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Lattices in potentially semi-stable representations
and weak (ϕ, Ĝ)-modules

par Yoshiyasu OZEKI

Résumé. Soient p un nombre premier et r ≥ 0 un entier. Dans cet
article nous montrons une anti-équivalence de catégories entre la
catégorie des (ϕ, Ĝ)-modules faibles et une certaine sous-catégorie
des la catégorie des réseaux dans les Qp-représentations semi-
stables à poids de Hodge–Tate compris entre 0 et r. Cela répond
à une question de Tong Liu sur l’image essentielle du foncteur sur
les (ϕ, Ĝ)-modules faibles. Nous construisons au cours de la dé-
monstration, suivant la méthode de Liu, des données algébriques
linéaires qui classifient des réseaux dans les représentations semi-
stables.

Abstract. Let p be a prime number and r ≥ 0 an integer.
In this paper, we prove that there exists an anti-equivalence be-
tween the category of weak (ϕ, Ĝ)-modules of height ≤ r and a
certain subcategory of the category of Galois stable Zp-lattices in
potentially semi-stable representations with Hodge–Tate weights
in [0, r]. This gives an answer to a question by Tong Liu about the
essential image of a functor on weak (ϕ, Ĝ)-modules. During the
proof, following Liu’s methods, we construct linear algebraic data
which classifies lattices in potentially semi-stable representations.

1. Introduction
Let K be a complete discrete valuation field of mixed characteristics

(0, p) with perfect residue field. We take a system of p-power roots (πn)n≥0
of a uniformizer π of K such that π0 = π and πpn+1 = πn. We denote by
GK and GKn absolute Galois groups of K and Kn := K(πn), respectively.

For applications to interesting problems such as modularity liftings, it is
useful to study an integral version of Fontaine’s p-adic Hodge theory, which
is called integral p-adic Hodge theory. It is important in integral p-adic
Hodge theory to construct “good” linear algebraic data which classify GK-
stable Zp-lattices in semi-stable, or crystalline, Qp-representations of GK
with Hodge–Tate weights in [0, r]. Nowadays various such linear algebraic
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data are constructed; for example, so called Fontaine–Laffaille modules,
Wach modules and Breuil modules. There are various obstructions for the
use of these algebraic data, e.g., restrictions on the absolute ramification
index e of K and (or) r. In [8], based on a Kisin’s insight [4] for a classifi-
cation of lattices in semi-stable representations, Tong Liu defined notions
of (ϕ, Ĝ)-modules and weak (ϕ, Ĝ)-modules. He constructed a contravari-
ant fully faithful functor T̂ from the category of weak (ϕ, Ĝ)-modules of
height ≤ r into the the category of free Zp-representations of GK . It is the
main theorem of loc. cit. that, without any restriction on e and r, T̂ induces
an anti-equivalence between the category of (ϕ, Ĝ)-modules of height ≤ r
and the category of lattices in semi-stable Qp-representations of GK with
Hodge–Tate weights in [0, r]. In the end of loc. cit., he posed the following
question:

Question 1.1. What is the essential image of the functor T̂ on weak (ϕ, Ĝ)-
modules?

He showed that, if a representation of GK corresponds to a weak (ϕ, Ĝ)-
module of height ≤ r, then it is semi-stable over Kn for some n ≥ 0 and
has Hodge–Tate weights in [0, r]. However, the converse does not hold in
general.

In this paper, we give an answer to Question 1.1. Denote by m0 the
maximum integer such that K contains pm0-th roots of unity. For any non-
negative integer n, we denote by Crn the category of free Zp-representations
T of GK which satisfy the following property; there exists a semi-stable
Qp-representation V of GK with Hodge–Tate weights in [0, r] such that
T ⊗Zp Qp is isomorphic to V as representations of GKn . It means that
T ⊗Zp Qp|GKn is semi-stable, and T ⊗Zp Qp|GKn can be extended to a GK-
semi-stable representation. Our main result is as follows.

Theorem 1.2. The essential image of the functor T̂ is Crm0.

Therefore, we conclude that T̂ induces an anti-equivalence between the
category of weak (ϕ, Ĝ)-modules of height ≤ r and the category Crm0 . In
particular, if K does not contain p-th roots of unity, then weak (ϕ, Ĝ)-
modules are in fact (ϕ, Ĝ)-modules.

The crucial part of our proof is to show the relation
Crm0 ⊂ C

r ⊂ Crm
where Cr is the essential image of the functor T̂ andm is the maximum inte-
ger such that the maximal unramified extension of K contains pm-th roots
of unity (cf. Proposition 4.1). We have two keys for our proof of this state-
ment. The first one is Proposition 4.2, which gives a relation between weak
(ϕ, Ĝ)-modules and “finite height” representations. For the proof, following
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the method of Liu’s arguments of [8] and [9], we construct certain linear
data which classifies lattices in potentially semi-stable representations. This
is a direct generalization of the main result of [8] (the idea for our proof is
essentially due to Liu’s previous works). The second one is Proposition 4.4;
it says that the GKn-action of a finite height representation of GK which is
semi-stable over Kn extends to a GK-action which is semi-stable over K.

Acknowledgments. The author thanks Akio Tamagawa who gave him
useful advice in the proof of Lemma 4.10 in the case where p is odd and
m0 = 0. This work is supported by JSPS KAKENHI Grant Number 25·173.

Notation. For any topological group H, a free Zp-representation of H
(resp. a Qp-representation of H) is a finitely generated free Zp-module
equipped with a continuous Zp-linear H-action (resp. a finite dimensional
Qp-vector space equipped with a continuous Qp-linear H-action). We de-
note by RepZp(H) (resp. RepQp(H)) the category of them. For any field
F , we denote by GF the absolute Galois group of F (for a fixed separable
closure of F ).

2. Preliminary

2.1. (ϕ, Ĝ)-modules. We recall some results on Liu’s (ϕ, Ĝ)-modules and
related topics. Throughout this paper, let p ≥ 2 be a prime number. Let K
be a complete discrete valuation field of mixed characteristics (0, p) with
perfect residue field k. Let L be a finite extension of K. Take a uniformizer
πL of L and a system of p-power roots (πL,n)n≥0 of πL such that πL,0 = πL
and πpL,n+1 = πL,n. We denote by kL the residue field of L. Put Ln =
L(πL,n), L∞ = ∪n≥0Ln and define L̂ to be the Galois closure of L∞ over L.
We denote by HL and ĜL the Galois group of L̂/L∞ and L̂/L, respectively.
We denote by Kur and Lur maximal unramified extensions of K and L,
respectively. Note that we have Lur = LKur.

Let R = lim←−OK/p, where OK is the integer ring of K and the transition
maps are given by the p-th power map. We write πL := (πL,n)n≥0 ∈ R. Let
SL := W (kL)[[uL]] be the formal power series ring with indeterminate uL.
We define a Frobenius endomorphism ϕ of SL by uL 7→ upL extending the
Frobenius of W (kL). The W (kL)-algebra embedding W (kL)[uL] ↪→ W (R)
defined by uL 7→ [πL] extends to SL ↪→W (R) where [∗] is the Teichmüller
representative.

We denote by Modr/SL the category of ϕ-modules M over SL which
satisfy the following:

• M is free of finite type over SL;
• M is of height ≤ r in the sense that coker(1⊗ϕ : SL⊗ϕ,SLM→M)
is killed by EL(uL)r.
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Here, EL(uL) is the minimal polynomial of πL over W (kL)[1/p], which is
an Eisenstein polynomial. We call objects of this category Kisin modules
of height ≤ r over SL. We define a contravariant functor TSL : Modr/SL →
RepZp(GL∞) by

TSL(M) := HomSL,ϕ(M,W (R))

for an object M of Modr/SL . Here a GL∞-action on TSL(M) is given by
(σ.g)(x) = σ(g(x)) for σ ∈ GL∞ , g ∈ TSL(M), x ∈M.

Proposition 2.1 ([4, Corollary 2.1.4 and Proposition 2.1.12]). The functor
TSL : Modr/SL → RepZp(GL∞) is exact and fully faithful.

Let SL be the p-adic completion of W (kL)[uL, EL(uL)i
i! ]i≥0 and endow SL

with the following structures:
• a continuous ϕW (kL)-semilinear Frobenius ϕ : SL → SL defined by
uL 7→ upL;
• a continuous W (kL)-linear derivation map N : SL → SL defined by
N(uL) = −uL;
• a decreasing filtration (FiliSL)i≥0 on SL. Here FiliSL is the p-adic
closure of the ideal generated by EL(uL)j

j! for all j ≥ i.

The embedding SL ↪→ W (R) defined above extends to SL ↪→ SL ↪→ Acris
and SL[1/p] ↪→ B+

cris. We take a primitive p-power root ζpn of unity for n ≥ 0
such that ζppn+1 = ζpn . We set ε := (ζpn)n≥0 ∈ R and t := −log([ε]) ∈ Acris.
For any integer n ≥ 0, let t{n} := tr(n)γq̃(n)( t

p−1

p ) where n = (p− 1)q̃(n) +
r(n) with q̃(n) ≥ 0, 0 ≤ r(n) < p− 1 and γi(x) = xi

i! the standard divided
power. Now we denote by ν : W (R)→W (k) a unique lift of the projection
R → k, which extends to a map ν : B+

cris → W (k)[1/p]. For any subring
A ⊂ B+

cris, we put I+A = Ker(ν on B+
cris) ∩A.

We define a subring RL, containing SL, of B+
cris as below:

RL :=
{ ∞∑
i=0

fit
{i} | fi ∈ SL[1/p] and fi → 0 as i→∞

}
.

Furthermore, we define R̂L := RL∩W (R). We see that SL is not GL-stable
under the action of GL in B+

cris. However, RL, R̂L, I+RL and I+R̂L are GL-
stable. Furthermore, they are stable under Frobenius in B+

cris. By definition
GL-actions on them factor through ĜL.

For an object M of Modr/SL , the map M → R̂L ⊗ϕ,SL M defined by
x 7→ 1 ⊗ x is injective. By this injection, we often regard M as a ϕ(SL)-
stable submodule of R̂L ⊗ϕ,SL M.
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Definition 2.2. A weak (ϕ, ĜL)-module of height ≤ r over SL is a triple
M̂ = (M, ϕ, ĜL) where

(1) (M, ϕ) is an object of Modr/SL ,
(2) ĜL is an R̂L-semilinear continuous ĜL-action on R̂L ⊗ϕ,SL M,
(3) the ĜL-action commutes with ϕR̂L ⊗ ϕM, and
(4) M ⊂ (R̂L ⊗ϕ,SL M)HL .

Furthermore, we say that M̂ is a (ϕ, ĜL)-module of height ≤ r over SL if
M̂ satisfies the additional condition;

(5) ĜL acts on R̂L ⊗ϕ,SL M/I+R̂L(R̂L ⊗ϕ,SL M) trivially.
We always regard R̂L⊗ϕ,SLM as aGL-module via the projectionGL � ĜL.
We denote by wModr,ĜL/SL

(resp. Modr,ĜL/SL
) the category of weak (ϕ, ĜL)-

modules of height ≤ r over SL (resp. the category of (ϕ, ĜL)-modules of
height ≤ r over SL).

We define a contravariant functor T̂L : wModr,ĜL/SL
→ RepZp(GL) by

T̂L(M̂) = HomR̂L,ϕ(R̂L ⊗ϕ,SL M,W (R))

for an object M̂ = (M, ϕ, ĜL) of wModr,ĜL/SL
. Here a GL-action on T̂L(M̂) is

given by (σ.g)(x) = σ(g(σ−1x)) for σ ∈ GL, g ∈ T̂L(M̂), x ∈ R̂L ⊗ϕ,SL M.

Remark 2.3. We should remark that notations Ln,SL, R̂L,Modr,ĜL/SL
, . . .

above depend on the choices of a uniformizer πL of L and a system (πL,n)n≥0
of p-power roots of πL. Conversely, if we fix the choice of πL and (πL,n)n≥0,
such notations are uniquely determined.

Theorem 2.4.
(1) ([8, Theorem 2.3.1(1)]) Let M̂ = (M, ϕ, ĜL) be an object of

wModr,ĜL/SL
. Then the map

θ : TSL(M)→ T̂L(M̂)

defined by θ(f)(a ⊗ x) := aϕ(f(x)) for a ∈ R̂L and x ∈ M, is an
isomorphism of representations of GL∞.

(2) ([8, Theorem 2.3.1(2)]) The contravariant functor T̂L gives an anti-
equivalence between the following categories:

– the category of (ϕ, ĜL)-modules of height ≤ r over SL;
– the category of GL-stable Zp-lattices in semi-stable Qp-repre-
sentations with Hodge–Tate weights in [0, r].

(3) ([8, Theorem 4.2.2]) The contravariant functor T̂L : wModr,ĜL/SL
→

RepZp(GL) is fully faithful. Furthermore, the essential image of T̂L
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is contained in the category of GL-stable Zp-lattices in potentially
semi-stable Qp-representations of GL which are semi-stable over Ln
for some n ≥ 0 and have Hodge–Tate weights in [0, r].

Remark 2.5. Put m = max{i ≥ 0; ζpi ∈ Lur}. We claim that any Qp-
representation of GL which is semi-stable over Ln for some n ≥ 0 is always
semi-stable over Lm.

In the former half part of the proof of [8, Theorem 4.2.2], a proof of
this claim with “m = max{i ≥ 0; ζpi ∈ L}” is written. Unfortunately,
there is a gap in the proof. In the proof, the assumption that the extension
L(ζn, πL,n)/L is totally ramified is implicitly used ([8, p. 133, l. 14 and 21])1.
However, this condition is not satisfied in general. So we need a little mod-
ification. Put m = max{i ≥ 0; ζpi ∈ Lur} as the beginning. Denote by L̂ur

the completion of Lur. We remark that the completion of the maximal un-
ramified extension of Ln is just L̂ur(πL,n). Let V be a Qp-representation of
GL which is semi-stable over Ln for some n ≥ 0. Then V is semi-stable over
L̂ur(πL,n). We remark that the proof of [8, Theorem 4.2.2] exactly holds at
least under the assumption that the residue field of the base field is alge-
braically closed. (We need only the first paragraph of loc. cit. here.) Thus
we know that V is semi-stable over L̂ur(πL,m) and thus we obtain the claim.

Some arguments about a difference between max{i ≥ 0; ζpi ∈ L} and
max{i ≥ 0; ζpi ∈ Lur} is given in Section 5.4.

2.2. Main Results. Now we restate Theorem 1.2 with the above setting
of notation. Fix the choice of a uniformizer πK ofK and a system (πK,n)n≥0

of p-power roots of πK , and define notations Kn,Modr,ĜK/SK
, . . . with respect

to them. Recall that m0 (resp. m) is the maximum integer such that K
(resp. Kur) contains pm0-th (resp. pm-th) roots of unity. We note that the
inequality m0 ≤ m always holds. For any non-negative integer n, we denote
by Crn the category of free Zp-representations T of GK which satisfy the
following property; there exists a semi-stable Qp-representation V of GK
with Hodge–Tate weights in [0, r] such that T ⊗Zp Qp is isomorphic to V
as representations of GKn .

Our goal in this paper is to show the following:

Theorem 2.6. The essential image of the functor T̂K : wModr,ĜK/SK
→

RepZp(GK) is Crm0.

As an immediate consequence of the above theorem, we obtain:

1More precisely, the gap arises in the sentence “Gal(K`(ζp` )/K`)) acts on D̃ trivially”([8,
p. 133, l. 14–15]). To hold this, we need the equality (Bst ⊗Qp V )G` = D̃. However, since
K`(ζ`)/K` is not always totally ramified, this equality sometimes does not hold.
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Corollary 2.7. The functor T̂K induces an anti-equivalence wModr,ĜK/SK

∼→
Crm0.

3. (ϕ, ĜL, K)-modules and potentially semi-stable
representations

In this section, we define (ϕ, ĜL,K)-modules which classify lattices in po-
tentially semi-stableQp-representations ofGK which are semi-stable over L.

3.1. (ϕ, ĜL, K)-modules.

Definition 3.1. A (ϕ, ĜL,K)-module of height ≤ r over SL is a pair
(M̂, GK) where

(1) M̂ = (M, ϕ, ĜL) is an object of Modr,ĜL/SL
,

(2) GK is aW (R)-semilinear continuous GK-action onW (R)⊗ϕ,SLM,
(3) the GK-action commutes with ϕW (R) ⊗ ϕM, and
(4) the W (R)-semilinear GL-action on W (R) ⊗ϕ,SL M(' W (R) ⊗R̂L

(R̂L ⊗ϕ,SL M)) induced from the ĜL-structure of M̂ ∈ Modr,ĜL/SL
coincides with the restriction of the GK-action of (2) to GL.

If (M̂, GK) is a (ϕ, ĜL,K)-module of height ≤ r over SL, we often abuse
notations by writing M̂ for (M̂, GK) for simplicity. We denote by Modr,ĜL,K/SL

the category of (ϕ, ĜL,K)-modules of height ≤ r over SL.

We define a contravariant functor T̂L/K : Modr,ĜL,K/SL
→ RepZp(GK) by

T̂L/K(M̂) = HomW (R),ϕ(W (R)⊗ϕ,SL M,W (R))

for an object M̂ of Modr,ĜL,K/SL
with underlying Kisin module M. Here a

GK-action on T̂L/K(M̂) is given by (σ.g)(x) = σ(g(σ−1x)) for σ ∈ GK , g ∈
T̂L/K(M̂), x ∈W (R)⊗ϕ,SL M. Note that we have a natural isomorphism

HomR̂L,ϕ(R̂L ⊗ϕ,SL M,W (R)) ∼→ HomW (R),ϕ(W (R)⊗ϕ,SL M,W (R)).

Thus we obtain

(3.1) η : T̂L(M̂) ∼−→ T̂L/K(M̂).

This is GL-equivariant by the condition (4) of Definition 3.1. In particular,
T̂L/K(M̂)⊗Zp Qp is semi-stable over L by Theorem 2.4 (2).

The goal of the rest of this section is to prove the following theorem.
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Theorem 3.2. The contravariant functor T̂L/K above induces an anti-
equivalence between the following categories:

– the category of (ϕ, ĜL,K)-modules of height ≤ r over SL;
– the category of GK-stable Zp-lattices in potentially semi-stable Qp-
representations of GK which are semi-stable overL and have Hodge–
Tate weights in [0, r].

The above theorem follows by essentially the same arguments of Liu ([8],
[9]), but we write a proof here for the sake of completeness.

3.2. Proof of Theorem 3.2. The goal of this subsection is to give a proof
of Theorem 3.2.

First we recall Liu’s comparison morphisms between (ϕ, ĜL)-modules
and representations associated with them, and we define its variant for
(ϕ, ĜL,K)-modules. Let M̂ = (M, ϕ, ĜL) be a weak (ϕ, ĜL)-module of
height ≤ r over SL. By identifying T̂L(M̂) with HomW (R),ϕ(W (R) ⊗

ϕ,R̂L
(R̂L ⊗ϕ,SL M),W (R)), we define a W (R)-linear map

ι̂L : W (R)⊗R̂L (R̂L ⊗ϕ,SL M)→W (R)⊗Zp T̂
∨
L (M̂)

by the composite W (R) ⊗R̂L (R̂L ⊗ϕ,SL M) → HomZp(T̂L(M̂),W (R)) ∼→
W (R)⊗Zp T̂

∨
L (M̂). Here, the first arrow is defined by x 7→ (f 7→ f(x),∀f ∈

T̂L(M̂)) and the second is a natural isomorphism. Also, for a (ϕ, ĜL,K)-
module M̂ of height ≤ r over SL, we define a natural W (R)-linear map

ι̂L/K : W (R)⊗ϕ,SL M ↪→W (R)⊗Zp T̂
∨
L/K(M̂)

by a similar way. Let t be an element of W (R) r pW (R) such that ϕ(t) =
pEL(uL)EL(0)−1t. Such t is unique up to units of Zp.

Proposition 3.3.

(1) ([8, Proposition 3.1.3]) The map ι̂L as above is injective, which
preserves Frobenius and GL-actions. Furthermore, we have
ϕ(t)r(W (R)⊗Zp T̂

∨
L (M̂)) ⊂ Im ι̂L.

(2) The map ι̂L/K as above is injective, which preserves Frobenius and
GK-actions. Furthermore, we have ϕ(t)r(W (R) ⊗Zp T̂

∨
L/K(M̂)) ⊂

Im ι̂L/K .
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(3) Let M̂ be a (ϕ, ĜL,K)-module of height ≤ r over SL with underlying
Kisin module M. Then the following diagram is commutative:

W (R)⊗R̂L (R̂L ⊗ϕ,SL M) �
� ι̂L //

o
��

W (R)⊗Zp T̂
∨
L (M̂)

W (R)⊗ϕ,SL M �
� ι̂L/K // W (R)⊗Zp T̂

∨
L/K(M̂)

W (R)⊗η∨o

OO

Here, the left vertical arrow is a natural isomorphism and η is de-
fined in (3.1).

Proof. The commutativity of (3) is clear by construction, and the rest as-
sertions follow by essentially the same proof as [8, Proposition 3.1.3]. �

In the rest of this subsection, we denote by Repr,L-st
Zp (GK) the full sub-

category of RepZp(GK) appeared in Theorem 3.2. The isomorphism η shows
below.

Lemma 3.4. The functor T̂L/K has image in Repr,L-st
Zp (GK).

Next we show the fully faithfulness of the functor T̂L/K .

Proposition 3.5. The functor T̂L/K is fully faithful.

Proof. Let M̂ and M̂′ be (ϕ, ĜL,K)-modules of height≤ r overSL with un-
derlying Kisin modules M and M′, respectively. Take any GK-equivariant
morphism f : T̂L/K(M̂)→ T̂L/K(M̂′). By the map η, we identify T̂L/K(M̂)
and T̂L/K(M̂′) with T̂L(M̂) and T̂L(M̂′), respectively. Since T̂L is fully faith-
ful, there exists a unique morphism f : M̂′ → M̂ of (ϕ, ĜL)-modules of
height ≤ r overSL such that T̂L(f) = f . It is enough to show that f is in fact
a morphism of (ϕ, ĜL,K)-modules, that is, W (R)⊗ f : W (R)⊗ϕ,SL M′ →
W (R)⊗ϕ,SL M is GK-equivariant. Consider the following diagram:

W (R)⊗ϕ,SL M �
� ι̂L/K // W (R)⊗Zp T̂

∨
L/K(M̂)

W (R)⊗ϕ,SL M′ �
� ι̂L/K //

W (R)⊗f

OO

W (R)⊗Zp T̂L/K(M̂′)

W (R)⊗f∨
OO

We see that the above diagram is commutative. Since W (R)⊗ f∨ and two
horizontal arrows above are GK-equivariant, so is W (R)⊗ f. �

Proposition 3.6. The functor T̂L/K : Modr,ĜL,K/SL
→ Repr,L-st

Zp (GK) is es-
sentially surjective if L is a Galois extension of K.
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To show this lemma, we recall arguments of [9, §2]. Suppose L is a (not
necessary totally ramified) Galois extension of K. Let T be an object of
Repr,L-st

Zp (GK). Put d = rankZpT . Take a (ϕ, ĜL)-module M̂ = (M, ϕ, ĜL)
over SL such that T̂L(M̂) = T |GL . We consider the map ι̂L : W (R) ⊗ϕ,SL
M ↪→ W (R) ⊗Zp T̂

∨
L (M̂) = W (R) ⊗Zp T

∨. By the same argument as the
proof of [9, Lemma 2.3.1], we can check the following
Lemma 3.7. W (R)⊗ϕ,SL M is stable under the GK-action via ι̂L.

We include (a main part of) the proof in loc. cit. of this lemma here
since we will use this argument again in the next section (cf. the proof of
Theorem 4.2).

Proof of Lemma 3.7. By [1], we know that D := SL[1/p] ⊗ϕ,SL M has a
structure of a Breuil module2 which corresponds to V |GL , where V :=
T ⊗Zp Qp. In particular, we have a monodromy operator ND on D. Set
D := D/I+SL[1/p]D. There exists a unique ϕ-compatible W (kL)-linear
section s : D ↪→ D. Breuil showed in loc. cit. that ND preserves s(D) and
thus we can define Ñ := ND|s(D) : s(D) → s(D). Then the GL-action on
B+

st⊗SL[1/p] s(D)(= B+
st⊗R̂L (R̂L⊗ϕ,SLM)) induced from the ĜL-structure

on M̂ is given by

g(a⊗ x) =
∞∑
i=0

g(a)γi(−log([ε(g)]))⊗ Ñ i(x)

for any g ∈ GL, a ∈ B+
st and x ∈ s(D). Here, ε(g) := g(πL)/πL ∈ R×. Set

D̄ :=
{ ∞∑
i=0

γi(u)⊗ Ñ i(x) | x ∈ s(D)
}
⊂ B+

st ⊗W (kL)[1/p] s(D)

where u := log([πL]) ∈ B+
st . This is a ϕ-stable W (kL)[1/p]-vector space of

dimension d. Setting the monodromy NB+
st

on B+
st by N(u) = 1, we equip

B+
st ⊗W (kL)[1/p] s(D) (resp. B+

st ⊗Qp V
∨) with a monodromy operator N by

N := NB+
st
⊗ 1s(D) (resp. N := NB+

st
⊗ 1V ∨). Then it is easy to see that D̄

is stable under N . On the other hand, we have a natural GK-equivariant
injection ι : B+

st⊗W (kL)[1/p]Dst(V ) ↪→ B+
st⊗QpV

∨ where Dst(V ) := (B+
st⊗Qp

V ∨)GL is a filtered (ϕ,N)-module over L. (Here we remark that Dst(V ) is
equipped with a natural GK-action since L/K is Galois.) Since GL acts on
D̄ trivially (cf. §7.2 of [6]), the image of D̄ under the injection B+

st⊗W (kL)[1/p]

s(D) = B+
st ⊗R̂L (R̂L⊗ϕ,SLM)

ι̂L,B
↪→ B+

st ⊗Qp V
∨ is equal to ι(Dst(V )). Here,

ι̂L,B := B+
st ⊗ ι̂L, which is compatible with Frobenius and monodromy

2We do not describe the definition of Breuil modules in this note. See [1, §6.1] for axioms of
Breuil modules.
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operators. Hence we have an isomorphism î : Dst(V ) ∼−→ D̄ which makes
the following diagram commutative:

Dst(V )

o î
��

⊂ B+
st ⊗W (kL)[1/p] Dst(V ) �

� ι // B+
st ⊗Qp V

∨

D̄ ⊂ B+
st ⊗W (kL)[1/p] s(D) �

� ι̂L,B // B+
st ⊗Qp V

∨

Note that î is compatible with Frobenius and monodromy operators. We
identify Dst(V ) with D̄ by î.

Let e1, . . . , ed be a W (kL)[1/p]-basis of D, and define a matrix N̄ ∈
Md(W (kL)[1/p]) by Ñ(s(e1), . . . , s(ed)) = (s(e1), . . . , s(ed))N̄ . Put ēj =∑∞
i=0 γi(u) ⊗ Ñ i(s(ej)) for any j. Then ē1, . . . , ēd is a basis of Dst(V ) =

D̄. An easy calculation shows that the monodromy N on Dst(V ) = D̄ is
represented by N̄ for this basis, that is, N(ē1, . . . , ēd) = (ē1, . . . , ēd)N̄ . We
define a matrix Ag ∈ GLd(W (kL)[1/p]) by g(ē1, . . . , ēd) = (ē1, . . . , ēd)Ag
for any g ∈ GK . Since the GK-action on Dst(V ) = D̄ is compatible with
N , we have the relation Agg(N̄) = N̄Ag. Consequently, we have

(3.2) g(s(e1), . . . , s(ed)) = (s(e1), . . . , s(ed))exp(−λgN̄)Ag
in B+

st ⊗Qp V
∨, where λg := log([g(πL)/πL]) ∈ B+

cris. This implies that
B+

cris ⊗ϕ,SL M = B+
cris ⊗W (kL)[1/p] s(D) is stable under the GK-action

via ι̂L,B. Now Lemma 3.7 follows by an easy combination of Proposi-
tion 3.3 (1) and [8, Lemma 3.2.2] (cf. the first paragraph of the proof
of [9, Lemma 2.3.1]). �

Proof of Proposition 3.6. We continue to use the same notation as above.
By Lemma 3.7, we know that M̂ has a structure of an object of Modr,ĜL,K/SL

with the property that the map W (R) ⊗ϕ,SL M
ι̂L
↪→ W (R) ⊗Zp T̂

∨
L (M̂) =

W (R)⊗ZpT
∨ isGK-equivariant. Let η : T̂L(M̂) ∼−→ T̂L/K(M̂) be the isomor-

phism defined in (3.1). By Proposition 3.3 (3), we know that W (R) ⊗ η∨
induces an isomorphism ι̂L(W (R) ⊗ϕ,SL M) ∼−→ ι̂L/K(W (R) ⊗ϕ,SL M),
which is GK-equivariant. Since ϕ(t)r(W (R)⊗Zp T̂

∨
L (M̂)) (resp. ϕ(t)r(W (R)

⊗Zp T̂
∨
L/K(M̂))) is contained in ι̂L(W (R)⊗ϕ,SLM) (resp. ι̂L/K(W (R)⊗ϕ,SL

M)), we know that the map ϕ(t)r(W (R)⊗Zp T̂
∨
L (M̂)) ∼−→ ϕ(t)r(W (R)⊗Zp

T̂∨L/K(M̂)) induced from W (R)⊗ η∨ is GK-equivariant. Thus so is η : T =
T̂L(M̂) ∼−→ T̂L/K(M̂). �

Remark 3.8. Let ê1, . . . , êd be a SK-basis of ϕ∗M, which is also an
SK [1/p]-basis of D. Denote by ei the image of êi under the projection
D � D. Then e1, . . . , ed is a W (k)[1/p]-basis of D. For these basis, we see
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that the matrix Ag ∈ GLd(W (kL)[1/p]) as above is in fact contained in
GLd(W (kL)) by Proposition 3.6. (However, we never use this fact in the
present paper.)

Theorem 3.9. The functor T̂L/K : Modr,ĜL,K/SL
→ Repr,L-st

Zp (GK) is essen-
tially surjective for any finite extension L of K.
Proof. Let T be an object of RepL-st,r

Zp (GK). Let L′ be the Galois closure
of L over K (and fix the choice of a uniformizer of L′ and a system of
p-power roots of it; see Remark 2.3). Since we have already shown The-
orem 3.2 for T̂L′/K , we know that there exists a (ϕ, ĜL′ ,K)-module M̂′

over SL′ such that T̂L′/K(M̂′) ' T as representations of GK . On the
other hand, we have a unique (ϕ, ĜL)-module M̂ such that T ' T̂L(M̂)
as representations of GL since T is semi-stable over L. We denote by M′

and M underlying Kisin modules of M̂′ and M̂, respectively. By [5, The-
orem 3.2.1] and Proposition 3.3 (3), the image of W (R) ⊗ϕ,SL′ M

′ under
ι̂L′/K is equal to that of W (R) ⊗ϕ,SL M under ι̂L. Hence we have a ϕ-
equivariant isomorphism W (R) ⊗ϕ,SL′ M

′ ' W (R) ⊗ϕ,SL M. We define a
GK-action onW (R)⊗ϕ,SLM by this isomorphism. Then M̂ has a structure
of (ϕ, ĜL,K)-module over SL so that ι̂L : W (R)⊗ϕ,SLM ↪→W (R)⊗Zp T

∨

is GK-equivariant. Since T̂L/K(M̂) = HomW (R),ϕ(W (R)⊗ϕ,SLM,W (R)) '
HomW (R),ϕ(W (R) ⊗ϕ,SL′ M

′,W (R)) = T̂L′/K(M̂′) = T as representations
of GK , we have done. �

4. Proof of Main Theorem
Our main goal in this section is to give a proof of Theorem 2.6. In the

next two subsections, we prove the following proposition, which plays an
important role in our proof.

Proposition 4.1. Denote by Cr the essential image of T̂K : wModr,ĜK/SK
→

RepZp(GK). Then we have Crm0 ⊂ C
r ⊂ Crm.

Clearly, Theorem 2.6 follows immediately from this proposition if m0 =
m. However, the condition m0 = m is not always satisfied. For this, the
reader should refer Section 5.4.

4.1. Cr
m0
⊂ Cr. We prove the relation Crm0 ⊂ C

r in the assertion of Propo-
sition 4.1. At first, fix the choices of a uniformizer πK of K and a system
(πK,n)n≥0 of p-power roots of πK , and define notationsKn,SK,Modr,ĜK/SK

, . . .

with respect to them (see also Remark 2.3). We also consider notations
SKn , SKn , . . . with respect to the uniformizer πKn := πK,n of Kn and the
system (πK,n+m)m≥0 of p-power roots of πKn . Note that we have SK ⊂
SKn , SK ⊂ SKn and EKn(uKn) = EK(uK) with the relation up

n

Kn
= uK .
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To show the relation Crm0 ⊂ C
r, it follows from [4, Lemma 2.1.15] that it

suffices to show the following.
Proposition 4.2. Let T be a free Zp-representation of GK which is semi-
stable over Kn for some n ≤ m0 and T |GK∞ ' TSK (M) for some M ∈
Modr/SK . Then there exists a (unique) weak (ϕ, ĜK)-module M̂ of height ≤
r over SK such that T̂K(M̂) ' T .
Proof. Let T, n and M be as in the statement. Note that Kn is a now Ga-
lois extension of K for such n, and note also that Mn := SKn ⊗SK M
is a Kisin module of height ≤ r over SKn . By Theorem 3.2, there exists
a (ϕ, ĜKn ,K)-module N̂ over SKn such that T ' T̂Kn/K(N̂). Denote by
N the underlying Kisin module of N̂. Since TSKn (Mn) is isomorphic to
TSKn (N), we may identify N with Mn. Thus Mn is equipped with a struc-
ture of a (ϕ, ĜKn ,K)-module M̂n over SKn such that T ' T̂Kn/K(M̂n).
Putting ϕ∗M = SK ⊗ϕ,SK M, we know that GK(ϕ∗M) is contained in
W (R)⊗ϕ,SKn Mn = W (R)⊗ϕ,SK M. We claim that GK(ϕ∗M) is contained
in RK ⊗ϕ,SK M. Admitting this claim, we see that M has a structure of a
weak (ϕ, ĜK)-module of height ≤ r over SK which corresponds to T , and
hence we finish a proof.

Put Dn = SKn [1/p]⊗ϕ,SKnMn and D = SK [1/p]⊗ϕ,SKM. Let ê1, . . . , êd
be a SK-basis of ϕ∗M, which is an SKn [1/p]-basis of Dn and an
SK [1/p]-basis of D. Denote by ei the image of êi under the projection
D � D/I+SK [1/p] =: D. Then e1, . . . , ed is a W (k)[1/p]-basis of D. By [1,
Proposition 6.2.1.1], we have a unique ϕ-compatible section s : D ↪→ D of
the projectionD � D. SinceD = SK [1/p]⊗W (k)[1/p]s(D), there exists a ma-
trix X ∈ GLd(SK [1/p]) such that (ê1, . . . , êd) = (s(e1), . . . , s(ed))X. Now
we extend the GK-action on W (R) ⊗ϕ,SKn Mn to B+

cris ⊗W (k)[1/p] s(D) =
B+

cris ⊗W (R) (W (R) ⊗ϕ,SKn Mn) by a natural way. Take any g ∈ GK and
put λg = log([g(πKn)/πKn ]). We see that λg is contained in RK . Re-
call that Kn is now a totally ramified Galois extension over K. By (3.2),
we have g(s(e1), . . . , s(ed)) = (s(e1), . . . , s(ed))exp(−λgN̄)Ag for some
nilpotent matrix N̄ ∈ Md(W (k)[1/p]) and some Ag ∈ GLd(W (k)[1/p]).
Therefore, we obtain g(ê1, . . . , êd) = (ê1, . . . , êd)X−1exp(−λgN̄)Agg(X).
Since the matrix X−1exp(−λgN̄)Agg(X) has coefficients in RK , we have
done. �

Remark 4.3. We remark that, for any semi-stable Qp-representation V
of GKn with Hodge–Tate weights in [0, r], there exists a Kisin module
Mn ∈ Modr/SKn such that V |GK∞ is isomorphic to TSKn (Mn)⊗ZpQp (cf. [4,
Lemma 2.1.15]). The above proposition studies the case where Mn descends
to a Kisin module over SK , but this condition is not always satisfied. An
example for this is given in the proof of Proposition 5.1.
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4.2. Cr ⊂ Cr
m. Next we prove the relation Cr ⊂ Crm in the assertion of

Proposition 4.1. The key for our proof is the following proposition.

Proposition 4.4. The restriction functor RepQp(GK)→ RepQp(GKn) in-
duces an equivalence between the following categories:

– the category of semi-stable Qp-representations of GK with Hodge–
Tate weights in [0, r];

– the category of semi-stable Qp-representations V of GKn with the
property that V |GK∞ is isomorphic to TSK (M) ⊗Zp Qp for some
M ∈ Modr/SK .

The result below immediately follows from the above proposition.

Corollary 4.5. Let T be a free Zp-representation of GK which is semi-
stable over Kn for some n ≥ 0. Then the following conditions are equivalent:

– T |GK∞ is isomorphic to TSK (M) for some M ∈ Modr/SK ;
– There exists a semi-stable Qp-representation V of GK with Hodge–
Tate weights in [0, r] such that T ⊗Zp Qp is isomorphic to V as
representations of GKn′ for some n′ ≥ 0.

Remark 4.6. In the statement of Corollary 4.5, we can always choose
n′ to be n. In addition, for a given T , V is uniquely determined up to
isomorphism. Furthermore, the association T 7→ V is functorial. These
follow from Lemma 4.11.

Combining this corollary with Theorem 2.4 (3) and Remark 2.5, we ob-
tain the desired relation Cr ⊂ Crm. Therefore, it suffices to show Proposi-
tion 4.4. We begin with the following two lemmas.

Lemma 4.7. For any i ≥ 0, we have a canonical decomposition

FiliSKn =
pn−1⊕
j=0

ujKnFiliSK .

Proof. Exercise. �

Lemma 4.8. Let M be a Kisin module of height ≤ r over SK .
(1) Mn := SKn⊗SK M is a Kisin module of height ≤ r over SKn (with

Frobenius ϕMn := ϕSKn
⊗ ϕM).

(2) LetM := SK⊗ϕ,SKM andMn := SKn⊗ϕ,SKM = SKn⊗ϕ,SKnMn.
Define FiliM := {x ∈ M | (1 ⊗ ϕM)(x) ∈ FiliSK ⊗SK M} and
FiliMn := {x ∈Mn | (1⊗ϕM)(x) ∈ FiliSKn ⊗SK M} = {x ∈Mn |
(1⊗ ϕMn)(x) ∈ FiliSKn ⊗SKn

Mn}. Then the natural isomorphism
SKn ⊗SK M

∼→ Mn induces an isomorphism SKn ⊗SK FiliM ∼→
FiliMn.
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Proof. The assertion (1) follows immediately by the relation EK(uK) =
EKn(uKn). In the rest of this proof we identify SKn ⊗SK M with Mn by
a natural way. We show that SKn ⊗SK FiliM = FiliMn. The inclusion
SKn ⊗SK FiliM ⊂ FiliMn follows from an easy calculation. We have to
prove the opposite inclusion. Let e1, . . . , ed be an SK-basis of M and define
a matrix A ∈ Md(SK) by ϕM(e1, . . . , ed) = (e1, . . . , ed)A. We put e∗i =
1 ⊗ ei ∈ ϕ∗M for any i. Then e∗1, . . . , e

∗
d is an SKn-basis of Mn. Take

x =
∑d
k=1 ake

∗
k ∈ FiliMn with ak ∈ SKn . Since (1⊗ϕM)(x) is contained in

FiliSKn ⊗S M, we see that the matrix

X := A

a1

..
.

ad


has coefficients in FiliSKn . By Lemma 4.7, each ak can be decomposed
as
∑pn−1
j=0 ujKna

(j)
k for some a

(j)
k ∈ SK . Writing A = (alk)l,k and X =

t(x1, . . . , xd), we have

xl =
d∑

k=1
alkak =

pn−1∑
j=0

ujKn

d∑
k=1

alka
(j)
k .

By Lemma 4.7 again, we obtain that
∑d
k=1 alka

(j)
k ∈ FiliSK . If we put

x(j) =
∑d
k=1 a

(j)
k e∗k ∈M, we have

(1⊗ ϕM)(x(j)) =
d∑
l=1

(
d∑

k=1
alka

(j)
k )el,

which is contained in FiliSK ⊗SK M. Therefore, each x(j) is contained in
FiliM. Since x =

∑pn−1
j=0 ujKnx(j), we obtain the fact that x is contained in

SKn ⊗SK FiliM. �

Proof of Proposition 4.4. For simplicity, we denote by R1 (resp. R2) the
former (resp. latter) category appeared in the statement of Proposition 4.4.
It is well-known (cf. [4, Lemma 2.1.15]) that the essential image of R1
under the restriction functor RepQp(GK) → RepQp(GKn) is contained in
R2. Furthermore, the restriction functor R1 → R2 is fully faithful since Kn

is totally ramified over K. Thus it suffices to show the essential surjectivity
of the restriction functor R1 → R2.

Let V be a semi-stable Qp-representations V of GKn with the property
that V |GK∞ is isomorphic to TSK (M) ⊗Zp Qp for some M ∈ Modr/SK . Set
T := TSK (M) and take any GKn-stable Zp-lattice T ′ in V such that T ⊂ T ′.
Then there exists a (ϕ, ĜKn)-module N̂ of height ≤ r over SKn such that
T ′ ' T̂Kn(N̂). PutMn = SKn⊗SKM, which is a Kisin module of height ≤ r
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over SKn . Since the functor TSKn from Modr/SKn into RepZp(GK∞) is fully
faithful, we obtain a morphism N→Mn which corresponds to the inclusion
map T ↪→ T ′. We note that it is injective and its cokernel Mn/N is killed
by a power of p since T ′/T is p-power torsion. Now set

• Dn := SKn [1/p]⊗SKn
N ' SKn [1/p]⊗SKn

Mn;
• D := SK [1/p]⊗SK M;
• N := SKn ⊗SKn

N, and Mn := SKn ⊗SKn
Mn, which are lattices

of Dn;
• M := SK ⊗SK M, which is a lattice of D.

We define filtrations FiliN , FiliMn and FiliM as Lemma 4.8 (2). Note
that Dn has a structure of a Breuil module which corresponds to V . In
particular, we have a Frobenius ϕDn , a monodromy operator NDn and a
decreasing filtration (FiliDn)i∈Z on Dn. By [1, §6], D := Dn/I+SKn [1/p]Dn
is a K0-vector space of dimension d, and we can equip D with a structure
of filtered (ϕ,N)-module over Kn which corresponds to V , which we recall
as follows:

• ϕD := ϕDn mod I+SKn [1/p]Dn;
• ND := NDn mod I+SKn [1/p]Dn;
• denote by fπn the natural projection Dn � Dn/Fil1SKnDn. There is
a unique ϕ-compatible section sn : D ↪→ Dn of the projection Dn �

Dn/I+SKn [1/p]Dn ' D. The composite D
s→ Dn

fπn→
Dn/Fil1SKnDn maps a basis of D to a basis of Dn/Fil1SKnDn. Thus
we obtain an isomorphismDKn :=Kn⊗W (k)[1/p]D

∼→Dn/Fil1SKnDn,
and we identify DKn with Dn/Fil1SKnDn. Finally, we can equip
DKn with a filtration FiliDKn := fπn(FiliDn).

We note that the filtered (ϕ,N)-module D over Kn defined above is weakly
admissible since V is semi-stable (see [3, §3.4] for the definition of weakly
admissibility).

Now, in order to show that R1 → R2 is essentially surjective, it suffices
to show that we can make D into a weakly admissible filtered (ϕ,N)-
modules over K. By a similar process as the third listed item as above,
there is a unique ϕ-compatible section s : D ↪→ Dn (which when composed
with D → Dn gives sn); we can show that D/I+SK [1/p]D ' D and we
can similarly identify DK := K ⊗W (k)[1/p] D with D/Fil1SKD. Contrary to
Dn, D does not have a natural filtration structure, so we can not define a
filtration on DK by the way we did for DKn . However, we can still define a
decreasing filtration (FiliDK)i∈Z on DK by FiliDK := K ⊗OK fπ(FiliM),
where fπ is the natural projection D � D/Fil1SKD. We claim that we have
a canonical isomorphism

(4.1) Kn ⊗K FiliDK ' FiliDKn
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for any i. Suppose that our claim is true, then one can easily check that
(D,ϕD, ND, (FiliDK)i∈Z) is a weakly admissible filtered (ϕ,N)-module over
K. So now it suffices to prove (4.1).

To prove (4.1), let OK and OKn be rings of integers of K and Kn, re-
spectively. We note that there exists a canonical isomorphism Kn ⊗OKn
fπn(FiliMn) ' Kn ⊗OKn fπn(FiliN ) since we have pcFiliMn ⊂ FiliN ⊂
FiliMn as submodules of Dn, where c ≥ 0 is an integer such that Mn/N is
killed by pc. Note also that the canonical isomorphism SKn [1/p]⊗SK [1/p]D '
Dn induces an isomorphism SKn⊗SK FiliM' FiliMn (cf. Lemma 4.8 (2)),
and it gives an isomorphism OKn ⊗OK fπ(FiliM) ' fπn(FiliMn). Fur-
thermore, it follows from [7, Corollary 3.2.3] that a natural isomorphism
N [1/p] ' Dn preserves filtrations, where filtrations of N [1/p] are given by
Fili(N [1/p]) := (FiliN )[1/p]. This induces Kn⊗OKn fπn(FiliN ) ' FiliDKn .
(Here, we remark that the argument of §3.2 of loc. cit. proceeds even for
p = 2.) Therefore, we obtain the desired isomorphism (4.1). �

4.3. Cr
m0

= Cr. Now we are ready to complete a proof of Theorem 2.6.
We put Kp∞ =

⋃
i≥0K(ζpi) and Gp∞ = Gal(K∞Kp∞/Kp∞) ⊂ ĜK . We fix

a topological generator τ of Gp∞ . We start with the following lemma.
Lemma 4.9.

(1) The field Kp∞ ∩K∞ coincides with K or K1.
(2) If (p,m0) 6= (2, 1), then Kp∞ ∩K∞ = K.
(3) If m ≥ 2, then Kp∞ ∩K∞ = K.

Proof. The assertions (1) and (2) are consequences of [7, Lemma 5.1.2]
and [8, Proposition 4.1.5], and so it is enough to show (3). We may assume
p = 2. Assume that Kp∞ ∩ K∞ 6= K. Then we have Kp∞ ∩ K∞ = K1
by (1). Since K1 is contained in Kp∞ , we have K1 ⊂ K(ζ2`) for ` > m
large enough. Since m ≥ 2, the extension K(ζ2`)/K(ζ2m) is cyclic and
thus there exists only one quadratic subextension in it. By definition of
m, the extension K(ζ2m+1)/K(ζ2m) is degree 2. Since the extension K1/K
is totally ramified but K(ζ2m)/K is unramified, we see that the extension
K1(ζ2m)/K(ζ2m) is also degree 2. Therefore, we have K1(ζ2m) = K(ζ2m+1),
and then we have π1 = xζ2m+1 +y with x, y ∈ K(ζ2m). Let σ be a non-trivial
element in Gal(K(ζ2m+1)/K(ζ2m)). We have −π1 = σ(π1) = xσ(ζ2m+1) +
y = −xζ2m+1 +y. Hence π1 = xζ2m+1 and we have v(π1) = v(x). Here, v is a
valuation of K(ζ2m+1) normalized by v(K×) = Z, and we see v(π1) = 1/2.
Since the extension K(ζ2m)/K is unramified, we have v(x) ∈ Z but this is
a contradiction. �

If (p,m0) = (2, 1) and m = 1, we have m0 = m and then Theorem 2.6
follows immediately from Proposition 4.1. Hence we may assume (p,m0) 6=
(2, 1) or m ≥ 2. Under this assumption, the above lemma implies Kp∞ ∩
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K∞ = K. In particular, we have Ĝ = Gp∞ o HK with the relation gσ =
σχ(g)g for g ∈ HK and σ ∈ Gp∞ . Here, χ is the p-adic cyclotomic character.
Let M̂ = (M, ϕ, ĜK) be an object of wModr,ĜK/SK

and put T = T̂K(M̂). Our
goal is to show that T is an object of Crm0 . We put D = SK [1/p]⊗ϕ,SKM and
D = D/I+SK [1/p]D. Let s : D ↪→ D be a ϕ-equivariant W (k)[1/p]-linear
section of the projection D � D as before, and take a basis e1, . . . , ed of
s(D). In RK ⊗W (k)[1/p] s(D) = RK ⊗ϕ,SK M, the τ -action with respected
to the basis e1, . . . , ed is given by τ(e1, . . . ed) = (e1, . . . , ed)A(t) for some
matrix A(t) ∈ GLd(W (k)[1/p][[t]]). Moreover, we have ĜK(s(D)) ⊂ (RK ∩
W (k)[1/p][[t]]) ⊗W (k)[1/p] s(D) by [6, Lemma 7.1.3]. Here are two remarks.
The first one is that, the a-th power A(t)a, a matrix with coefficients in
W (k)[1/p][[t]], of A(t) is well-defined for any a ∈ Zp. This is because the
Galois group Gp∞ = τZp ⊂ ĜK acts continuously on RK ⊗W (k)[1/p] s(D).
The second one is that, for any g ∈ HK , we have A(χ(g)t) = A(t)χ(g) by
the relation gτ = τχ(g)g. In particular, we have

(4.2) A(0)χ(g)−1 = Id.

Here, Id is the identity matrix. With these notation, it follows from the
second paragraph of the proof of [8, Theorem 4.2.2] that T ⊗Zp Qp is semi-
stable over K` if A(0)p` = Id.

Lemma 4.10. Let the notation be as above. Then we have A(0)pm0 = Id.

Proof. First we consider the case where p is odd. Since HK is canonically
isomorphic to Gal(Kp∞/K), the image of the restriction toHK of the p-adic
cyclotomic character χ : ĜK → Z×p is equal to

χ(ĜK) = C × (1 + pnZp)

where n is a positive integer and C ' Gal(K(ζp)/K) is a finite cyclic group
of order prime-to-p.
The case where m0 ≥ 1: In this case, it is an easy exercise to check the
equality n = m0 and hence we can choose g ∈ HK such that χ(g) = 1+pm0 .
Thus the result follows by (4.2).
The case where m0 = 0: In this case, C is non-trivial and hence there exists
an element g ∈ HK such that x := χ(g) − 1 is a unit of Zp. By (4.2), we
have A(0)x = Id, and then we obtain A(0) = Id.

Next we consider the case where p = 2.
The case where m0 ≥ 2: This case is clear since we have χ(HK) = χ(ĜK) =
1 + 2m0Z2.
The case where m0 = 1: In this case, χ mod 4 is not trivial. Hence there
exists g ∈ HK such that χ(g) = 3 + 4x for some x ∈ Z2. By (4.2), we have
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A(0)2+4x = Id. Since 1 + 2x is a unit of Z2, this gives the desired equation
A(0)2 = Id. �

By the above lemma, we obtain the fact that T⊗ZpQp is semi-stable over
Km0 . On the other hand, we have already shown that Cr is a subcategory
of Crm. Thus there exists a semi-stable Qp-representation V of GK whose
restriction to GKm is isomorphic to T ⊗ZpQp. Moreover, Lemma 4.11 below
implies that V and T ⊗Zp Qp are isomorphic as representations of GKm0
since they are semi-stable over Km0 . Therefore, we conclude that T is an
object of the category Crm0 . This is the end of a proof of Theorem 2.6.

Lemma 4.11. Let L be a finite totally ramified extension of K. Then
the restriction functor from the category of semi-stable Qp-representations
of GK into the category of semi-stable Qp-representations of GL is fully
faithful.

Proof. (This is Proposition 3.4 of [2].) In view of the theory of Fontaine’s
filtered (ϕ,N)-modules, the result immediately follows from calculations of
elementary linear algebras. �

5. Some further discussions
5.1. Summary. We summarize our results here. For any finite extension
L/K, we denote by Repr,L-st

Zp (GK) the category of free Zp-representations
T of GK which is semi-stable over L with Hodge–Tate weights in [0, r].
We define Crn to be the category of free Zp-representations T of GK which
satisfies the following property: there exists a semi-stable Qp-representation
V of GK with Hodge–Tate weights in [0, r] such that T⊗ZpQp is isomorphic
to V as representations of GKn . By definition Crn is a full subcategory of
Repr,Kn-st

Zp (GK). Put m0 = max{i ≥ 0 | ζpi ∈ K} and m = max{i ≥ 0 |
ζpi ∈ Kur}. We have Repr,Km-st

Zp (GK) =
⋃
n≥0 Repr,Kn-st

Zp (GK),Crm =
⋃
n≥0 Crn

(see Remark 2.5). Results of [8] and this note give the following diagram
(here, “⊂” implies an inclusion):

Crm
⊂ // Repr,Km-st

Zp (GK)

wModr,ĜK/SK

∼

T̂K

// Crm0

∪

OO

⊂ // Repr,Km0 -st
Zp (GK)

∪

OO

Modr,ĜK/SK

∪

OO

∼

T̂K

// Cr0

∪

OO

Repr,K-st
Zp (GK)

∪

OO
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5.2. Difference of some categories. We give a few remarks for the
above diagram. Clearly, all the categories in the middle and right vertical
lines are same if m = 0. On the other hand, if m ≥ 1, inclusion relations
between them are described as follows:

Proposition 5.1. Suppose m ≥ 1.
(1) Suppose 1 ≤ n ≤ m. Then the category Crn is strictly larger than
Crn−1. In particular, the category Repr,Kn-st

Zp (GK) is strictly larger
than Repr,Kn−1-st

Zp (GK).
(2) Suppose n, r ≥ 1. Then the category Repr,Kn-st

Zp (GK) is strictly larger
than Crn.

(3) Suppose n ≥ 0. Then we have C0
n = Rep0,Kn-st

Zp (GK).

Proof. (1) Let T be the induced representation of the rank one trivial Zp-
representation of GKn(ζpn ) to GK , which is an Artin representation. The
splitting field of T is Kn(ζpn). Since n ≤ m, the extension Kn(ζpn)/Kn

is unramified. Thus T is crystalline over Kn. On the other hand, T is
not crystalline over Kn−1 since the extension Kn(ζpn)/Kn−1, the split-
ting field of T |Kn−1 , is not unramified. (This finishes a proof of the lat-
ter assertion.) Let ρT : GK → GLZp(T ) ' GLd(Zp) be the continuous
homomorphism associated with T , where d is the Zp-rank of T . By the
assumption n ≤ m, we know that K(ζpn) ∩Kn = K and thus we can de-
fine a continuous homomorphism ρT ′ : GK → GLd(Zp) by the composite
GK � Gal(K(ζpn)/K) ' Gal(Kn(ζpn)/Kn)

ρT
↪→ GLd(Zp). Let T ′ be the

free Zp-module of rank d equipped with a GK-action by ρT ′ . Then T ′ is
isomorphic to T as representations of GKn and furthermore it is crystalline
over K. It follows that T is an object of Crn.

(2) Since m ≥ 1, we know that L := K(ζp) is an unramified exten-
sion of K. Thus πK is a uniformizer of L. Consider notations SL, SL, . . .
(resp. SL1 , SL1 , . . . ) with respect to the uniformizer πK (resp. πK,1) of
L (resp. L1) and the system (πK,n)n≥0 (resp. (πK,n+1)n≥0). Let M be
the rank-2 free Kisin module over SL1 of height 1 given by ϕ(e1, e2) =

(e1, e2)
(

1 uL1
0 EL1(uL1)

)
, where {e1, e2} is a basis ofM. SinceM is of height 1,

there exists a GL1-stable Zp-lattice T in a crystalline Qp-representation of
GL1 , coming from a p-divisible group over the integer ring of L1. We see
that T̃ := IndGKGL1

T is crystalline over L1. Since L1 is unramified over K1,
T̃ is in fact crystalline over K1. Furthermore, T̃ does not come from Kisin
modules over SK (that is, T̃ |GK∞ is not isomorphic to TSK (N) for any
Kisin module N over SK). To check this, it suffices to show that T̃ does
not come from Kisin modules over SL. Essentially, this has been already
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shown in [8, Example 4.2.3]. Therefore, Corollary 4.5 implies that T̃ is not
an object of Crn.

(3) We may suppose n ≤ m. Take any object T of Rep0,Kn-st
Zp (GK). Since

T has only one Hodge–Tate weight zero, the condition T |GKn is semi-stable
implies that T |GKn is unramified. Thus if we denote by KT the splitting
field of T , then KTKn is unramified over Kn.

First we consider the case where KT contains ζpn . In this case, we follow
the idea given in the proof of (1). Denote by K ′ the maximum unramified
subextension of KTKn over K. Since KT contains ζpn , KTKn/K is a Galois
extension and hence K ′/K is also Galois. Furthermore, it is not difficult to
check that the equality KTKn = K ′Kn holds. Let ρT : GK → GLZp(T ) '
GLd(Zp) be the continuous homomorphism associated with T , where d
is the Zp-rank of T , and define a continuous homomorphism ρT ′ : GK →
GLd(Zp) by the composite GK � Gal(K ′/K) ' Gal(KTKn/Kn)

ρT
↪→

GLd(Zp). Let T ′ be the free Zp-module of rank d equipped with a GK-
action by ρT ′ . Then T ′ is isomorphic to T as representations of GKn and
furthermore, T ′ is crystalline over K. It follows that T is an object of C0

n.
Next we consider the general case. Denote by T0 the induced representa-

tion of the rank one trivial Zp-representation of GK(ζpn ) to GK . We define a
free Zp-representation T̃ of GK by T̃ := T⊕T0. The splitting fields of T̃ and
T0 are equal to KT̃ := KT (ζpn) and K(ζpn), respectively. The representa-
tions T̃ and T0 are objects of Rep0,Kn-st

Zp (GK). Moreover, the above argument
implies that T̃ and T0 are contained in C0

n. Therefore, there exist objects M̃
and M0 of Modr/SK such that TSK (M̃) = T̃ |GK∞ and TSK (M0) = T0|GK∞ .
Now we recall that the functor TSK is fully faithful. If we denote by
f : M0 → M̃ a (unique) morphism of ϕ-modules over SK corresponding
to the natural projection T̃ � T0, then we obtain a split exact sequence
0→M0

f→ M̃→M→ 0 of ϕ-modules over SK . Here, M is the cokernel of
f, which is a finitely generated SK-module. Since M is a direct summand of
M̃, it is a projective SK-module. This implies that M is a free SK-module.
(Note that, for a finitely generated SK-module, it is projective over SK

if and only if it is free SK by Nakayama’s lemma.) Furthermore, M is of
height 0 and hence it is an object of Mod0

/SK
. Since the functor TSK is exact,

we obtain TSK (M) = ker(TSK (M̃)
TSK (f)
−→ TSK (M0)) = ker(T̃ � T0) = T .

Therefore, T is an object of C0
n by Corollary 4.5. �

5.3. Stability of Galois actions. In this subsection, we assume that
m ≥ 1. Let n ≥ 1 be an integer and T an object of the category Crn. By
definition of Crn, we have a (unique) semi-stable Qp-representation VT of
GK with the property that it is isomorphic to T ⊗Zp Qp as representations
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of GKn . It is not clear whether T is stable under the GK-action of VT for
any T or not. Such a stability problem of Galois actions may sometimes
cause obstructions in integral theory, and so the following question should
be naturally considered.

Question 5.2. Let the notation be as above. Does the GK-action of VT
preserves T for any T?

We give some answers to this question.

Proposition 5.3.
(1) If r = 0, then Question 5.2 has an affirmative answer.
(2) If r ≥ 1, then Question 5.2 has a negative answer.
(3) Let the notation be as above. Suppose e(r − 1) < p − 1 where e is

the absolute ramification index of K. If T is potentially crystalline,
then the GK-action of VT preserves T . Moreover, any GK∞-stable
Zp-lattice of VT is stable under the GK-action.

Proof. (1) (This is a special case of (3).) The result easily follows from the
fact that T as in the question is unramified in this case, and that GKn and
the inertia subgroup of GK generate GK .

(2) Our goal is to construct an example which gives a negative answer to
the question. First we consider the case where 1 ≤ n ≤ m0. Let Eπ be the
Tate curve over K associated to π. Choose a basis {e, f} of the p-adic Tate
module V = Vp(Eπ) of Eπ such that the GK-action on V with respective
to this basis is given by

g 7→
(
χ(g) c(g)

0 1

)
.

Here, χ : GK → Z×p is the p-adic cyclotomic character and c : GK → Zp
is a map defined by g(πK,`) = ζ

c(g)
p`

πK,` for any g ∈ GK and ` ≥ 1. Let T0 be
the free Zp-submodule of V generated by pne and f . This is GKn-stable but
not GK-stable in V . Now we put T = IndGKGKnT0 and choose a set S ⊂ GK
of representatives of the quotient GK/GKn . Since Kn/K is Galois, T |GKn is
of the form ⊕σ∈S T0,σ. Here, T0,σ is just T0 as a Zp-module and is equipped
with a σ-twisted GKn-action, that is, g.x := (σ−1gσ)(x) for g ∈ GKn and
x ∈ T0,σ. We define elements eσ and fσ of T0,σ by eσ := pne and fσ := f .
We define V0,σ := T0,σ⊗ZpQp and extend the GKn-action on V0,σ to GK by

g(eσ, fσ) = (eσ, fσ)
(
χ(g) c(σ−1gσ)/pn

0 1

)
for g ∈ GK . By definition the GK-action on V0,σ does not preserve T0,σ. It
is not difficult to check that V0,σ is a semi-stable Qp-representation of GK
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with Hodge–Tate weights {0, 1}. If we put VT = ⊕σ∈SV0,σ, then we have
the followings:

• VT is semi-stable over K with Hodge–Tate weights {0, 1};
• the natural isomorphism VT ' T ⊗Zp Qp is compatible with GKn-
actions;
• the GK-action on VT does not preserve T .

This gives a negative answer to Question 1.1 in the case 1 ≤ n ≤ m0.
Next we consider a general case. We may suppose n = m. Put K ′ =

K(ζpm) and K ′m = KmK
′. Then K ′ is an unramified Galois extension of

K and max{i ≥ 0 | ζpi ∈ K ′} = m. Thus the above argument shows
that there exists a free Zp-representation T ′ of GK′ and a semi-stable Qp-
representation VT ′ of GK′ with Hodge–Tate weights {0, 1} which satisfies
the followings:

• there exists an isomorphism VT ′'T ′⊗ZpQp ofGK′m-representations;
• the GK′-action on VT ′ does not preserve T ′.

We regard T ′ as a Zp-lattice of VT ′ . We define T := IndGKGK′T
′ and VT :=

IndGKGK′VT ′ . Note that T is naturally regarded as a Zp-lattice of V . By defi-
nition, the GK′-action on VT does not preserve T . In particular, the same
holds also for the GK-action. Since K ′/K is unramified, we see that VT
is semi-stable over K. Furthermore, by Mackey’s formula, we have natural
isomorphisms T ⊗Zp Qp ' IndGKmGK′m

(T ′⊗Zp Qp) ' IndGKmGK′m
VT ′ ' VT of repre-

sentations of GKm . Therefore, we conclude that Question 5.2 has a negative
answer for any n ≥ 1.

(3) Note that VT is a crystalline Qp-representation of GK with Hodge–
Tate weights in [0, r]. Hence the result follows from [10, Corollary 4.20]. �

5.4. m0 and m. Finally, we give a few arguments about a difference
between two integers m0 = max{i ≥ 0; ζpi ∈ K} and m = max{i ≥ 0; ζpi ∈
Kur}. Clearly the inequality m0 ≤ m always holds, but it depends on the
choice of K whether the equality m0 = m holds or not.

Proposition 5.4.
(1) If k is algebraically closed, then m0 = m.
(2) If K(ζpm0+1)/K is ramified, then m0 = m.
(3) Suppose that ζp ∈ K (resp. ζ4 ∈ K) if p is odd (resp. p = 2). Then

K̂ is totally ramified over K if and only if m0 = m.

Proof. The assertion (1) and (2) is clear. We prove (3). If m0 < m, then
K(ζpm) is a non-trivial unramified extension of K and thus the extension
K̂/K is not totally ramified. Conversely, suppose that K̂/K is not totally
ramified. Then there exists an integer n ≥ 0 such that K(ζpn , πn)/K is not
totally ramified. This implies so is K(ζpn , πn)/K(πn). We may suppose n ≥
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m. Since Gal(K(ζpn , πn)/K(πn)) is isomorphic to Z/pn−m0Z (here we need
the assumption ζp ∈ K (resp. ζ4 ∈ K) if p is odd (resp. p = 2)), any subfield
of K(ζpn , πn)/K(πn) is of the form K(ζpl , πn) for m0 ≤ l ≤ n. Thus there
exists an integer m0 ≤ l0 ≤ n such that Kur(πn)∩K(ζpn , πn) = K(ζpl0 , πn).
We have ζpl0 ∈ Kur(πn)∩Kur(ζpn). Since ζp ∈ K (resp. ζ4 ∈ K) if p is odd
(resp. p = 2), we have also Kur(πn)∩Kur(ζpn) = Kur. This implies l0 ≤ m.
Since the residue field extension corresponding to K(ζpn , πn)/K(πn) is non-
trivial, the extension K(ζpl0 , πn)/K(πn) is non-trivial extension and thus
so is K(ζpm , πn)/K(πn). This implies 1 < [K(ζpm , πn) : K(πn)] = [K(ζpm) :
K] and hence m0 < m. �

Remark 5.5. The condition m0 = m is not always satisfied. Here are some
examples.

(1) Suppose p > 2. Set α := (2 + p)1/(p−1), β := (−p)1/(p−1) and K :=
Qp(αβ). The field K is totally ramified over Qp since the minimal poly-
nomial of αβ over Qp is an Eisenstein polynomial Xp−1 − (2 + p)(−p). It
is well-known that Qp(β) = Qp(ζp). The extension K(ζp)/K is not totally
ramified since so is Qp(α)/Qp and p > 2 (note that the residue class of
α is not contained in Fp). Now we take any odd prime p such that the
extension Q(α)/Q is unramified (e.g., p = 3, 5, 7, . . . ). Then K(ζp)/K is an
unramified extension. This implies that m0 = 0 < m. (Moreover, we see
that m = 1.)

(2) Suppose p = 2 and set K := Q2(
√
−5). Then K(ζ4)/K is unramified

extension of degree 2, and thusm0 = 1 < m. (Moreover, we see thatm = 2.)
(3) Let K ′ be a finite extension of Qp such that it contains p-th roots of

unity and K ′(ζp∞)/K ′ is a totally ramified extension. Let K ′′ be an unram-
ified Zp-extension of K ′. We denote by K ′(n) and K ′′(n) the unique degree-
pn-subextensions of K ′(ζp∞)/K ′ and K ′′/K ′, respectively. Explicitly, the
field K ′(n) coincides with K ′(ζ

p
m′0+n) where m′0 = max{i ≥ 0 | ζpi ∈ K ′}.

If we denote by M(n) the composite field of K ′(n) and K ′′(n), then we have
isomorphisms

Gal(M(n)/K
′) ' Gal(K ′(n)/K

′)×Gal(K ′′(n)/K
′) ' Z/pnZ× Z/pnZ

Let K be the subfield of M(n)/K
′ which corresponds to the group of

diagonal components of Gal(M(n)/K
′) ' Z/pnZ×Z/pnZ via Galois theory.

We consider m0 and m for this K. Since K∩K ′(n) = K ′, we know m0 = m′0.
On the other hand, since M(n) = KL(n) = K(ζ

p
m′0+n) and the extension

M(n)/K is unramified, we have m ≥ m′0 + n = m0 + n.
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