elements of Aut(f) are called automorphisms of f . For a positive definite
binary quadratic form f , the group Aut(f) is trivial unless ∆(f) = −3 or
−4; Aut(f) ' Z/4Z if ∆(f) = −4 and Aut(f) ' Z/6Z in case ∆(f) = −3,
[3, p. 29]. On the other hand, for an indefinite binary quadratic form one
has Aut(f) ' Z.

Given an indefinite binary quadratic form f = (A,B,C) a generator of
its automorphism group will be called its fundamental automorphism. Note
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that there are two fundamental automorphisms, one being Mf , the other
being its inverse, M−1

f . Every integral solution (α, β) of Pell’s equation:

(4.2) X2 −∆(f)Y 2 = +4

corresponds to an automorphism of f given by the matrix:(
α−Bβ

2 −Cβ
Aβ α+βB

2

)
.

It turns out that the fundamental automorphism is the one having minimal
β, [3, Proposition 6.12.7].

Conversely, to any given (primitive) hyperbolic element8, say

M =
(
p q
r s

)
∈ PSL2(Z)

let us associate the following binary quadratic form:

(4.3) fM = sgn(p+ s)
gcd(q, s− p, r)

(
r, s− p,−q

)
Observe first that M → fM is well-defined and that its image is always

primitive and indefinite. At this point let us state a direct consequence of
Theorem 2.2:

Corollary 4.1. The maps 〈M〉\F ←→ M −→ fM defines a surjection
from the set of oriented çarks with a base edge to primitive indefinite binary
quadratic forms.

Proof. We saw that an oriented çark with a base edge determines a hyper-
bolic element of PSL2(Z). And this element in turn determines an indefinite
binary quadratic form viaM → fM . Conversely, given a primitive indefinite
binary quadratic form f = (A,B,C) to find β ∈ Z such that the matrix(

β A
−C B + β

)
∈ PSL2(Z)

we look at solutions (x, y) of Pell’s equation X2 −∆(f)Y 2 = 4. Using any
such y we construct the hyperbolic element:

Mf =
(

β yC
yA yB + β

)
,

where β = −yB±x
2 . Both choices of the sign produce a matrix which maps

onto f . In fact, the two matrices are inverses of each other in PSL2(Z). �

8There is no need to restrict to primitive elements because fM = fMk for any k ∈ Z \ {0}.
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Example 4.2. Consider the form (1, 7,−1). It has discriminant 53. The
pair (51, 7) is a solution to the Pell equation X2 − 53Y 2 = 4. The two β
values corresponding to this solution are −50 and 1. Plugging these two
values into the matrix above we get:

Mo =
(

1 7
7 50

)
and M−1

o =
(
−50 7

7 −1

)
.

The pair (2599, 357) is also a solution to the above Pell equation, and the
corresponding matrices are:(

50 357
357 2549

)
and

(
−2549 357

357 −50

)
.

We would like to remark also that

M2
o =

(
50 357
357 2549

)
.

In fact, Mo is one of the two fundamental automorphisms of f .

Note that the map W 7→ fW is infinite to one because any indefinite
binary quadratic form has infinite automorphism group. Any matrix in the
automorphism group of f maps onto f .

Let D := {d ∈ Z>0 : d ≡ 0, 1 (mod 4), d is not a square}. Recall the
following:

Proposition 4.3 ([19]). There is a bijection between the set of conjugacy
classes of primitive hyperbolic elements in PSL2(Z) and the set of classes of
primitive binary quadratic forms of discriminant ∆ ∈ D; where a hyperbolic
element is called primitive if it is not a power of another hyperbolic element.

4.1. Reduction theory of binary quadratic forms. We say that an
indefinite binary quadratic form f = (A,B,C) is reduced if the geodesic in
H connecting the two real fixed points of Wf , called the axis of Wf and
denoted by aWf

, intersects with the standard fundamental domain of the
modular group. Remark that this definition is equivalent to the one given
by Gauss in [9]9. The equivalence of the two definitions is folklore.

The PSL2(Z) class of an indefinite binary quadratic form contains more
than one reduced form as opposed to definite binary quadratic forms where
the reduced representative is unique, see [3, Section 6.8] or [4, Section 5.6]
for further discussion. The classical reduction is the process of acting on a
non-reduced form f = (A,B,C) by the matrix

ρ(f) =
(

0 1
1 t(f)

)
= S(LS)t(f);

9Recall that Gauss defined a form to be reduced if |
√

∆− 2|A|| < B <
√

∆.
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where

t(f) =

 sgn(c)
⌊
b

2|c|

⌋
if |c| ≥

√
∆

sgn(c)
⌊√

∆+b
2|c|

⌋
if |c| <

√
∆

 ,
and checking whether the resulting form is reduced or not. It is known
that after finitely many steps one arrives at a reduced form, call fo. Ap-
plying ρ(fo) to fo produces again a reduced form. Moreover, after finitely
many iterations one gets back fo. And this set of reduced indefinite binary
quadratic forms is called the cycle of the class.

Our aim is now to reveal the reduction method due to Gauss in terms of
çarks. Recall that every edge of a çark may be labeled with a unique coset
of the corresponding subgroup. That is to say binary quadratic forms may
be used to label the edges of the çark by Corollary 3.2. Let us denote the
edge on the çark corresponding to a form g in the PSL2(Z)-class of f by eg.

Given a hyperbolic element W as a word in L, L2 and S we define the
length of W , `(W ), to be the total number of appearances of L, L2 and S.
For instance for W = LSL2S(LS)2, `(W ) = 8.

A fundamental automorphism of a given form f (or the primitive hyper-
bolic element corresponding to f) is obtained from the çark of f as follows
let γf be the path starting at ef making a one turn counterclockwise around
the spine and then ending at ef . On traversing γf we write S if we visit a
vertex of degree 2 and L (L2 resp.) if we visit a vertex of degree 3 and the
next edge on γf is on the left (right resp.). For instance, the automorphism
of the form (−1, 4,−2) is the word L2S LS (L2S)2 L2, see Figure 4.9.

Lemma 4.4. Given an indefinite binary quadratic form (reduced or non-
reduced), f = (a, b, c), let Wf be a primitive hyperbolic element correspond-
ing to f . Then

(4.4) `(Wρ(f)·f ) ≤ `(Wf ).

Proof. We first observe that every reduction operator is either a left turn
(i.e. a word comprised only of (SL)n, for some positive integer n) or a right
turn (i.e. a word comprised only of (L2S)n for some positive integer n.)
path. Say ρ(f) · f = (a′, b′, c′). A simple argument allows us to conclude
that |b′| < |b| and we have either |a′| < |a| and c = c′ or |c′| < |c| and
a = a′. That is, either |a| or |c| gets smaller. So it is enough to see that the
bigger the distance (i.e. number of edges) between ef and the spine is the
higher the components a, b, c of f are. This phenomenon can be explained
by a kind of arithmetic progression on the edges of the corresponding çark.
Indeed, if ac < 0 it is immediate to see that ρ(f) · f is reduced (even if f is
reduced, see Lemma 4.7) and that `(Wρ(f)·f ) = `(Wf ). The action of ρ(f)
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on f is given by:
(SL)n · f = (a− nb+ n2c, b− 2nc, c)

(SL2)n · f = (a,−2an+ b, n2a− nb+ c).
The action of S on f produces the form (c,−b, a). Therefore we may assume
that the sign of b is opposite to that of a and c. It is then easy to see that
under these circumstances the functions a − nb + n2c and n2a − nb + c
(as functions of n ∈ N) are strictly increasing. �

Let us assume from now on that our çarks are embedded into an annulus,
with an orientation which we will assume to be the usual one.10 In addition,
we also introduce the following shorter notation for our çarks: in traversing
the spine (in either direction) if there are n consecutive Farey branches in
the direction of the same boundary component, then we denote this as a
single Farey component and write n on the top of the corresponding branch,
see Figure 4.1. We will call such çarks weighted.

Definition 4.5. Let Ç be a weighted çark. Edges of the spine are called
semi-reduced. In particular, an edge on the spine of Ç is called reduced if
and only if it is on the either side of a Farey component which is in the
direction of the inner boundary component.

Figure 4.1. A çark and its short form.

Remark that as we have fixed our orientation to be the usual one, there
is no ambiguity in this definition. In addition note that semi-reduced edges
are in one to one correspondence between the forms f = (A,B,C) in a
given class for which AC < 0. We are now ready to describe reduction
theory of binary quadratic forms in terms of çarks. We have seen that
multiplication by the matrix ρ(f) is, in general, the process of moving the
base edge of the çark to the spine as a result of Lemma 4.4. However, this is
not enough. That is, not every edge on the spine corresponds to a reduced

10Although theoretically unnecessary, the choice of an orientation will simplify certain issues.
For instance, we shall see that inversion in the class group is reflection with respect to spine.



462 A. Muhammed Uludağ, Ayberk Zeytin, Merve Durmuş

Figure 4.2. Çark corresponding to the class represented
by the form (7, 33,−15). Bold edges are reduced.

form. Reduced forms correspond to edges where the Farey branches switch
from one boundary component to the other. More precisely, we have:
Theorem 4.6. Reduced forms in an arbitrary indefinite binary quadratic
form class [f ] are in one to one correspondence between the reduced edges
of the çark corresponding to the given class.

As we have remarked the action of PSL2(Z) on binary quadratic forms is
equivalent to the change of base edge on the set of çarks. Hence the above
Theorem is an immediate consequence of the following:
Lemma 4.7 ([3, Corollary 6.8.11]). Let Çf denote the çark associated to an
arbitrary indefinite binary quadratic form f . The reduction operator ρ(f)
is transitive on the set of reduced edges of Çf .

Let us give some examples:
Example 4.8. Let us consider the form f = (7, 33,−15). It is easy to check
that f is reduced.

Wf = (L2S)2 (LS)2 L2S LS (L2S)7 (LS)5 =
(
−38 −195
−91 −467

)
The trace of the class is −505. By Gauss’ theory the class [f ] is an element
in the quadratic number field with discriminant 1509. We refer to Figure 4.2
for the corresponding çark.

Example 4.9. Let ∆ = n2 + 4n for some positive integer n. Then the
identity in the class group is given by the çark in Figure 4.3a and the
corresponding form is (−n, n, 1). If ∆ = n2 + 4, then the identity is repre-
sented by the form 1

n(−n, n2, n) = (1, n,−1). The corresponding çark has
two Farey branches, see Figure 4.3b.

However, one has to admit that there are very complicated çarks repre-
senting the identity of the class group. For instance, the çark corresponding
to the form (−7, 23, 16) has 42 Farey branches.
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(a) Identity for ∆ = n2 + 4n. (b) Identity for ∆ = n2 + 4.

Figure 4.3.

4.2. Ambiguous and Reciprocal forms. Let us now discuss certain
symmetries of a çark. For a given çark Ç let Ç r be the çark which is the
mirror image of Ç about any line passing through the ‘center” of the spine
(assuming that the Farey components coming out of the spine in its shorter
notation that we have introduced is evenly spaced). It is easy to see that
both ideal classes represented by the two çarks Ç and Ç r have the same
discriminant. A straightforward computation leads to the following:

Proposition 4.10. Given a çark Ç the binary quadratic form class repre-
sented by Ç r is inverse of the class represented by Ç.

Example 4.11. Let us consider the form f = (−2377, 10173, 1349) having
discriminant 116316221. The form g = (−4027, 8915, 2287) is an element in
the ideal class represented by this form. The corresponding çarks are shown
in Figure 4.4. The forms are inverses of each other.

(a) Çark corresponding to
f = (−2377, 10173, 1349).

(b) Çark corresponding to
f−1 = (−4027, 8915, 2287).

(c) Çark of the product of
f × f−1.

Figure 4.4. Two çarks inverses of one another and their
product.

Recall that Gauss has defined a binary quadratic form to be ambiguous if
it is equivalent to its inverse or equivalently if the corresponding equivalence
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class contains (a, ka, c) for some a, c and k. Following Gauss, we define a
çark Ç ambiguous if Ç and Ç r are isomorphic as çarks, or equivalently
correspond to the same subgroup of PSL2(Z). So from Proposition 4.10 we
deduce:
Corollary 4.12. Ambiguous çarks correspond to ambiguous forms.

In addition to all the examples considered in Example 4.9, which rep-
resent ambiguous classes as they are of the form (a, ka, c), let us give one
more example:
Example 4.13. Consider the form f = (3, 18,−11). The form is reduced
and ambiguous as one immediately checks. The corresponding çark is given
in Figure 4.5.

Figure 4.5. Çark corresponding to the ambiguous form
f = (3, 18,−11).

Let us now discuss “rotational” symmetries. In Section 3.1 we defined
a directed çark with a base edge primitive if and only if its spine is not
periodic. Let cprim denote the set of primitive çarks. It is easy to see that
primitive hyperbolic elements11 in PSL2(Z) correspond to primitive çarks
or equivalently to prime geodesics in H.
Corollary 4.14. There is a one to one correspondence between the follow-
ing two sets:

cprim ←→
{

PSL2(Z) classes of primitive
indefinite binary quadratic forms

}
Finally, let Çm denote the mirror of a given çark, that is the çark ob-

tained by reflecting Ç with respect to the spine. Once again observe that
both Ç and Çm have the same discriminant. In fact, an indefinite binary
quadratic form say f = (A,B,C) is given which is represented by the çark
Ç then the çark Çm represents the form f ′ = (−A,B,−C) and the same

11Recall that an element M ∈ PSL2(Z) is said to be primitive if it is not a positive power of
another element of the modular group.
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holds for every element in [f ]. We conclude that both çarks represent ideal
classes that have the same order in the class group.

LetW be a hyperbolic element in PSL2(Z). In [19], Sarnak has definedW
to be reciprocal if W is conjugate to its inverse. The conjugation turns out
to be done by a unique element (up to multiplication by an element in 〈W 〉)
of order 2, and thus reciprocal elements correspond to dihedral subgroups of
the modular group12. A form f = (A,B,C) is called reciprocal if C = −A.
It is known that reciprocal hyperbolic elements correspond to reciprocal
indefinite binary quadratic forms, [19]. In a similar fashion we call a çark
reciprocal if Ç and (Çm)r are isomorphic as çarks, see Figures 4.6 and 4.7
for two examples. In fact since two operators ·m and ·r commute, if Ç is a
reciprocal çark then so is Çm.
Proposition 4.15. Reciprocal forms correspond to reciprocal çarks.

Figure 4.6. The graph F/〈S,L2SL〉

Figure 4.7. The graph F/〈LSL2, S(LSL2)S〉

Example 4.16. Consider the form f = (−8, 11, 8). The corresponding

hyperbolic element in PSL2(Z) is
(

101 −192
−192 365

)
. The corresponding

çark is shown in Figure 4.8, where it is easy to see that Ç and (Çm)r are
same.
Example 4.17 (Reciprocal Identities). The forms f = (1, n2,−1) already
appeared in Example 4.9 are reciprocal and represent identity in the class
group. Note also that such forms come from the word (L2S)n(LS)n. The
çarks of these reciprocal identities are in Figure 4.3b.

12Remember that primitive çarks correspond to maximal Z-subgroups of PSL2(Z).
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Figure 4.8. Çark corresponding to the reciprocal form
f = (−8, 11, 8).

4.3. Miscellany. Binary quadratic forms is a central and classical topic
and have connections to diverse fields. Here we touch upon some of these.

4.3.1. Computational Problems. There are several important compu-
tational problems related to çarks, in connection with the class number
problems in the indefinite case. The most basic invariant of a çark is the
length of its spine. The (absolute) trace of the associated matrix is another,
much subtler invariant. The problem of listing çarks of the same trace is
equivalent to the problem of computing class numbers. Also, the Gauss
product on classes of forms defines an abelian group structure on the set
çarks of the same trace, namely the class group. It is a work in progress
to reach to a new understanding of class groups in terms of the graphical
representation of their elements by çarks.

4.3.2. Closed geodesics on the modular surface. Let us note in pass-
ing that primitive çarks parametrize closed geodesics on the modular curve,
and so çarks are closely connected to symbolic dynamics on the modular
curve, see [11], encoding of geodesics, and Selberg’s trace formula, see [26].

4.3.3.The Markoff number of an indefinite binary quadratic form.
There is an arithmetic invariant of indefinite binary quadratic forms called
the Markoff value µ(F ) which is defined as

µ(F ) :=
√

∆(F )
m(f) , where m(f) := min

(x,y)∈Z2\{(0,0)}
|F (x, y)|

Alternatively one can run over the class of F and compute the minima
of equivalent forms at a fixed point p0, for example (x, y) = (0, 1). Hence
the choice of this fixed point p0 defines a function on the set of edges of
the associated çark, and the Markoff value of the form is the maximal
value attained by this function defined on the çark. There are also çarks
associated to Markoff irrationalities which we call Markoff çarks. A solution
to the representation problem of indefinite binary quadratic forms is given
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in [27] and as a by-product Markoff value of a given form can be computed.
The algorithms will be available within the software developed by the first
two authors and their collaborators, [10].
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Figure 4.9. Minimum edges of F/Aut({(1, 0,−2)}). Every
form on the spine attains the minimum. This is, however,
not the general case.

To conclude the paper, let us rephrase our main result: we show that the
class of every primitive indefinite binary quadratic form is not simply a set
but it has the extra structure of an infinite graph, namely a çark, such that
the forms in the class are identified with the edges of the graph. This graph
admits a topological realization as a subset of an annulus and explains very
well some known phenomena around Gauss’ reduction theory of forms and
Zagier’s reduction of elements of PSL2(Z) as explained in [11]. In our point
of view both Gauss reduced forms and Zagier reduced forms correspond to
edges on the what we call spine of the çark. Various properties of forms and
their classes are manifested in a natural way on the çark. The first instance
of such a question concerning binary quadratic forms has been addressed
by the second named author in [27], where he has given an improvement of
Gauss’ reduction of binary quadratic forms, and has given solutions to the
minimum problem and representation problem of binary quadratic forms.
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