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On the density function of the distribution
of real algebraic numbers

par Denis KOLEDA

Résumé. Dans cet article, nous étudions la distribution des
nombres algébriques réels. Étant donné un intervalle I, un en-
tier positif n et Q > 1, on définit la fonction Φn(Q; I) comme
étant le nombre de nombres algébriques dans I de degré n et hau-
teur naïve ≤ Q. Soit Ix = (−∞, x]. La fonction de distribution
est définie comme la limite (quand Q → ∞) de Φn(Q; Ix) divisé
par le nombre total de nombres algébriques réels de degré n et
de hauteur naïve ≤ Q. Nous montrons que la fonction de dis-
tribution existe et est continûment différentiable. Nous donnons
aussi une formule explicite pour sa dérivée (dénommée la densité
de la distribution). Nous établissons une formule asymptotique
pour Φn(Q; I) avec des estimations supérieure et inférieure pour
le terme d’erreur dans cette formule. Il est démontré que ces esti-
mations sont exactes pour n ≥ 3. Une conséquence du théorème
principal est le fait que la distribution des nombres réels algé-
briques de degré n ≥ 2 est non uniforme.

Abstract. In this paper we study the distribution of the real
algebraic numbers. Given an interval I, a positive integer n and
Q > 1, define the counting function Φn(Q; I) to be the num-
ber of algebraic numbers in I of degree n and height ≤ Q. Let
Ix = (−∞, x]. The distribution function is defined to be the limit
(as Q → ∞) of Φn(Q; Ix) divided by the total number of real al-
gebraic numbers of degree n and height ≤ Q. We prove that the
distribution function exists and is continuously differentiable. We
also give an explicit formula for its derivative (to be referred to as
the distribution density) and establish an asymptotic formula for
Φn(Q; I) with upper and lower estimates for the error term in the
asymptotic. These estimates are shown to be exact for n ≥ 3. One
consequence of the main theorem is the fact that the distribution
of real algebraic numbers of degree n ≥ 2 is non-uniform.
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1. Introduction and main results

This paper was inspirited by two famous results: the equidistribution of
the Farey fractions and the fact that real algebraic numbers form a regular
system. So we briefly describe the background of our investigation.

The classical Farey sequence FQ of order Q is formed by irreducible
rational fractions in [0, 1] having denominators at most Q and arranged in
increasing order:

FQ :=
{
a

b
: a, b ∈ Z, 0 ≤ a ≤ b ≤ Q, gcd(a, b) = 1

}
.

The cardinality of FQ has the following asymptotics [30, p. 144, Satz 1]:

(1.1) #FQ = 3
π2Q

2 +O(Q(lnQ)2/3(ln lnQ)4/3).

The fact that this sequence is uniformly distributed in [0, 1] is well-known,
that is, for any interval I ⊆ [0, 1]

lim
Q→∞

#(FQ ∩ I)
#FQ

= |I|.

There are several proofs of this fact (see, e.g. [12], [25], [26]). The discrep-
ancy of the Farey sequence is defined as

DQ := sup
α∈[0,1]

∣∣∣∣∣#(FQ ∩ [0, α])
#FQ

− α
∣∣∣∣∣ .

In 1973, H. Niederreiter [26] established the true order of the discrepancy:
DQ � Q−1. In 1999, F. Dress [9] found its true value:

(1.2) DQ = 1
Q
.

For more bibliography, one can see the nice book [22, §2.4]. In 1924,
J. Franel [14] showed relation between the distribution of Farey series and
the Riemann hypothesis. Additional interesting facts and many references
can be found in the survey [7].

In 1970, A. Baker and W. M. Schmidt [2] introduced the concept of a
regular system and proved that the set of real algebraic numbers of degree at
most n forms a regular system, that is, there exists a constant cn depending
on n only such that for any interval I for all sufficiently large Q ∈ N there
exist at least

cn |I|Qn+1(lnQ)−3n(n+1)

algebraic numbers α1, . . . , αk of degree at most n and height at most Q
satisfying

|αi − αj | ≥ Q−(n+1)(lnQ)3n(n+1), 1 ≤ i < j ≤ k.
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In 1983, their results were improved by V. I. Bernik [4]. In 1999, concerning
the regularity of the set of real algebraic numbers, V. V. Beresnevich [3]
showed that the logarithmic factors can be omitted. In the theory of Dio-
phantine approximation, regular systems arose as a useful tool for calcu-
lation the Hausdorff dimension of sets of transcendental numbers allowing
approximation by algebraic numbers with a given precision. These prob-
lems go back to Mahler’s investigations and the Khintchine theorem. For
a more detailed discussion of the literature we refer to the monograph by
Y. Bugeaud [6].

In 1971, H. Brown and K. Mahler [5] proposed a natural generaliza-
tion of the Farey sequences for algebraic numbers of higher degrees. How-
ever, till recently, an important question about the distribution of these
generalized Farey sequences remained unanswered. In 1985, in a letter to
V. G. Sprindžuk, K. Mahler noticed that it is unknown, even for the sec-
ond degree, what is the distribution of algebraic numbers. In a private talk,
V. I. Bernik conjectured that the real algebraic numbers are distributed
uniformly, he also brought some natural heuristic arguments in favour of
his conjecture.

This all motivated the author to start his own investigation that finally
resulted in this paper. Our main result (Theorem 1.1 below) is an asymp-
totic formula for counting real algebraic numbers of arbitrary fixed degree
in any interval. A short scheme [19] of a proof for all degrees was pub-
lished in 2012. For algebraic numbers of the second degree this question
was solved in [20]. Here, we present a full proof for arbitrary degrees based
on the scheme [19].

Note that the generalized Farey sequence [5] is based on so called “naive”
height, which is used in our paper too. This height is not the only height
function used in number theory. In many applications, the multiplicative
Weil height is extensively used. There is a number of papers concerning
the following problem: over a fixed number field, one needs to count all
elements of degree n having multiplicative height at most T as T tends to
infinity. For example, results of such type are obtained by D. Masser and
J. D. Vaaler in [23], [24].

The results of this paper are closely related to the setting of random
polynomials. Most of results in this area concern problems, where the de-
grees of the polynomials grow to infinity. In the context of the paper, two
types of results are of interest. Going in the first direction (see, e.g., [16],
[17], [18]), the average number of real roots of random polynomials is esti-
mated for different conditions on the distribution of polynomial coefficients.
The second direction is to study the distribution of zeros of random poly-
nomials on the complex plane, and the landmark result by P. Erdős and
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P. Turán [13] states that the arguments of complex roots of random poly-
nomials are uniformly distributed as the degree tends to infinity. For some
general conditions on polynomial coefficients, these roots are clustered near
the unit circle [15].

Turning back to the subject of the article, we say that the V. I. Bernik
conjecture about uniformity is now disproved: it turned out that the real
algebraic numbers of higher degrees are nonuniformly distributed in con-
trast to the rational numbers. However, the fact of equidistribution of the
rational numbers can be obtained as a particular case of the degree one
using the way proposed here (see also Remark 1 in Section 4).

Now, in order to formulate the main theorem, we introduce some notation
and terminology.

Let p(x) = anx
n + . . . + a1x + a0 be a polynomial of degree n, and

let H(p) be its height defined as H(p) = max0≤i≤n |ai|. Let α ∈ C be an
algebraic number with its corresponding minimal polynomial p ∈ Z[x], i.e.
a polynomial with integer coefficients such that p(α) = 0, and its degree
deg(p) is minimal, and the greatest common divisor of its coefficients equals
to 1. For an algebraic number α its degree deg(α) and its height H(α)
are defined as the degree and the height of the corresponding minimal
polynomial. Let An(Q) denote the set of real algebraic numbers α of degree
deg(α) = n and height H(α) ≤ Q.

Everywhere #M denotes the number of elements in a setM , and meskM
denotes the k–dimensional Lebesgue measure of a set M ⊂ Rd (k ≤ d).
The length of an interval I will be denoted as |I|. To denote asymptotic
relations between functions, Vinogradov’s symbol� is going to be used: the
expression f � g implies f ≤ c1g, where c1 is a positive constant depending
only on the degree n of the studied algebraic numbers. The notation f � g
is used for asymptotically equivalent functions, i.e. g � f � g. The relation
f �x1,x2,... g means that implicit constants depend only on quantities
x1, x2, . . ., and asymptotic equivalence f �x1,x2,... g is defined similarly.
To emphasize the actual asymptotics of a magnitude X, we say that the
true order of X is Y if c1Y ≤ |X| ≤ c2Y for positive constants c1 and c2
depending, perhaps, on some fixed parameters.

Throughout the paper, we consider polynomials with real coefficients
as vectors in Euclidean space. So the usual Lebesgue measure becomes
applicable to sets of polynomials with a fixed degree.

In the case n = 2, an extra factor logQ appears in formulas. Therefore,
for conciseness, we use the following notation

`(n) :=
{

1, n = 2,
0, n ≥ 3.
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Let n ∈ N, and Q > 1. In order to describe the distribution of algebraic
numbers, we introduce the following quantity.

Definition. Let S ⊆ R. For the real algebraic numbers of degree n and
height at most Q, the counting function Φn(Q,S) is defined as
(1.3) Φn(Q,S) = #(An(Q) ∩ S).

The asymptotic behavior of the function Φn(Q, I) is described by our
main result (as Q→∞):

Theorem 1.1. There exists a continuous positive function φn(x) such that
for all intervals I ⊆ R

(1.4) Φn(Q, I) = Qn+1

2ζ(n+ 1)

∫
I
φn(x) dx+O

(
Qn(lnQ)`(n)

)
,

where ζ(x) is the Riemann zeta function, and the implicit constant in the
big-O notation depends only on the degree n.

For infinitely many intervals I = I(Q) the true order of the remainder
term is Qn as Q→∞.

The function φn(x) has the following properties:
φn(−x) = φn(x), ∀x ∈ R,(1.5)

x2φn(x) = φn

(1
x

)
, ∀x ∈ R\{0},(1.6)

and it can be written explicitly as

(1.7) φn(x) =
∫

∆n(x)

∣∣∣∣∣
n∑
k=1

kpkx
k−1

∣∣∣∣∣ dp1 . . . dpn, x ∈ R,

where integration is performed over the region

∆n(x) =
{

(p1, . . . , pn) ∈ Rn : max
1≤k≤n

|pk| ≤ 1,
∣∣∣∣∣
n∑
k=1

pkx
k

∣∣∣∣∣ ≤ 1
}
.

Note that in (1.4) the endpoints of I are quite arbitrary; for example,
they even can be functions of Q or take values −∞ and +∞.

For n = 2 the error term in (1.4) is actually O(arctan t|bt=aQ2 lnQ+Q2),
where the implicit big-O-constant is absolute (see [21] for a proof). But here
we use O(Q2 lnQ) to omit particular details and give a common proof for
all degrees n ≥ 2.

It is interesting to observe that 2−n−1φn is identical with the density
function of the real roots of a random polynomial with independent coeffi-
cients uniformly distributed in [−1, 1] (see [31]).

Definition. The function φn(x) will be called the counting density.

Theorem 1.1 can be easily interpreted in terms of probability theory.
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Definition. Let Ix = (−∞, x]. For the real algebraic numbers of degree n,
the distribution function Fn(x) is defined by

Fn(x) = lim
Q→∞

Φn(Q, Ix)
Φn(Q,R) .

Theorem 1.1 ensures that this limit exists and is differentiable w.r.t. x.

Definition. The function
(1.8) ρn(x) = F ′n(x)
will be called the distribution density.

Clearly, the distribution density differs from the counting density only
by a constant factor. The latter one is introduced only to simplify formulas.

2. Auxiliary lemmas

Lemma 2.1. For a set S ⊂ R denote
−S := {−x : x ∈ S}, S−1 := {x−1 : x ∈ S}.

For any S ⊂ R, the counting function Φn(Q,S) satisfies the following equa-
tions (0 6∈ S in the second one):

Φn(Q,−S) = Φn(Q,S),(2.1)
Φn(Q,S−1) = Φn(Q,S).(2.2)

Proof. To prove the identity (2.1) it is enough to observe that α ∈ An(Q)
if and only if −α ∈ An(Q) since P (x) ∈ Z[x] is equivalent to P (−x) ∈ Z[x],
where degP (x) = degP (−x) and H(P (x)) = H(P (−x)).

The property (2.2) follows from a similar argument: α ∈ An(Q) if and
only if 1/α ∈ An(Q) since P (x) ∈ Z[x] is equivalent to xnP

(
1
x

)
∈ Z[x],

where n = degP (x) with H
(
xnP

(
1
x

))
= H(P (x)). Since P (x) is an

irreducible polynomial with deg(P ) ≥ 2, we have P (0) 6= 0 and thus
deg xnP

(
1
x

)
= degP (x). �

Remark. In terms of Fn(x) equations (2.1) and (2.2) take the form:
Fn(−x) + Fn(x) = 1,(2.3)

Fn

(1
x

)
+ Fn(x) = 2 + sgn(x)

2 .(2.4)

Due to the definition of Fn(x), assuming Ix = (−∞, x], we immediately
obtain (2.3) from the equality:

−Ix = [−x,+∞) = (R \ (−∞,−x]) ∪ {−x}.
To prove (2.4), let us consider the positive and negative values of x

separately.
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For x > 0

I−1
x = (−∞, 0) ∪ [x−1,+∞) = (−∞, 0) ∪

(
R \ (−∞, x−1]

)
∪ {x−1}.

Now let x < 0. Then

I−1
x = [x−1, 0) =

(
(−∞, 0) \ (−∞, x−1]

)
∪ {x−1}.

Note that Fn(x) is continuous and limx→0− Fn(x) = Fn(0).

Lemma 2.2 ([10] and [28]). Let Rn(Q) be the set of polynomials p, where
deg p = n, H(p) ≤ Q, and each p is reducible over Q. For Q → ∞, the
cardinality of Rn(Q) can be asymptotically estimated as

(2.5) #Rn(Q) �n Qn(lnQ)`(n).

Proof. For the reader’s convenience, we give a concise proof here.
Let p(x) = f(x) g(x), where f and g are integral polynomials with

deg f = n1, deg g = n2, H(f) = H1, H(g) = H2, n1 + n2 = n, n1 ≤ n2.
It is known (see, e.g., [27, Theorem 4.2.2, p. 144]) that(

2n1+n2−2√n1 + n2 + 1
)−1

H(f)H(g) ≤ H(p) ≤ (1 + n1)H(f)H(g).

Hence, the number of reducible polynomials in Rn(Q) must not ex-
ceed the number of pairs (f, g) with the heights bounded by the condition
H1H2 ≤ c1(n)Q.

For fixed n1 and n2, denote by PPn1,n2(Q) the set of pairs of integral
polynomials (p1, p2) such that

deg pi = ni, H(p1)H(p2) ≤ c1(n)Q.

Now the proof can be concluded by writing

#Rn(Q) ≤ #
⋃

1≤n1≤n2
n1+n2=n

PPn1,n2(Q)�n

∑
1≤n1≤n2
n1+n2=n

 ∑
1≤H1, H2

H1H2≤c1(n)Q

Hn1
1 Hn2

2

 .
The lower bounds can be obtained in a similar way. �

Lemma 2.3 ([8]). For a finite system of inequalities

Fi(x1, . . . , xd) ≥ 0, 1 ≤ i ≤ k,

where each Fi is a polynomial with real coefficients of degree degFi ≤ m,
let D ⊂ Rd be a bounded set of its solutions. Let

Λ(D) = D ∩ Zd.

Then
|#Λ(D)−mesdD| ≤ C max(V̄ (D), 1),
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where the constant C depends only on d, k, m, and V̄ (D) is the maximal
r-dimensional measure of projections of D obtained by equating d− r coor-
dinates of the points in D to zero, where r takes all values from 1 to d− 1,
i.e.,

V̄ (D) := max
1≤r<d

{
V̄r(D)

}
, V̄r(D) := max

J⊂{1,...,d}
#J=r

{
mesr ProjJ D

}
,

where ProjJ D is an orthogonal projection of D onto a coordinate subspace
formed by coordinates with indices in J .

For a bounded set D ⊂ Rd, let Q·D denote the set D scaled by a factor Q:
Q · D := {Qx ∈ Rd : x ∈ D}.

The following lemma estimates the number of primitive vectors x =
(x1, . . . , xd) ∈ Zd, i.e. vectors such that gcd(x1, . . . , xd) = 1, lying within
bounded regions in Rd.

Lemma 2.4. For a finite set of algebraic inequalities
Fi(x1, . . . , xd) ≥ 0, 1 ≤ i ≤ k,

where each Fi is a polynomial with real coefficients of degree degFi ≤ m,
let D ⊂ [−1, 1]d be a bounded set of its solutions.

Let λ(D, Q) be the number of primitive vectors of the lattice Zd in the
region Q · D.

Then asymptotically we have

(2.6) λ(D, Q) = Qd · mesdD
ζ(d) +O

(
Qd−1(lnQ)`(d)

)
,

where ζ(x) is the Riemann zeta function. The implicit constant in the big-O
notation depends only on the dimension d, the size of the system k and the
maximal degree m of the algebraic inequalities.

Remark. Results of such type are well-known and can be found e.g. in the
classical monograph by P. Bachmann [1, pp. 436–444] (see formulas (83a)
and (83b) on pages 441–442). For the reader’s convenience, we give a short
proof here.

Proof. Without loss of generality, we can exclude the point 0 = (0, . . . , 0)
from counting.

For a positive integer ν, let us count the number of integral points x =
(x1, . . . , xd) ∈ D such that ν divides gcd(x1, . . . , xd). All this points are
contained in the lattice ν · Zd, and their number in the region Q · D equals
#Λ

(
Q
ν · D

)
. Applying Lemma 2.3, we have

(2.7) #Λ
(
Q

ν
· D
)

= Qd

νd
·mesdD +O

(
Qd−1

νd−1

)
.
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By applying the inclusion–exclusion principle, we obtain

(2.8) λ(D, Q)

= #Λ(Q · D)−
∑
q1

#Λ
(
Q

q1
· D
)

+
∑
q1<q2

#Λ
(
Q

q1q2
· D
)
− . . .

+ (−1)n
∑

q1<q2<...<qn

#Λ
(

Q

q1q2 . . . qn
· D
)

+ . . .

=
∞∑
n=1

µ(n) #Λ
(
Q

n
· D
)
,

where the sums are taken over prime numbers q1, q2, . . . , qn; µ(x) is the
Möbius function.

Clearly, for n > Q, the lattice n ·Zd doesn’t contain any non-zero points
lying in Q ·D, i.e. #Λ

(
Q
n · D

)
= 0. Therefore, from (2.7) and (2.8), we have

λ(D, Q) = Qd ·mesdD
Q∑
n=1

µ(n)
nd

+O

Qd−1
Q∑
n=1

1
nd−1

 .
Now applying the well-known facts that for d ≥ 2∣∣∣∣∣∣

∞∑
n=Q+1

µ(n)
nd

∣∣∣∣∣∣ ≤
∞∑

n=Q+1

1
nd
� 1
Qd−1

as Q→∞, and that
∑∞
n=1 µ(n)n−d = (ζ(d))−1, where ζ(d) is the Riemann

zeta function, completes the proof. �

Lemma 2.5. Consider a polynomial relation
(2.9) anxn + . . .+ a1x+ a0 = (x− α)(x− β)(bn−2x

n−2 + . . .+ b1x+ b0).
Then for the vectors (an, . . . , a1, a0) and (bn−2, . . . , b1, b0, α, β), we can write

(2.10)



an
an−1
an−2
...
a1
a0


=



1 0
−(α+ β) 1

αβ −(α+ β) . . .

αβ 1
. . . −(α+ β)

0 αβ


·


bn−2
bn−3
...
b1
b0

 ,

and the Jacobian |det J | =
∣∣∣ ∂(an,...,a2,a1,a0)
∂(bn−2,...,b0;α,β)

∣∣∣ satisfies:
(2.11) | det J | = |α− β| · |g(b, α)g(b, β)|,
where g(b, x) = bn−2x

n−2 + . . .+ b1x+ b0.
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Proof. By the definition, we have

det J =

∣∣∣∣∣∣∣∣∣∣∣

∂an
∂bn−2

∂an
∂bn−3

. . . ∂an
∂b0

∂an
∂α

∂an
∂β

∂an−1
∂bn−2

∂an−1
∂bn−3

. . . ∂an−1
∂b0

∂an−1
∂α

∂an−1
∂β

...
...

...
...

...
∂a0
∂bn−2

∂a0
∂bn−3

. . . ∂a0
∂b0

∂a0
∂α

∂a0
∂β

∣∣∣∣∣∣∣∣∣∣∣
.

In the first row, all the entries, except ∂an
∂bn−2

= 1, are equal to zero. Using
Laplace’s formula along this row reduces the dimension of this determinant
by 1. Subtracting the (n − 2)-th column from the (n − 1)-th and dividing
the result by (α− β) yields

(2.12) det J = (α−β) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −bn−2 0

−(α+ β) 1 −bn−3 bn−2

αβ −(α+ β) . . . ... bn−3

αβ
. . . 1 −b1

...
. . . −(α+ β) −b0 b1

αβ 0 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It is easy to see that the determinant in the left-hand side of (2.12) is
equal to the resultant R(f, g) of the polynomials f(x) = (x−α)(x−β) and
g(x) = bn−2x

n−2 + . . .+ b1x+ b0, up to a sign. This proves the lemma since
R(f, g) = g(α)g(β) (see, e.g., [29, §35]). �

Lemma 2.6. Let I = [a, b) be an interval of length at most 1. Let Mn(I)
be the set of polynomials p ∈ R[x] with deg p = n and H(p) ≤ 1 that have
at least two roots in I. Then

mesn+1Mn(I) ≤ c2(n)
ρ6 |I|

3,

where ρ = ρ(I) = max(1, |a + b|/2), and c2(n) is a constant that depends
only on n.

Proof. Let us find an upper bound for

mesn+1Mn(I) =
∫

a∈Mn(I)
da.

Any polynomial inMn(I) can be written in the form (2.9) with α, β ∈ I.
So we use the substitution (2.10) to evaluate this integral. The condition
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a ∈Mn(I) is equivalent to the system of inequalities

(2.13)



|an| = |bn−2| ≤ 1,
|an−1| = |bn−3 − (α+ β)bn−2| ≤ 1,
|ak| = |bk−2 − (α+ β)bk−1 + αβbk| ≤ 1, k = 2, . . . , n− 2,
|a1| = | − (α+ β)b0 + αβb1| ≤ 1,
|a0| = |αβb0| ≤ 1,
a ≤ α < b,

a ≤ β < b.

Using Lemma 2.5, we obtain

(2.14) mesn+1Mn(I) ≤
∫
M∗

n(I)
|α− β| · |g(b, α)g(b, β)| db dα dβ,

whereM∗n(I) is new domain of integration defined by (2.13) and g(b, x) =
bn−2x

n−2 + . . .+ b1x+ b0.
This expression cannot be written as an equality since polynomials can

have three or more roots in the interval I, and then several representations
of the form (2.9) will exist. If a polynomial has k > 2 different roots on I,
then there exist

(k
2
)
different representations of this type.

Let I ⊂ [−2, 2]. Then for all α, β ∈ I we can write

|α+ β| ≤ 4, |αβ| ≤ 4,

and therefore for any (bn−2, . . . , b1, b0, α, β) ∈M∗n(I) we have

(2.15)



|bn−2| ≤ 1,
|bn−3| ≤ 1 + 4|bn−2|,
|bk−2| ≤ 1 + 4|bk−1|+ 4|bk|, k = 2, . . . , n− 2,
|α| ≤ 2,
|β| ≤ 2.

In other words, for I ⊂ [−2, 2] the domainM∗n(I) is enclosed within some
box, whose dimensions are determined by n only.

Let us rewrite the multiple integral in (2.14) as follows:

mesn+1Mn(I) ≤
∫
I×I
|α− β| dα dβ

∫
M∗

n(α,β)
|g(b, α)g(b, β)| db,

where M∗n(α, β) = {b ∈ Rn−1 : ‖A(α, β)b‖∞ ≤ 1}, and A(α, β) is the
(n+ 1)× (n− 1) matrix from (2.10).

Let us denote G(b, α, β) = g(b, α)g(b, β), and

ψ(α, β) =
∫
M∗

n(α,β)
|G(b, α, β)|db.
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As stated above, for α, β ∈ [−2, 2] the domain M∗n(α, β) lies within
a box of dimensions determined only by n. The function G(b, α, β) is a
polynomial, and its values cannot exceed a certain constant determined
only by n for all b ∈ M∗n(α, β) and all α, β ∈ I. Hence, there exists a
constant c2(n) which depends only on n such that 0 < ψ(α, β) ≤ c2(n) for
all α, β ∈ I. Thus, we obtain for I ⊂ [−2, 2]

mesn+1Mn(I) ≤ c2(n)|I|3.

Let I ⊂ R \ [−1, 1]. In this case, we substitute the polynomial p(x) =
anx

n + . . . + a1x + a0 by the polynomial q(x) = xnp(1/x) = a0x
n + . . . +

an−1x+an, and the interval I by I∗ = (1/b, 1/a) ⊂ [−1, 1], ab > 0. Clearly,
under these substitutions the number of roots remains invariant.

Now we can apply the substitution (2.10) to the vector (a0, a1, . . . , an),
which leads to

mesn+1Mn(I) = mesn+1Mn(I∗) ≤ c2(n)|I∗|3 = c2(n)
|ab|3

|I|3,

proving the lemma. �

Lemma 2.7. Let x0 = a/b with a ∈ Z, b ∈ N and gcd(a, b) = 1. Then
there are no algebraic numbers α of degree degα = n and height H(α) ≤ Q
in the interval |x− x0| ≤ r0, where

r0 = r0(x0, Q) = c3(n)
bnQ

,

and c3(n) is an effective constant depending on n only.
A similar fact can be stated for a neighborhood of infinity: no algebraic

number α of degree deg(α) = n and height H(α) ≤ Q lies in the set

{x ∈ R : |x| ≥ Q+ 1}.

Note that the statement of the lemma implies that Φn(Q,S) = 0 if
S ∩ (−Q− 1, Q+ 1) = ∅, and Φn(Q,S) = #An(Q) if (−Q− 1, Q+ 1) ⊆ S.

Proof. Let p(x) = anx
n + . . .+ a1x+ a0 ∈ Z[x] with H(p) ≤ Q.

We develop p(x) into the Taylor series:

(2.16) p(x) = p(x0) +
n∑
k=1

p(k)(x0)
k! (x− x0)k.

Let p(x0) 6= 0. Then

(2.17) |p(x0)| ≥ 1
bn
.



Density function of real algebraic numbers 191

Assuming |x0| ≤ 1, we have |p(k)(x0)| �n H(p) for k = 0, . . . , n, and
thus

(2.18)
∣∣∣∣∣
n∑
k=1

p(k)(x0)
k! (x− x0)k

∣∣∣∣∣�n H(p) |x− x0|
n−1∑
k=0
|x− x0|k.

Development (2.16) and estimates (2.17), (2.18) imply that any integral
polynomial of degree n and height at most H has no roots x 6= x0 in the
circle

(2.19) |x− x0| <
c3(n)
bnH

,

where c3(n) is an effective constant.
The case |x0| > 1 can be reduced to the case |x0| < 1 with the use of

mapping x→ x−1.
Let |β| ≥ Q+ 1. Then

|p(β)| ≥ |β|n −Q|β|n−1 − . . .−Q|β| −Q ≥ 1.

Thus, the number β cannot be a root of the polynomial p(x). The lemma
is proved. �

3. The proof of the main theorem

Recall that I = (α, β] is a bounded interval. Let prime polynomials be
defined as irreducible primitive polynomials with positive leading coeffi-
cients. Clearly, the distribution of algebraic numbers can be expressed in
terms of prime polynomials. Let Nn(Q, k, I) denote the number of prime
polynomials p of degree deg p = n and height H(p) ≤ Q which have exactly
k roots in the set I. Clearly, we have

(3.1) Φn(Q, I) =
n∑
k=1

kNn(Q, k, I).

Let Gn(k, S) denote the set of polynomials p ∈ R[x] with deg p = n and
H(p) ≤ 1 that have exactly k roots in a set S. From Lemmas 2.2 and 2.4,
we have:

Nn(Q, k, I) = mesn+1 Gn(k, I)
2ζ(n+ 1) ·Qn+1 +O

(
Qn(lnQ)`(n)

)
,

where the implicit constant in the big-O notation depends only on n.

Lemma 3.1. The function Φ̂n(S) defined as

Φ̂n(S) =
n∑
k=1

kmesn+1 Gn(k, S)

is additive and bounded for all S ⊆ R.
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Proof. If S1 ∩ S2 = ∅, then

Φ̂n(S1) + Φ̂n(S2) =
∞∑
k=1

∞∑
m=0

kmesn+1 (Gn(k, S1) ∩ Gn(m,S2))

+
∞∑
m=1

∞∑
k=0

mmesn+1 (Gn(k, S1) ∩ Gn(m,S2))

=
∞∑
ν=1

ν
ν∑
k=0

mesn+1 (Gn(k, S1) ∩ Gn(ν − k, S2))

= Φ̂n(S1 ∪ S2).

Here we have used the facts that Gn(k, S) = ∅ for k > n and that

Gn(ν, S1 ∪ S2) =
ν⋃
k=0

(Gn(k, S1) ∩ Gn(ν − k, S2)) .

For any S ⊆ R, we have

Φ̂n(S) ≤ n
n∑
k=1

mesn+1 Gn(k, S) ≤ nmesn+1([−1, 1]n+1) = n2n+1.

The lemma is proved. �

Let us prove that Φ̂n(I) can be written as the integral of a continuous
positive function over I. Define

(3.2) D(I) =
{

p ∈ Rn+1 : p(α)p(β) < 0, H(p) ≤ 1
}
,

where p = (pn, . . . , p1, p0) is the vector form of a polynomial p(x) = pnx
n+

. . .+p1x+p0. Clearly, for any vector in D(I) the corresponding polynomial
has the odd number of roots lying in the interval I.

From Lemma 2.6, we have

(3.3) Φ̂n(I) = mesn+1D(I) +O(|I|3),

where the implicit constant in the big-O notation depends only on the
degree n.

Now let us calculate mesn+1D(I) =
∫
D(I) dp. The domain D(I) can be

defined by the following system of inequalities

(3.4)
{
|pi| ≤ 1, 0 ≤ i ≤ n,
f∗(p1, . . . , pn) ≤ p0 ≤ f∗(p1, . . . , pn),
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where

f∗(p1, . . . , pn) = min
{
−

n∑
k=1

pkα
k,−

n∑
k=1

pkβ
k

}
,

f∗(p1, . . . , pn) = max
{
−

n∑
k=1

pkα
k,−

n∑
k=1

pkβ
k

}
.

To simplify notation, define a function h as

h(p1, . . . , pn) := f∗(p1, . . . , pn)− f∗(p1, . . . , pn)

= (β − α)
∣∣∣∣∣
n∑
k=1

pk

k−1∑
i=0

αiβk−i−1
∣∣∣∣∣ .

Consider regions
∆∗ := ∆n(α) ∩∆n(β), ∆∗ := ∆n(α) ∪∆n(β),

where

∆n(x) =
{

(p1, . . . , pn) ∈ Rn : max
1≤i≤n

|pi| ≤ 1,
∣∣∣∣∣
n∑
k=1

pkx
k

∣∣∣∣∣ ≤ 1
}
.

For all (p1, . . . , pn) ∈ ∆∗, both the inequalites
|f∗(p1, . . . , pn)| ≤ 1, |f∗(p1, . . . , pn)| ≤ 1

hold, and thus, the bound |p0| ≤ 1 gives no effect in (3.4). For any
(p1, . . . , pn) 6∈ ∆∗, the system of inequalities (3.4) is inconsistent for α
and β being close enough. Hence, we have the estimate∫

∆∗
h(p1, . . . , pn) dp1 . . . dpn ≤ mesn+1D(I) ≤

∫
∆∗
h(p1, . . . , pn) dp1 . . . dpn.

From above, it follows that∣∣∣∣∣mesn+1D(I) −
∫

∆n(α)
h(p1, . . . , pn) dp1 . . . dpn

∣∣∣∣∣
≤
∫

∆∗\∆∗
h(p1, . . . , pn) dp1 . . . dpn.

It is easy to show that the difference of ∆∗ and ∆∗ has a small measure
mesn (∆∗ \∆∗) = O(β − α), β → α,

where the implicit constant in the big-O notation depends on the degree n
only.

Therefore, as β tends to α, we obtain for any α ∈ R

(3.5) lim
β→α

mesn+1D(I)
(β − α) =

∫
∆n(α)

∣∣∣∣∣
n∑
k=1

kpkα
k−1

∣∣∣∣∣ dpn . . . dp1.
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Thus, (3.3) can be rewritten as

Φ̂n(I) = φn(α)|I|+ o(|I|),

where φn(·) is defined by (1.7). Therefore, we have

Φ̂n(I) =
∫
I
φn(x)dx.

The statements (1.4) and (1.7) are proved. It is also easy to see that φn(x)
is a continuous positive function on R.

The upper bound for the remainder term in (1.4) is obtained from the
error term in (2.6) and the bound (2.5) for the number of reducible poly-
nomials.

Lemma 2.7 gives examples of intervals, for which the remainder term
in (1.4) has the order O(Qn). Namely, for every rational x0, there exist an
interval with midpoint x0 and length |I| �x0 Q

−1 that contains no algebraic
numbers α with deg(α) = n and H(α) ≤ Q. Therefore, for this interval, the
error in (1.4) is equal to the main term, which is of the order O(Qn). The
rational numbers are everywhere dense in R. Hence, we have the second
statement of Theorem 1.1.

Differentiating (2.3) and (2.4) w.r.t. x yields:

ρn(−x) = ρn(x), 1
x2 ρn

(1
x

)
= ρn(x).

As stated earlier, ρn(x) = γ−1
n φn(x), where γn :=

∫
R φn(x) dx. So we

have (1.5) and (1.6). The proof is now complete.

4. Final remarks

Remark 1. As noted above, the rational numbers, i.e. the algebraic num-
bers of the first degree, are distributed uniformly in the interval [−1, 1].
Following the way proposed in the paper, one can easily obtain

(4.1) Φ1(Q, I) = Q2

2ζ(2)

∫
I
φ1(x) dx+O(Q lnQ),

where
φ1(x) = 1

max(1, x2) .

This formula corresponds to the general equation (1.7) when n = 1 and
agrees with the well-known result on the distribution of the Farey sequence
(see [25] for an elementary proof).

In the remainder term in (4.1), the logarithmic factor comes from Lem-
ma 2.4. Here we show that this factor actually vanishes as |I| → 0. A similar
effect exists in the case n = 2 (see [21] for details).
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By definition Φ1(Q,R) = #A1(Q). Obviously,

A1(Q) =
{
a

b
: a ∈ Z, b ∈ N, gcd(a, b) = 1, max(|a|, |b|) ≤ Q

}
.

It easy to observe that #A1(Q) = 4(#FQ − 2) + 3 where the addition of 3
corresponds to the three points: ±1 and 0. So we have

(4.2) Φ1(Q,R) = 4#FQ − 5.

Theorem 4.1.

(4.3) sup
I⊆R

∣∣∣∣Φ1(Q, I)
Φ1(Q,R) −

1
4

∫
I
φ1(x) dx

∣∣∣∣ � 1
Q
,

where the supremum is taken over the intervals of the real line.

Proof. From (1.2) and (4.2) we obtain at once

sup
I⊆[0,1]

∣∣∣∣Φ1(Q, I)
Φ1(Q,R) −

1
4 |I|

∣∣∣∣ � 1
Q
.

Let I ⊆ [1,+∞) and I−1 :=
{
x−1 : x ∈ I

}
. Obviously, Φ1(Q, I) =

Φ1(Q, I−1) and I−1 ⊂ (0, 1], and |I−1| =
∫
I
dx
x2 . Therefore,

sup
I⊆[1,+∞)

∣∣∣∣Φ1(Q, I)
Φ1(Q,R) −

1
4

∫
I

dx

x2

∣∣∣∣ ≤ sup
I⊆[0,1]

∣∣∣∣Φ1(Q, I)
Φ1(Q,R) −

1
4 |I|

∣∣∣∣ .
For any other placement of intervals proof can be easily deduced from

the cases considered above. �

Using (1.1), we readily obtain from (4.3):

(4.4) Φ1(Q, I) = 3
π2 Q

2
∫
I

dx

max(1, x2)

+O

(
Q(lnQ)2/3(ln lnQ)4/3

∫
I

dx

max(1, x2) +Q

)
.

Note that in the remainder term the integral vanishes as |I| → 0.

Remark 2. The counting density on the interval |x| ≤
√

2−1√
2 ≈ 0.29 can

be expressed as

(4.5) φn(x) = 2n−1

3

(
3 +

n−1∑
k=1

(k + 1)2x2k
)
.

Proof. To simplify the calculation of (1.7), let us place the following restric-
tion on x: |pnxn+. . .+p2x

2+p1x| ≤ 1 for all pi such that max1≤i≤n |pi| ≤ 1.
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This is equivalent to the inequality |x| ≤ x0(n), where x0(n) is the positive
solution of the equation xn + . . .+ x2 + x = 1. For |x| ≤ x0(n), we have

φn(x) = 2
∫

∆̃n(x)

(
n∑
k=1

kpkx
k−1

)
dp1 . . . dpn,

where

∆̃n(x) =
{

(p1, . . . , pn) ∈ Rn : max
1≤k≤n

|pk| ≤ 1,
n∑
k=1

kpkx
k−1 ≥ 0

}
.

Let fn(x; pn, . . . , p2) denote the function npnxn−1 + . . .+2p2x. The variable
p1 assumes the values between max(−fn(x; pn, . . . , p2),−1) and 1. Assume
fn(x; pn, . . . , p2) ≤ 1 for all pi such that max2≤i≤n |pi|. This restriction is
equivalent to |x| ≤ x1(n), where x1(n) is the positive solution of nxn−1 +
. . .+ 2x = 1. Clearly, x1(n) ≤ x0(n) and limn→∞ x1(n) =

√
2−1√

2 .
For |x| ≤ x1(n) we have

φn(x) = 2
∫
|pi|≤1
2≤i≤n

(∫ 1

−fn(x;pn,...,p2)
(fn(x; pn, . . . , p2) + p1) dp1

)
dp2 . . . dpn

=
∫
|pi|≤1
2≤i≤n

(fn(x; pn, . . . , p2) + 1)2 dp2 . . . dpn.

From the symmetry, the integrals of all the non-square terms are equal to
zero, which leads to (4.5). �

Now it is easy to see that the distribution of algebraic numbers of degree
n, n ≥ 2, is non-uniform. However, rational numbers, i.e. algebraic numbers
of the first degree, are distributed uniformly in the interval [−1, 1] (see
Remark 1).

For φ2(x), a piecewise formula involving only rational functions is ob-
tained in [21].

Remark 3. It is possible to generalize Theorem 1.1 to height functions
different from H(p). In general, a height function is defined as follows.

Definition. A function h : Rn+1 → [0,+∞) satisfying the conditions
(1) h(tv) = |t| h(v) for all t ∈ R and all v ∈ Rn+1;
(2) the set {v ∈ Rn+1 : h(v) ≤ 1} is a convex body;
(3) h(v) = 0 if and only if v = 0;
(4) h

(
vn,−vn−1, . . . , (−1)n−1v1, (−1)nv0

)
= h(vn, vn−1, . . . , v1, v0) for

all v ∈ Rn+1;
(5) h (v0, v1, . . . , vn−1, vn) = h(vn, vn−1, . . . , v1, v0) for all v ∈ Rn+1,

is called a height function.
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Note that the last two conditions in the definition correspond to (1.5)
and (1.6) respectively.

Now we can define the respective height function for algebraic numbers.
Let p be the minimal polynomial of an algebraic number α. Clearly, for
any given algebraic α, the same minimal polynomial p is obtained for any
height function h, and the height h(α) can be defined as h(p).

Let us define the distribution of algebraic numbers with respect to the
height function h(α). In the general case, the counting density with respect
to h assumes the form

φn(h;x) =
∫

∆n(h;x)

∣∣∣∣∣
n∑
k=1

kpkx
k−1

∣∣∣∣∣ dp1 . . . dpn,

where

∆n(h;x) =
{

(p1, . . . , pn) ∈ Rn : h
(
pn, . . . , p2, p1,−

n∑
k=1

pkx
k

)
≤ 1

}
.

Naturally, this function behaves differently for different height functions h.
To illustrate this fact, let us calculate the counting density with respect

to the spherical norm ‖·‖2. The region D(I) defined by (3.2) is then replaced
by two (n+1)-dimensional spherical wedges of radius 1 with an acute angle
θ(α, β) formed by two planes with normal vectors n1 = (αn, . . . , α, 1) and
n2 = (βn, . . . , β, 1). The volume of one wedge equals

π
n+1

2

Γ
(
n+3

2

) θ

2π ,

and thus the formula (3.5) can be written as

φn(‖ · ‖2;α) = π
n−1

2

Γ
(
n+3

2

) lim
β→α

θ(α, β)
β − α

.

The angle θ(α, β) tends to zero as β tends to α, allowing us to substitute
θ by sin θ, which can be calculated from the scalar product of n1 and n2:

sin θ =
√

1− (n1n2)2

n2
1n2

2

Note that if a function f : R2 → R is three times continuously differentiable
and f(x, y) = f(y, x) for any x, y ∈ R, then by the Taylor development of
f(·, ·) at (x, x) as y tends to x, one can obtain

f(x, x)f(y, y)− (f(x, y))2

=

f(x, x) ∂2f

∂x∂y

∣∣∣∣∣
y=x
−
(
∂f

∂x

∣∣∣∣
y=x

)2
 (y − x)2 +O

(
(y − x)3

)
.
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Taking f(x, y) =
∑n
k=0(xy)k = (xy)n+1−1

xy−1 , we obtain after transformations

n2
1n2

2 − (n1n2)2

= (α2n+2 − 1)2 − (n+ 1)2α2n(α2 − 1)2

(α2 − 1)4 (β − α)2 +O((β − α)3).

Finally, we have

φn(‖ · ‖2;x) = π
n−1

2

Γ
(
n+3

2

) √ 1
(x2 − 1)2 −

(n+ 1)2x2n

(x2n+2 − 1)2 .

Clearly, this function is quite different from (4.5). Up to the constant fac-
tor, the function φn(‖ · ‖2;x) coincides with the density function of zeros of
random polynomials of n-th degree with independent identically normally
distributed coefficients (see [17]). In the excellent paper by A. Edelman and
E. Kostlan [11, §§2.2–2.4], one can find an interesting geometrical interpre-
tation of this case.

Remark 4. The main result can be reformulated in terms of sequences.

Corollary 4.2. Let the real algebraic numbers of degree n are ordered in
a sequence (αi)∞i=1 in such a way that H(αi) ≤ H(αi+1) for any i ≥ 1. Let
Nn(N,S) be the number of elements of the truncated sequence (αi)Ni=1 lying
in a set S. Then for any interval I ⊆ R we have

Nn(N, I) = N

∫
I
ρn(x) dx+O

(
N

n
n+1 (lnN)`(n)

)
,

where the implicit constant in the big-O notation depends only on the de-
gree n.

Proof. Let us denote H(αN ) by QN . By the definition of the sequence
(αi)∞i=1, we have

#An(QN − 1) ≤ N ≤ #An(QN ),(4.6)
Φn(QN − 1, I) ≤ Nn(N, I) ≤ Φn(QN , I).(4.7)

Theorem 1.1 yields

#An(Q) = γnQ
n+1

2ζ(n+ 1) +O
(
Qn(lnQ)`(n)

)
,

where
γn =

∫ +∞

−∞
φn(x) dx.

Thus, from (4.6), we obtain

Qn+1
N = N

γn
+O

(
N

n
n+1 (lnN)`(n)

)
.
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Applying (1.4), (4.7) and the identity ρn(x) = γ−1
n φn(x) proves the corol-

lary. �

It is easy to construct an example of such ordering: if α and β are alge-
braic numbers of degree n, let α precede β if and only if H(α) < H(β) or
H(α) = H(β) and α < β:

α ≺ β ⇐⇒
[
H(α) < H(β),
H(α) = H(β), α < β.

Note that the ordering imposed on algebraic numbers with identical de-
grees and heights can be arbitrary: the number of algebraic numbers α
with deg(α) = n and H(α) = Q equals O(Qn), whereas for H(α) ≤ Q it is
O(Qn+1).
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