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On the equivalence of types

par ENRIC NART

REsuME. Un type sur un corps de valuation discréte (K, v) est un
objet computationnel qui parametrise une famille de polynémes
unitaires irréductibles sur K, [z], on K, est le complété de K.
Deux types sont équivalents s’ils determinent la méme famille de
polyndmes irréductibles sur K, [x]. Dans ce travail, nous donnons
différentes caractérisations de la notion d’équivalence de types par
rapport a certaines données et des opérateurs qui leur sont asso-
ciés.

ABSTRACT. Types over a discrete valued field (K,v) are com-
putational objects that parameterize certain families of monic ir-
reducible polynomials in K, [z], where K, is the completion of K
at v. Two types are considered to be equivalent if they encode the
same family of prime polynomials in K,[z]. In this paper, we find
diferent characterizations of the equivalence of types in terms of
certain data and operators associated with them.

1. Introduction

In the 1920’s, @. Ore developed a method to construct the prime ideals
of a number field dividing a given prime number p, in terms of a defining
polynomial f € Z[z| satisfying a certain p-regularity condition [14, 15].
The idea was to detect a p-adic factorization of f from the factorization
of certain residual polynomials over finite fields, attached to the sides of
a Newton polygon of f. He raised then the question of the existence of
a procedure to compute the prime ideals in the general case, based on
the consideration of similar Newton polygons and residual polynomials “of
higher order”.

S. MacLane solved this problem in 1936 in a more general context [10,
9]. For any discrete valuation v on an arbitrary field K, he described all
valuations extending v to the rational function field K (z). Starting from
the Gauss valuation pg, MacLane constructed inductive valuations p on
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K (z) extending v, by the concatenation of augmentation steps

(1.1) 1o (@14 G} (G2) Hr—1 (Gr) o = I,

based on the choice of certain key polynomials ¢; € K|[z] and positive ra-
tional numbers v;. Then, given an irreducible polynomial f € K][z], he
characterized all extensions of v to the field L := K[z]/(f) as limits of se-
quences of inductive valuations on K (x) whose value at f grows to infinity.
In the case K = Q, Ore’s p-regularity condition is satisfied when all valua-
tions on the number field L extending the p-adic valuation are sufficiently
close to an inductive valuation on K (z) which may be obtained from pg by
a single augmentation step.

In 1999, J. Montes carried out Ore’s program in its original formula-
tion [4, 11]. He introduced types as computational objects which are able to
construct MacLane’s valuations and the higher residual polynomial opera-
tors foreseen by Ore. These ideas made the whole theory constructive and
well-suited to computational applications, and led to the design of several
fast algorithms to perform arithmetic tasks in global fields [3, 5, 6, 8, 12].

In 2007, M. Vaquié reviewed and generalized MacLane’s work to non-
discrete valuations. The introduction of the graded algebra Gr(u) of a val-
uation p led him to a more elegant presentation of the theory [16].

In the papers [1] and [7], which deal only with discrete valuations, the
ideas of Montes were used to develop a constructive treatment of Vaquié’s
approach, which included the computation of generators of the graded al-
gebras and a thorough revision and simplification of the algorithmic appli-
cations.

In this paper we fill a gap concerning the notion of equivalence of types.
Let O C K be the valuation ring of v and F its residue class field. A type
over (K, v) is an object carrying certain data distributed into several levels:

t = (Yo; (P1,v1,91)5 -5 (Dr, v, Ur)).

The pairs ¢;, v; determine an inductive valuation pg := g as in (1.1), and
Y; € F;[y] are monic irreducible polynomials building a tower of finite
extensions of F:

F=Fy—F —- - —F,, Fit1 :Fl[y]/(wl),0§Z<T

These data facilitate a recurrent procedure to construct residual polynomial
operators:
R; : Klzx] — TFy[y], 0<i<r,
having a key role in the theory. The last polynomial 1), determines a max-
imal ideal Ly of the piece of degree zero of the graded algebra Gr(ut).
Two types are said to be equivalent when they yield the same pair

(4, L¢). This defines an equivalence relation = in the set T of all types
over (K,v).
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Any polynomial ¢ € Klz| has an order of divisibility by the type t,
defined as ord¢(g) := ordy, (R-(g9)) in F,[y]. Let Rep(t) be the set of all
representatives of t; that is, monic polynomials ¢ € O[z] with minimal
degree satisfying ord(¢) = 1. We have Rep(t) C P, where P is the set of
monic irreducible polynomials with coefficients in O,.

The main result of the paper states that two types t, t* are equivalent
if and only if Rep(t) = Rep(t*) (cf. Theorem 4.4).

The outline of the paper is as follows. In Section 2 we recall some essen-
tial facts on MacLane valuations. In Section 3 we analyze to what extent
different chains of augmentation steps as in (1.1) may build the same val-
uation p. In Section 4 we find a concrete procedure to decide whether two
given types are equivalent, in terms of the data supported by them, and we
describe then the relationship between their residual polynomial operators
(Lemma 4.2 and Proposition 4.3). Finally, we prove Theorem 4.4, which
yields two more conceptual characterizations of the equivalence of types.

Finally, let us add some remarks on the incidence of these results in the
algorithmic applications of types and MacLane’s valuations.

On the set P we may consider the following equivalence relation: two
prime polynomials F,G € P are Okutsu equivalent, and we write F =~
G, if v(Res(F,G)) is greater than certain Okutsu bound [2, Sec. 4], [13].
Equivalence of types had been considered in [7] only for strongly optimal
types, which form a very special subset T5% C T (cf. Section 4). In [7,
Thm. 3.9] it is shown that the assignment t — Rep(t) induces a canonical
bijection
(1.2) ™"/ = — P/ =,

and the levels of t € TS contain intrinsic data of the prime polynomials in
the Okutsu class of any representative of t.

Given a monic squarefree f € O|z|, the Montes algorithm, known also as
the OM factorization algorithm, computes a family of pairs (t, ¢) parame-
terizing the prime factors of f in O,[x]. If a prime factor F' € O,[z] of f is
associated with a pair (t, ¢), then t is a strongly optimal type whose equiv-
alence class is canonically attached to the Okutsu class of F' through the
mapping of (1.2), and ¢ ~ F is a concrete choice in O[x] of a polynomial
in the Okutsu class of F.

However, the algorithm is based on the construction of certain non-
optimal types, which must then be converted into optimal types in the same
equivalence class. In the original presentation of the algorithm in [3, 11],
the discussion of these optimization steps was based on some excruciating
arguments, due to the absence of the concept of equivalence of types. Thus,
the results of this paper contribute to a great simplification of the analysis
of this optimization procedure. This is illustrated in Section 5, where we
present a concrete example of OM factorization.



746 Enric NART

2. MacLane chains of inductive valuations

Let K be a field equipped with a discrete valuation v: K* — Z, normal-
ized so that v(K*) = Z. Let O be the valuation ring of K, m the maximal
ideal, m € m a generator of m and F = O/m the residue class field.

Let K, be the completion of K at v, with valuation ring O, C K,. Let
v: K, — Q still denote the canonical extension of v to a fixed algebraic
closure of K.

2.1. Graded algebra of a valuation. Let V be the set of all discrete
valuations p: K(x)* — Q such that g = v and p(z) > 0.
In the set V there is a natural partial ordering:
p<p it p(g) <p'(g), Vg€ Klal.

Consider the Gauss valuation pg € V acting on polynomials as follows:

140 (Zogs asms) = Ming<; {v(as)}.

Clearly, uo < p for all p € V.

Let p € V be a valuation. We denote by I'(n) = pu(K(z)*) C Q the
cyclic group of finite values of . The ramification index of i is the positive
integer e(u) such that e(u)'(u) = Z.

For any o € I'(11) we consider the following O-submodules in K|z]:

Po={g € Klz] | u(g) > a} D Py = {g € K[z] | u(9) > a}.
The graded algebra of p is the integral domain:

Gr(10) = @),y Pol P

Let A(u) = Po/P; be the subring determined by the piece of degree
zero of this algebra. Clearly, O C Py and m = Py N O; thus, there is a
canonical homomorphism F — A(u), equipping A(p) (and Gr(u)) with a
canonical structure of F-algebra.

There is a natural map H,: K[z] — Gr(u), given by H,(0) = 0, and

Hu(g) =g+ ,P;r(g) € ,Pu(g)/’P;r(g)v
for g # 0. Note that H,(g) # 0 if g # 0. For all g, h € K[z] we have:

H,(gh) = Hu(g9)H(h),
H(g+h) = Hu(g) + Hu(h), if u(g) = pu(h) = pu(g+ h).

If u < 4/ for some p' € V, we have a canonical homomorphism of graded
algebras
Gr(u) = Gr(p),  g+Pa(p) = g+Pa ().
The image of H,(g) is Hy(g) if u(g9) = 1/(g), and zero otherwise.
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Definition. Consider g, ¢ € K|x].
We say that g, ¢ are p-equivalent, and we write g ~, ¢,if H,(g) = H,(¢).
We write ¢ |, g, if H,(g) is divisible by H,,(¢) in Gr(u).
We say that ¢ is p-irreducible if H,,(¢)Gr(u) is a non-zero prime ideal.
We say that ¢ is p-minimal if ¢ {, h for all non-zero h € K|z] with
deg h < deg ¢.

2.2. Augmentation of valuations. A key polynomial for the valuation
 is a monic polynomial in K[z] which is y-minimal and p-irreducible. Let
us denote by KP(u) the set of key polynomials for .

Every key polynomial has coefficients in O and is irreducible in O,[z] [1,
Lem. 1.8, Cor. 1.10].

Lemma 2.1 ([1, Lem. 1.4]). Consider ¢ € KP(u) and g € K[z]| a monic
polynomial such that ¢ |, g and deg g = deg ¢. Then, ¢ ~, g and g is a key
polynomial for u too.

Definition. Take ¢ € KP(u). For g € Kx]let g = > <, as¢® be its canon-
ical ¢-expansion in K[z], uniquely determined by the condition dega, <
deg ¢ for all s > 0.

Take v € Qs¢. The augmented valuation p' = [u; ¢, v] with respect to
the pair ¢, v is the valuation y/ determined by the following action on K|x]:

1 (9) = Ming<o{pu(as¢®) + sv} = Mino<s {1/ (as¢")}-
Proposition 2.2 ([1, Prop. 1.7]).
(1) The natural extension of p' to K(z) is a valuation and p < p'.
(2) For a non-zero g € Kz], u(g) = 1'(g) if and only if ¢ 1, g.
(3) The polynomial ¢ is a key polynomial for ' too.

Lemma 2.3 ([1, Lem. 3.5]). Let u”" = [u; ¢*,v*] be another augmentation

of p. We have p' = p" if and only if deg ¢* = degd, p'(¢* — ¢) > 1'(9),
and v* = v. In this case, ¢* ~, ¢.

Denote A = A(u), and let I(A) be the set of ideals in A. Consider the

following residual ideal operator:
R=R,: Klz] — I(A), g—=ANH(g)Gr(p).

Let ¢ be a key polynomial for p. Choose a root § € K, of ¢ and denote
by K4 = K,(0) the finite extension of K, generated by 0. Also, let Oy C K4
be the valuation ring of Ky, my the maximal ideal and Fy = Op/my the
residue class field.

Proposition 2.4 ([1, Prop. 1.12]). If ¢ is a key polynomial for u, then

(1) R(¢) is the kernel of the onto homomorphism A — F, determined
by g+ Py +— g(0) +my. Hence, R(¢) is a mazimal ideal of A.
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(2) R(¢) = Ker(A — A(y)) for any augmented valuation ' = [u; ¢, v].
Thus, the image of A — A(y') is a field canonically isomorphic
to Fg.

The map R: KP(u) — Max(A) is onto and its fibers coincide with the
p-equivalence classes of key polynomials [1, Thm. 5.7]:

(2-1) R(¢) = R(Qb*) — ¢ ~u d)* — ¢ |u @b*

2.3. MacLane chains. Let u € V be an inductive valuation; that is,
(4 may be obtained from the Gauss valuation pg by a finite number of
augmentation steps:

(22) o Py B T =

satisfying ¢;41 1, ¢ for all 1 < i < r. Such a chain of augmentations is
called a MacLane chain of p. In a MacLane chain, the value group I'(u;)
is the subgroup of Q generated by I'(u;—1) and v;, for any 1 < i < r. In
particular,

Z =T(po) C I'(p1) C -+ CT(pp—1) € Tlpr) =T(p).

A MacLane chain of p supports several data and operators containing
relevant information about p. Among them, the following deserve special
mention:

(1) A sequence of finite field extensions of the residue class field:

Ay — Ay — v — ATZA(,U,)
F=F — F — --- — T,

where A; = A(p;), the maps A; — A; 41 are the canonical homomorphisms
induced from the inequality p; < pit1, and F; :=Im(A;_1 — A;).

(2) Numerical data: Set ¢9 =z, vy =0, pu—1 = po and F_; = Fy.
For all 0 < ¢ < r, we define integers:

e i=e(pi)/e(i-1),  fim1 = [Fi: Fiq], h; = e(ui)vi,
m; = deg ¢;, Vi = e(pi—1)pi-1(s).
which satisfy the following relations for 1 < i < r:
ged(e;, hy) =1,
e(¢i) = e(pi—1) = eo - €1,
(2.3) f(pi) =[Fs: Fol = fo--- fiz1,
m; = e;i—1fiimi—1 = (eo---ei—1)(fo- - fiz1),
Vi=ei—1fi-1(e;i—1Vic1 + hi—1),
where e(¢;), f(¢i) denote the ramification index and residual degree of the
finite extension Ky, /K,, respectively.
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(3) Generators of the graded algebras:
pi €Gr(p)", i €Gr(p), yi€Ai, 0<i<m,
such that A; = F;[y;] and Gr(u;) = Ai[pi,pi_l][xi]. The elements p;,y;
are algebraically independent over F; and x; satisfies the algebraic relation
e;
L

= yip?i. In particular, we have a family of F;-isomorphisms:

Starting with pg = Hy,(7), the generators are defined by the following

recurrent relations:
/

-V i —hi 6 6

Tq = HM((JZ)pZ y Y= %? b; 5 DPi+t1 =T; D

where ¢;, ¢, € Z are uniquely determined by ¢;h; +lie; =1 and 0 < 4; < e;.
In the relation concerning p;+1 we identify the elements x;, p; with their

images under the canonical homomorphism Gr(u;) — Gr(pi+1).

(4) Newton polygon operators:

Nii= Ny o Klz] — 2%, 1<i<r

For any nonzero g € K [x] consider its canonical ¢-expansion g = > 0<s @s9°
where as € K|z| have degas < deg ¢. Then, N;(g) is the lower convex hull
of the set of points {(s, ui—1(as¢;)) | s > 0} in the Euclidean plane.

(5) Residual polynomial operators:
Ri =Ry, | piw: Klo] — Fily], 0<i<r,

uniquely determined by the condition:

(2.5) Hy, () = 27 p" " Rulg) (43),

for all nonzero g € K[x]. For i = 0 we define s¢(g) = 0, uo(g) = po(g)-
For i > 0, the point (s;(g),ui(g)/e(pi—1)) is the left end point of the v;-
component S,,(g) of the Newton polygon N;(g), which is defined as the
intersection of N;(g) with the line of slope —v; first touching the polygon
from below (see Figure 2.1).

Let si(g) < si(g) be the abscissas of the end points of S,,(g). The poly-
nomial R;(g) has degree (s;(g) — si(g))/ei, nonzero constant term, and it
determines a generator of the residual ideal R, (g) as follows: R, (9) =
b Rilo) ) A
(6) A family of maximal ideals £; € Max(A;), for 0 <14 < r. The ideals
L; are determined by Proposition 2.4 as:

L; = Ker(Ai — Ai+1) = Rui(¢i+1)7 0<i <.

Through the isomorphisms j; of (2.4), these ideals yield monic irreducible
polynomials ¢; € F;[y] uniquely determined by the condition j;(1;F;[y]) =
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FIGURE 2.1. y;-component S, (g) of N;(g) for g € K[z].

N’L(g) = N/,Li_l,¢7j (g)

pi(9)
ui(g)/e(pi-1)
Su, (9)
% line of slope —v;
0 si(g) s;(9)

Vi(y;)A; = L;, or alternatively, by the condition 1); = R;(¢;+1). We have a
commutative diagram with vertical isomorphisms:

Fily] = TFilyl/ (i)
Jid 1
A = ANJL = Fip1 CAip
Hence, degv; = [Fi11: Fi] = f;, for 0 <i <.

3. Data comparison between MacLane chains

Consider a MacLane chain of an inductive valuation p as in (2.2), sup-
porting the data and operators described above. In this section, we analyze
the variation of these data and operators when a different MacLane chain
of the same valuation is chosen.

Note that F, is the algebraic closure of F in A := A(u), through the
canonical map F — A. Thus, this field does not depend on the choice
of the MacLane chain. We may denote it by F, := FF,. It must not be
confused with the residue class field x(u) of the valuation p. Actually, ()
is isomorphic to the field of fractions of A [1, Prop. 3.9], so that F, is
isomorphic to the algebraic closure of F in k(i) too.

Definition. A key polynomial ¢ € KP(u) is said to be proper if u admits
a MacLane chain such that ¢ {, ¢,, where r is the length of the chain and
¢, is the key polynomial of the last augmentation step.

For any MacLane chain of length r of yu, we have [1, Sec. 5.3]:

m, = Min {deg¢ | ¢ € KP(u)},
(3.1) e;my = Min {deg ¢ | ¢ € KP(u), ¢ proper},
¢ € KP(u) proper <= deg¢ > e,m,.
Thus, the positive integers m, := m,, €, := e, do not depend on the
choice of the MacLane chain either.



On the equivalence of types 751

3.1. Independence of the lower levels. Our first aim is to prove the
following result.

Theorem 3.1. Let ¢ be a proper key polynomial for the inductive valuation
p and consider a MacLane chain of p as in (2.2) with ¢ t, ¢,. For any v €
Qo consider the MacLane chain of the augmented valuation u' = [u; ¢, V]
obtained by adding one augmentation step:

(32) w0 P o % e U = S =4

Then, the elements

Pri1 €Gr(u)", w1 €Gr(W),  yrpr € A(W)

and the operators Ny11, R,+1 attached to this extended MacLane chain do
not depend on the initial MacLane chain.

In other words, the generators of Gr(yn’) and the operators N,i1, Ryy1
depend on p, ¢, v, but not on the choice of a MacLane chain of p. In par-
ticular, we obtain a residual polynomial operator

R,u,qS,V: K[x] — }F“/,

defined as R, 4, := R41, which depends only on u, ¢ and v.
The proof of Theorem 3.1 requires some previous work.

Lemma 3.2. Consider a MacLane chain of augmented valuations

with deg ¢ = deg ¢*. Then, ¢ € KP(u*) and p' = [u*; ¢, v* + v].
Further, consider the affine transformation
H:R2 — R (z,y)— (z,y — ).
Then, Ny ¢ =H o N, 4.
Proof. The first statement is just [1, Lem. 3.4]. For the comparison between
Ny and Ny, 4, consider the ¢-expansion g = > 5, as¢® of a nonzero
g € K[z]. By the definition of the augmented valuation p = [p*; ¢*, v*],
dega, < deg ¢ = deg ¢ = p(as) = u*(ay)-

On the other hand, ¢* = ¢ + a for some a € K[z] with dega < deg¢. By
hypothesis, ¢ {,, ¢*, and this implies ¢* 1, ¢ by Lemma 2.1. Since ¢ and ¢*
are both g-minimal, [1, Lem. 1.3] shows that

n(@) = pla) = p(@*) = p*(¢") + v~

Since p*(a) = p(a) > p*(¢*), we deduce that p*(¢) = u*(¢*) = p(¢)—v*.
Thus, for each s > 0 we have p*(as¢®) = p(as¢®) — sv*, or equivalently,

H(Svu(aS(ZSS)) = (Saﬂ*(asés))- ]
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FIGURE 3.1. Comparison of Newton polygons of g € K|z]

sv

\l Nu*@(g)

0 s

The affinity H acts as a translation on every vertical line and it keeps
the vertical axis pointwise invariant. Thus, a side S of slope p of N, (g)
is mapped to a side of slope p — v* of Ny 4(g), whose end points have the
same abscissas as those of S (see Figure 3.1).

Let us now consider a very particular instance of Theorem 3.1. With the
notation of that theorem, suppose that » > 2 and deg ¢,._1 = dego,, or
equivalently, e,_1 = f._1 = 1. In this case, Lemma 3.2 shows that ¢, is a
key polynomial for p,_s and p = p, = [pr—2; ér, Vr—1 + 1] can be obtained
as a simple augmentation of u,_o.

Thus, we may consider two different MacLane chains of pu:

@1,11 P2,v2 Gr—1,Vr—1 OrVp

o == 1 — e = fpe2 | = el S e =L
N4 5.V5 11

o — M1 25— Hor—2 — Py =

where ¢;_| = ¢, vi_| =vp_1 + 1, and
M::M27 ¢j:¢l’ V;k:y’ia OS/LST_2

We use the standard notation for all data and operators attached to the
upper MacLane chain and we mark with a superscript ( )* all data and
operators attached to the lower one.

Lemma 3.3. With the above notation, let H(z,y) = (z,y — Vr_12).

* * h?"— *
) piy=pr, T i=zp ', Y=Y
(2> 1 =HoN;, 1= R
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Proof. The generators of the graded algebra of y were defined as follows:

/

l L

_q O o b
br= mrillprif? pifl =Pr-1= 1'7«122]97«1227
Ly = Hu(d)?”)p;wv x:—l = Hu(d)r)(p:—l)iv:flv
yr = ap yio1 = (zp_y) 1 (pr_y)

By hypothesis, e,_1 = 1, so that ¢,_; =0, ¢._; = 1; hence, p, = p,_1 =
pi_;. On the other hand, the recurrences (2.3) show that

V, = er—lfr—l(er—l‘/r—l + hr—l) =V + hr—l,

Vi = e ofialer oViig +hio) = Vi,
because for levels ¢ < r — 1 the data of the two MacLane chains coincide.
Hence,

zr = Hy(¢r)p, " = Hy(¢p)py 7=t = 2 ypr ot

As mentioned at the beginning of the section, e;_; = e, = e,. Hence, from
the equalities:

R/ er_)=vi i =vr1t+vr=h/(e1 - er) + hoo1/(e1- - €r1),
we deduce h;_; = h, + e, h,_1. Therefore,

h rhr_1,.—hr—erhy_1 — per —hy

Pr Ly Pr " = Yr.

*
€ €

r—1 — T
Ly

Y1 = (@r_1)" (pr1)”
This ends the proof of (1).
By Lemma 3.2, we have

N:*l = N”:—2’¢:—1 = Nﬂr72v¢r =MHo N,U«rflﬂﬁr =Ho N""

For any nonzero g € K|x], the affinity H sends the v,-component of
N, (g) to the v}_;-component of N;_;(g); hence,

H(sr(9), ur(g)/e(pr-1)) = (s7-1(9), ur_1(9)/e(pr—2))-
Having in mind that e(pu,—1) = e(pr—2) = e(u;_5), this shows that

(3.3) sr(9) = s7-1(9),  ur(9) =ur_1(9) + sp(9)hr-1.
Now, (2.5) shows that

xir(g)pﬁr(g)Rr(g)(yr) =H,(g) = (xj_l)Sifl(g)(p;_l)ﬁfl(g) f ().

r—1

From the identities in (3.3) and x, = z}_;p, 71 we deduce:

(@) pur(9) = (x;':_l)Sr(g)pzsr(g)hrflp;l‘:fl(g)+ST(g)h""*1

= ()5 gy ).

Therefore, Ry(9)(yr) = Ry_1(9)(y7-1) = R7_1(9)(y,) and this implies
R,.(9) = R;_,(g) because y, is transcendental over F, [1, Thm. 4.3]. This
ends the proof of (2). O
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These computations prove Theorem 3.1 in this particular situation.

Corollary 3.4. With the above notation, let ¢ be a proper key polynomial
for p such that ¢ 1, ¢ and consider the augmented valuation p' = [u; ¢, v].
Then, the generators of Gr(y') and the operators N, 4, Ry 4, attached to
the following MacLane chains coincide.

po Mgy B 2N =
L e G ,
pg B R T e = P =y

Proof. Let us compare the Bézout identities:
lhy + lep =1, 0</4, <eyp,
Goahi o+ (W) jef =1, 0= <ef.
From the identities e;_; = e,, hj_; = h, + e;h,_1, obtained during the
proof of Lemma 3.3, one deduces easily:
by =10, (5/);‘:—1 = 51« — Lrhy—y.
Let us denote ¢ = ¢r11 = ¢}, v = vp41 = V. Note that e} = e,y and
h} = hy41. Hence, the identities of Lemma 3.3 show that
é* el . T ritr— - riir— j—
pr = (wp_y) 1 (o) = alrplrhripl et — g
Also, from V11 = e(p)u(o) = V,*, we deduce

2y =Hu (@) )™ = Hu(9)p, 1™ = 2,

* _h* 7h
yr = (@) ()™ = 2 = Y

Thus, the generators of Gr(y') are the same for both MacLane chains of p.
On the other hand, N = N, 4 = N,;1 depends only on u, ¢ by defini-
tion. In particular, for any nonzero g € K|x| we have

sr+1(9) = 50(9),  wrta(g) = up(9).
This implies R,4+1(9) = R}(g) as in the proof of Lemma 3.3. In fact, (2.5)
shows that
2 O Y R (9) (9r41) = Hu(9) = @)% 9 (07)" R} (9) (w7),
so that R}(g)(yr) = Rr41(9)(yr+1) = Rr41(9)(yy), which implies R (g) =
R,+1(g) by the transcendence of y. a
Definition. A MacLane chain of length r is optimal if deg ¢ < - - - < deg ¢,..

By an iterative application of Lemma 3.2, we may convert any MacLane
chain of p into an optimal MacLane chain. In fact, whenever we find an
augmentation step with deg¢;_1 = deg¢;, we may collapse this step to
get a shorter MacLane chain. Let us call this “shrinking” procedure an
optimization step.
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In an optimization step, all data of levels 0, 1, ..., i — 1 of the MacLane
chain remain unchanged; the data of level ¢ — 1 are lost and the data of the
i-th level change as indicated in Lemma 3.3. By Corollary 3.4, the data of
levels ¢ + 1, ..., r remain unchanged too.

Let us now go back to the general situation of Theorem 3.1. We have a
MacLane chain of length r of u such that ¢ {, ¢, and we extend it to a
MacLane chain (3.2) of the augmented valuation p’ = [u; ¢, v]. By applying
a finite number of optimization steps to the MacLane chain of u, we may
convert it into an optimal MacLane chain

e T R N
Since the polynomial ¢}« = ¢, remains unchanged, we may extend this
chain as well to a MacLane chain of /'

e T R e A Y

By an iterative application of Corollary 3.4, all data and operators at-
tached to y’ by this extension of an optimal chain coincide with the data
and operators attached to p' through the original extended chain (3.2).
Therefore, in order to prove Theorem 3.1, we need only to compare the
data attached to y’ through the MacLane chains obtained by extending
two different optimal MacLane chains of u.

Now, two optimal MacLane chains of the same valuation u have the same
length r, the same intermediate valuations u1, . . ., ur-—1 and the same slopes
Vi,...,vr [1, Prop. 3.6]. Also, by Lemma 2.3, two families ¢1,...,¢, and
@7, .., ¢y are the key polynomials of two optimal MacLane chains of y if
and only if

(3.4) deg ¢y = degdy,  pi(¢i — ¢7) > (i), 1<i<r

These polynomials satisfy ¢; ~,, , ¢;, but not necessarily ¢; ~,, ¢;.

Proof of Theorem 3.1. As mentioned above, we may assume that we deal
with two MacLane chains of i/ which have been obtained by adding the
augmentation step ' = [u; ¢, V] to two optimal MacLane chains of u:

¢1, 11 P2, V2 . Gr, vy b ,
ko — M — o M1y e =R el =
¢>{7V1 ¢§7V2 QZ):?VT
The key polynomials of both MacLane chains satisfy (3.4). By hypothesis,
¢ 1y &r and ¢ 1, ¢y. As usual, we mark with a superscript ( )* all data and
operators attached to the lower MacLane chain.
Note that V.11 = e(u)u(¢) = Vi, . Hence, the numerical data

hi, €i, viy, Vi, 4y, £, 0<i<r+1
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coincide for both chains. By [1, Lem. 4.13], we have
i = pi, forall 1 <i <,

x; = mj, for all 1 < ¢ < r such that ¢; > 1.

Now, if e, > 1 we have z; = z, and
Ly VO S /A
Pry = (7)7(pr)™ = 2,7 py" = pra.
If e, =1 we have £, = 0, £.. = 1 and this leads to the same conclusion:

prr = (@) ()" = p) = pr = 27 P7 = prar.

As a consequence,

$:+1 =Hy (¢)(P:+1)_V:“ = Hu’(éb)(PrH)_VT“ = Tr+1,
Ypi1 = ($:+1)e:+1(p;+1)—h:+1 = (ffr-x-l)e”l(pr—i-l)_hHl = Yr+1-

By the very definition, Nyy1 = N, 4 = N;;; depends only on p and
¢. In particular, s,41(g9) = s7,1(9), ur41(g9) = vy 1(g), for any nonzero
g € Klz]. This leads to R,41 = R}, by the usual argument using (2.5)
and the transcendence of ¥, over F,. O

3.2. Variation of the data attached to one level. Consider a fixed
MacLane chain of p of length r, as in (2.2). Once we know that the data and
operators attached to the r-th level do not depend on the previous levels,
our second aim is to analyze the variation of these data and operators when
the key polynomial ¢, of that level changes.

By Lemma 2.3, the only way to obtain p as an augmentation of p,_1
is by taking p = [pr—1; ¢k, v, with ¢} = ¢, + a such that dega < deg ¢,
and p(a) > p(¢pp). Since ¢y~ ¢p, we have ¢ {4, ¢r—1 too, so that
it makes sense to consider another MacLane chain of y as in (2.2), just by
replacing ¢, by ¢I.

As mentioned in Section 2.3, I'(x) is the subgroup of Q generated by
['(ur—1) and v,; on the other hand, e, = e(u)/e(pr—1) is the least positive
integer such that e, I'(1) C I'(11r—1). Hence, v, belongs to I'(p,—1) if and
only if e, = 1. Hence, if e, > 1, then u(¢,) = pr—1(¢r) + v does not
belong to I'(ur—1), and the equality p(a) = u(¢,) cannot occur, because
p(a) = pr—1(a) belongs to I'(pr—1). In other words,

(3.5) er > 1 = pla) > p(er) = ¢ ~u or.

Theorem 3.5. Consider two MacLane chains of an inductive valuation p,
which differ only in the last augmentation step:

Or, U
@1,11 ®2,V2 Pr—1,Vr—1 T
Ko > 1 o > -2 ? Hr—1 My = [

*—>
¢raVr
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Let us mark with a superscript ( )* all data and operators attached to the
lower MacLane chain. If ¢y ~, ¢, we have

* * * *
p'/‘ - pT7 x'r - x'l’? yr - yT7 Sy,,»

= Sl/ra R: = R,.
Assume that ¢} #,, ¢ and let n:= R.(oy — ¢r)

r) € F),. Then,

pE=pr, xi=x.+pn, Yl =y 4.

Further, for any nonzero g € K[z| let s := ordy4y, R,(g) and denote P(g) :=
R.(9)/(y +n)*. Then,

sig)=s,  Rig)y) = (y—n"9P(g)(y—n).

Proof. By Lemma 2.3, ¢ = ¢, + a with dega < deg ¢ and p(a) > u(p).
All data attached to levels ¢ < r coincide for the both chains. Therefore,

V= erflfrfl(er‘fl‘/rfl + hrfl) = V;-*a
by Ly *
Ppr = xrfl prfl = Pr-
Also, since v, = v}, we have h; = h, and e} = e,.
Suppose ¢y ~,, ¢,. Then,

zy = Hu(67)(p0) ™" = Hu(dy)p; V" =y,
vp = (@) (o) " = 2yt =y
Now, consider a nonzero g € K[z], and let S, (g), S; (9) be the v,-
components of N,.(g), N;(g), respectively. Both segments lie on the line of
slope —v, cutting the vertical axis at the point (0, u(g)) (see Figure 2.1).
Hence, in order to check that S, (g) = S;; (g) it suffices to show that the
end points of both segments have the same abscissas.
Let ord,, 4,(g) be the largest integer £ such that oF | g, namely the order
with which the prime H,(¢,) divides H,(g) in Gr(u). By [1, Lem. 2.6], the
abscissas of the end points of S,, (g) are:

/

sr(g9) = ordye.(9), s.(g) =ordy 4 (9),

where p/ = [p,—1; ¢r, vr — €] for a suficiently small positive rational number
e. Since ¢ ~, ¢, we have p(a) > p(¢r), so that p/(a) = pr—1(a) = p(a) >
p(ér) > i/ (¢y), and we have ¢f ~,s ¢, as well. Hence,

sr(g) = ord, e, (9) = ord, 4x(g) = s(9),

sp(9) = ordy ¢, (9) = ordy ¢ (9) = (5')7(g)-
This implies S,, (9) = S;, (9).
In particular, u,(g) = u}(g). We may now deduce R,(g) = R;(g) by the
usual argument using (2.5) and the transcendence of y, over [F,.. This ends
the proof of the theorem in the case ¢; ~, ¢,.
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Suppose now ¢y %, ¢, or equivalently p(a) = p(¢), which implies e, = 1
by (3.5). Both Newton polygons N,(a) = N;(a) coincide with the point
(0, u(a)) = (0, u(¢r)) = (0, (V- + hyr) /e(pr—1)). Hence,

sr(a) =0=sr(a), wur(a)=V,+h, =u-(a).
By (2.5), we have
()" Ri(a) = Hy(a) = (pr)" ™" Ri(a),
which implies 7 := R,(a) = R}(a) = H,(a)p, V" ~", since p} = p,. Thus,

Ty = Hu(‘]ﬁ::)p;vr = (Hu(¢r) + Hu(a))p;vr = Ty +phr777

leading to y} = xX(pk) " =y, + 1.
Now, for a nonzero g € K|[z], denote a = pu(g) and u, () = e(p)a € Z.
Consider the polynomials

Rra(9) =y R (g), Ri.(9)=y"9R:(g).

By [1, Thm. 4.1], we have identities:

(P Ry (9)(yr) = Hu(g) = (pr)"" ) Rra(9) (1)

Since p; = p,, we deduce:

Rro(9)(yr) = Ry o(9)(yr) = By o (9)(yr + 1),

which implies R, »(9)(y) = Ry ,(9)(y +n), by the transcendence of y, over
F,. Let us rewrite this equality in terms of the original residual polynomials:

(3.6) v DR, (9)(y) = (y + ) D R:(g) (y + ).

Since r > 0, we have y 1 R,(g), y {1 R:(g) (cf. Section 2.3). Hence, (y +n) t
Ry (9)(y + n), and the equality (3.6) shows that s7(g) = ordy4, R,(g) and

(y —n)*" D P(g)(y —n) = Ri(g)(y)- O

4. Equivalence of types

Types are computational representations of certain mathematical ob-
jects. It is natural to consider two types to be equivalent when they repre-
sent the same objects. In Sections 4.1, 4.2, we recall the objects parameter-
ized by types and in Section 4.4 we characterize the equivalence of types in
terms of checkable conditions on the data supported by them (Lemma 4.2
and Proposition 4.3) and in terms of other invariants (Theorem 4.4).
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4.1. Normalized inductive valuations. In a computational context, it
is natural to normalize inductive valuations in order to get groups of values
equal to Z.

Given a MacLane chain of an inductive valuation pu:

$1,v1 $2,V2 Gr—1,Vpr—1 Gryv
e A R A e R A

we consider the normalized valuations:

v = e(pi)pi = er---ejpi, 0<i<r,
with group of values I'(v;) = v;(K(z)*) = e(ui)I'(n;) = Z. The property
Mijg =V translates into Vi|g = €1 €.

The graded algebras Gr(u;) and Gr(v;) coincide up to the change of
graduation given by the group isomorphism

D)) — T(w)=2, ar—e ea.

The piece of degree zero A; := A(u;) = A(v;) is the same for both
valuations. Further, for any g, h € K[x] we obviously have

9l h = glv h, g ~u h <= g~y h
Also, consider the normalized slopes
)\7; = e(ui_l)ui = hi/ei, 0 < 1 <r.

The augmentation step p; = [p;—1; @i, v;] translates into v; = [e;vi—1; @i, Ai].
If g =3 <5 as¢f is the ¢;-expansion of a nonzero g € K|x|, we have

vi(g) = Min {e;v;—1(asd;) + sAi | 0 < s} = Min {v;(as¢;) | 0 < s}.

The property p;—1 < p; translates into e;v;—1 < v;.
With the obvious definition, we get a MacLane chain of v,:

A A Gr—1,Ar—1 e
Ho = Vg ALy e O e

with attached data and operators as described in Section 2.3.

This approach has the advantage that the Newton polygons Ny, | 4.(g)
are derived from clouds of points in R? with integer coordinates. The affinity
H(xz,y) = (x,e1---e—1y) maps Ny, | 4,(9) to Ny, 4,(g). This affinity
maps a side of slope p to a side of slope e; - - - €;_1 p with the same abscissas
of the end points. Thus, the role of the v;-component is undertaken by the
Ai-component in the normalized context. Note that the left end point of the
vi-component of Ny, | 4.(g) is (s:(g),ui(g)/e1---ei—1), while the left end
point of the A;-component of N, | «,(g) is simply (s;(g),ui(g))-

The rest of data and operators attached to both MacLane chains coincide.
Specially, for 0 < ¢ < r, we have the same residual polynomial operators:

Rﬂi71,¢i,w =R = Rviﬂ,d)i,)\i : K[x] — [ [y]v
and the same family of prime polynomials ¢; = R;(¢;11) € F;[y].
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4.2. Types over (K,v). A type of order r is a collection of objects,
distributed into levels:

t= (WO; (¢1;)\17901)§ S (¢T7)\7‘)S07‘))7

such that the pairs ¢;, A; determine a McLane chain of a normalized induc-
tive valuation vy:

A A Gr—1,Ar—1 A
(4.1) UO¢1_>1U1¢>2_>2 STy vr_l(br—fvrzvt

and the data g, ..., @, build a tower of finite field extensions of F:
IE‘()’t =F — Fl,t —_— o — Fﬁt — Fr+1,t

constructed as follows. Each ¢; € F; ¢[y] is a monic irreducible polynomial,
such that ¢; # y for ¢ > 0. The field F; ;¢ is defined to be F; ¢[y]/ (i)

Also, there is an specific procedure to compute certain residual polyno-
mial operators

Rig: Klx] — Fitly], 0<i<m,

such that ¢; = R;¢(¢it1) for 0 < i < r. The essential fact is that these
objects reproduce the tower Fy — --- — [F, and the residual polynomial
operators R; attached to the MacLane chain of v¢. More precisely, there is
a commutative diagram of vertical isomorphisms

F= F()J; C Fl,t c - C Fr,t
lleo L e dir
F =T c ih Cc --- C F,

such that R; = ¢;[y] o R;4 for all 0 < ¢ < r. In particular,

Vi = Ri(pit1) = tily] (Rig(dir1)) = ilyl (wi), 0<i<r

The isomorphisms ¢g,...,t¢, are uniquely determined by the isomor-
phisms jo, . .., j. defined in (2.4). In fact, the isomorphism ¢ is the identity
map on Fo¢ = IF = [Fp, while ¢;11 is determined by the following commuta-
tive diagram of vertical isomorphisms:

Ficlyl — Figlyl/(wi) = Fipig

Lilyl 4 !
Filyl  —  Filyl/(¢s) Li+1
ji d I

Ay = AL = Fip C A

Therefore, for the theoretical considerations of this paper it will be harm-
less to consider the isomorphisms ¢, ..., ¢ as identities. That is, we shall
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identify all data and operators supported by t with the analogous data and
operators attached to vg:

F;=F;¢, Ri=Riz, 0<i<r.

In particular, i; = ¢; for 0 < i < r. According to this convention, from
now on a type will be a collection of objects:

t = (vo; (61, A1, ¥1): -5 (Dry Ay Ur))s

such that the pairs ¢;, \; determine a McLane chain of a normalized in-
ductive valuation v as in (4.1), and v; € F;[y] are the monic irreducible
polynomials determined by the MacLane chain too, for 0 < i < r.

What is the role of the prime polynomial ¢, € F,[y]? Let us denote by

pe = (er---e) lvg,  fri=degy,
the corresponding non-normalized inductive valuation attached to t and the

degree of ., respectively. Thanks to the isomorphism j,., the polynomial
1, determines a maximal ideal of A, = A(uy):

Ly = jr (UrFr[y]) = ¥r(yr) A(ue) € Max(A(p)).
The pair (u4, Lt), or equivalently (v, L), is the “raison d’étre” of t.

4.3. Representatives of types. Denote p := ug, A := A(u), £ := Ls.
The maximal ideal £ determines a certain subset of key polynomials for u,
which are called representatives of the type t. By definition, the set Rep(t)
of all representatives of t is:

Rep(t) = {¢ € KP(p) [ Ru(9) = Lt} C KP(p).

Since the residual ideal map R, : KP(u) — Max(A) is onto [1, Thm. 5.7],
the set Rep(t) is always non-empty. By (2.1), the representatives of t con-
stitute one of the p-equivalence classes of the set KP(u).

For any monic ¢ € Klz|, the property of being a representative of the
type t is characterized too by the following properties 7, Lem. 3.1]:

(4.2) ¢ € Rep(t) <= ¢ € O[z], deg o = e, frm,, R.(¢) = 1.

By (4.2) and (3.1), the representatives of t are proper key polynomials for p.

Let ¢ be any representative of a type t of order » > 0. By [1, Cor. 5.3],
R, (¢r) = yr A # r(yr) A = Lg, because ¢, # y. By (2.1), ¢ {4 ¢r, and we
may extend the MacLane chain of y to a MacLane chain of length r + 1
of the augmented valuation ' = [u; ¢, v|, where v is an arbitray positive
rational number. By choosing an arbitrary monic irreducible polynomial
Y € Fryqly] = Fr [y, we construct a type of order r + 1 extending t:

t/ = (t7 ((Z)a v, w)) = (w()a (</>1, )\17 wl)a ceey (QS?“; Arvwr); (¢7 )‘71/}))7
where X\ = e(u)v.
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Definition. Let t be a type of order » > 0. For any g € K|z| we define
ordg(g) := ordy, R,(g); that is, the greatest integer a such that ¢ divides
R.(g) in Fr[y].

Since the operators R; are multiplicative [1, Cor. 4.11], the identity
ord¢(gh) = ord¢(g) + ord¢(h) holds for all g, h € K|[x].

4.4. Equivalence of types. Let t be a type of order r with representative
¢, and let A € Qsg. We denote
Ni=Ny_ ¢, 11513 Nt = Nog g,
B pn = Ropon = By g fe(ue)-
Note that Rt 4 ) is well-defined by Theorem 3.1.

Definition. Two types t, t* are equivalent if vy = v+ and Ly = L¢+. In
this case we write t = t*.

The next result is an immediate consequence of the definitions.

Proposition 4.1. Let t, t* be two equivalent types. Then,
(1) Rep(t) = Rep(t).
(2) For any ¢ € Rep(t) and any A € Qso, we have N+ o = Ny g and
Rt*7¢7)\ — Rt’¢7A.

The order of a type is not preserved by equivalence. In order to find a
characterization of the equivalence of types in terms of the data supported
by them, we consider optimization steps derived from the optimization steps
for MacLane chains.

Definition. Let t be a type of order . We say that a level (¢;, A\;, ;) of t
is stationary if e; = f; = 1, or equivalently, if \; € Z and deg; = 1.

We say that t is optimal if deg ¢ < --- < deg ¢, or equivalently, if all
levels i < r are non-stationary. We say that t is strongly optimal if all levels
1 < r are non-stationary.

Lemma 4.2. Forr > 2, let tg be a type of order r — 2. Consider a type
t= (t()a (QSTfla )\Tfla @br—l); (¢T, >\7'a ¢T))

of order r whose (r — 1)-th level is stationary. Then, ¢, is a representative
of to and the type t* = (to; (dr, Ar—1+ Ar, ¥y)) is equivalent to t. Moreover,

(4.3) :_1 =HoN,, :—1 =R,

where H is the affinity H(x,y) = (z,y — Ap—1x). Thus, ordy = ord¢« as
functions on Klz|.
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Proof. By Lemma 3.2, ¢, is a key polynomial for p, and
pe = [Hto; Ory V1 + Vp] = pige,

where v,_1 = A\_1/e1--epgand v, = N\ Jer e, = Ay /e1 - epa.
By [1, Lem. 5.2], N,_1(¢,) is one-sided of negative slope —v,_1; hence,
(1, Lem. 2.1] shows that ¢,—1 |, ¢r. By (2.1), we have

‘Cto = R/Lto (¢T*1) = RMtO (¢T)7

so that ¢, is a representative of tg.

The identities (4.3) are a consequence of Lemma 3.3. Finally, let ¢ be
a representative of t, so that £y = R, (¢). Since R,(¢) = 1, we deduce
that R’_,(¢) = R,(¢) = ¢,. Hence, ¢ is a representative of t* too, because
it satisfies the conditions of (4.2), characterizing the representatives of a
type. Therefore,

Li = Ry () = Ry (¢) = Lt
and the types t, t* are equivalent. O

After a finite number of these optimization steps we may convert any type
into an optimal type in the same equivalence class. Thus, in order to check
if two types are equivalent we need only to characterize the equivalence
of optimal types. The characterization we obtain is an immediate conse-
quence of the characterization of MacLane optimal chains [1, Prop. 3.6]
and Lemma 3.5.

Proposition 4.3. Two optimal types

t= (Q;Z)(h (¢1) A15¢1); ceey (¢T7 Arvwr))v
7 = (Vo3 (BT, AT, ¥1); - - -5 (s Apes ).
are equivalent if and only if they satisfy the following conditions:
o r=r*
e \i=X\ foralll<i<r.
o deg ¢y = deg ¢ and pi(a;) > pi(¢i) for all 1 < i <r, where a; :=

o7 — bi.
o VX (y) = r(y — 1), where no := 0 and for all 1 < i < r we take
S {0, if piai) > pi(¢i)  (i-e. @F ~p, &i),
' Ri(a;) € F7,  if piai) = pilds)  (icec &F Ap, &i).-

In this case, ¥} (y) = ¥i(y — ;) for all 0 < i < r, and for any nonzero
g € Klx] we have:

s7(g) = ordyiy, Ri(9), R} (9)(y) = (y —m:)" 9D Pi(g)(y —mi), 1<i<n,
where Pi(g)(y) := Ri(g)(y)/(y +n:)% ).
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We may derive from this “practical” characterization of the equivalence
of types some more conceptual characterizations.

Theorem 4.4. For any pair of types t, t*, the following conditions are
equivalent.

(1) t=t*

(2) ordg = ordg«

(3) Rep(t) = Rep(t*)

Proof. Let us prove that (1) implies (2). By Lemma 4.2, the function ordy is
preserved by the optimization steps. Hence, we may assume that the types
are optimal.

Take g € K[x] a nonzero polynomial. For two equivalent types of order
r = 0 we have Ry = R and ¢y = 9y; thus,

ordg(g) = ordy, (Ro(g)) = ordy; (Ry(g)) = orde-(g)-

If » > 0, we have ¢, # y and 9} # y. By Proposition 4.3, ¢ (y) =
¥y (y—mny), and this implies 1, # y+n,, ¥ # y—n,. Hence, Proposition 4.3
shows that

ord¢(g) = ordy, Rr(g) = ordy, P(g) = ordy: Pr(9)(y — nr)
= ordy; I (g) = orde-(9).

On the other hand, (4.2) characterizes the representatives of a type t as
monic polynomials ¢ € O[z] with minimal degree satisfying ord¢(¢) = 1;
thus, (2) implies (3).

Finally, let us prove that (3) implies (1). Let us denote p = pug, p* = pg=.
It suffices to show that p = p*, because then any common representative
¢ € Rep(t) NRep(t*) leads to Ly = Ru(¢) = Rux(¢) = Li+, so that t and
t* are equivalent.

Take ¢ € Rep(t) NRep(t*) a common representative of t and t*. Let pioo
be the pseudo-valuation on K[z] obtained as the composition:

foo: K[7] = Ky[z] — Ky — QU {oo},

the second mapping being determined by x — 6, a root of ¢ in K,. By [1,
Prop. 1.9], we have p < oo, ¥ < fico, and for any nonzero g € K|z

(4.4) wg) < poo(9) = Ol g, 1 (9) < poolg) = ¢ |u* 9-

Since the interval [ug, too] is totally ordered [1, Thm. 7.5], after exchang-
ing the role of p and p* if necessary, we must have

B < oo

The proof will be complete if we show that the conditions p < p* < pieo
and Rep(t*) = Rep(t) lead to a contradiction.
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Let @, ,. be the set of all monic polynomials ¢ € K[z] of minimal
degree satisfying () < poo(p). Let deg®, . be the common degree of
all polynomials in this set.

We claim that ¢ belongs to ®,, .. In fact, the inequality 1(¢) < poo(¢) =
oo is obvious. On the other hand, for any a € K|[x] of degree less than
deg ¢, the p-minimality of ¢ implies that ¢ {, a; by (4.4), we deduce that
1(0) = pioo (@),

By Lemma 4.5 below, there is a unique maximal ideal £ € Max(A(u))
such that

Py = {p € KP (1) | Rulp) = L}
Since ¢ € ®,, ... and R, (¢) = L, we see that

Dppiee = {0 € KP(p) | Ru(w) = Lt} = Rep(t) = {¢ € KP(u) [ ¢ ~p o}

An analogous argument shows that

Qe = Rep(t*) = {p € KP(u") | ¢ ~ur PF -

Also, Lemma 4.5 shows that ®, ,« is one of the p-equivalence classes
in KP(u). Hence, if we show that ®,,~ C ®,,., these two sets must
coincide. In fact, a polynomial ¢ € ®, ,« is a key polynomial for p with
p(p) < p (@) < poo(p). By (4.4), we have ¢ |, ¢, which implies R, (¢) D
Ru(p); since R, (¢), R, (¢) are maximal ideals of A(u), they coincide. Thus,
¢ ~, p, so that ¢ belongs to @, .

In particular, ¢ belongs to ®, ,+ = ®,, ... Consider the positive rational
number v = p*(¢) — u(¢). By [16, Thm. 1.15], the augmented valuation
' = [p; ¢, v] satisfies p < p/ < p* and p'(¢) = p(¢) +v = p*().

We claim that ¢/ = p*. In fact, if 4/ < p*, then we could replace u by p/
in the above arguments to deduce ®,/ ,« = ®,/ , . Therefore,

deg ¢ = deg @+ < deg @,y ,» = deg @,y ;.. < deg P« = deg .

We deduce deg @, ,« = deg @,/ ,~, and this leads to @, ,« D @,/ ,+, be-
cause i/ (p) < p*(¢) implies obviously u(¢) < u*(¢). Similarly, deg ®,/ ,,. =
deg @, 1., leading to @,/ , D Pyx . Hence,

Rep(t*) = @p= e € Ppr o = Pprpr C P = Ppuee = Rep(t).

The hypothesis Rep(t) = Rep(t*) implies &,/ ,» = ®, ,+, which is impos-
sible, because ¢ does not belong to ®,, ,«. Therefore, u* = p' = [u; ¢, v].

Since ¢ is a proper key polynomial for u, there exists a MacLane chain of
p* such that ¢, v are the augmentation data of the last level. Hence, m« =
deg ¢ and e, is the least positive integer such that e« € I'(u). Since ¢ is a
proper key polynomial for p*, (3.1) shows that deg ¢ > e »my« = e, deg ¢.
Thus, e, = 1, or equivalently, v € I'(u).

By Lemma 4.6 below, there exists a € K|x] of degree less than deg ¢,
such that p(a) = p(¢)+v. Take p = ¢p+a. Since ¢ ~, ¢ and deg p = deg ¢,
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Lemma 2.1 shows that ¢ is a key polynomial for u, and ¢ € Rep(t) by (2.1).
However, ¢ %, ¢, because p*(a) = pu(a) = p*(¢) is not greater than p*(¢).
Hence, ¢ ¢ Rep(t*), and this contradicts our hypothesis. O

We recall that a pseudo-valuation on K[x] is a map K[zx] — QU {oo}
having the same properties as a valuation, except for the fact that the
pre-image of oo is a prime ideal which is not necessarily zero.

Lemma 4.5. Let ji be a pseudovaluation on K[x], and let u be an in-
ductive valuation such that p < pioo. Let @, . be the set of all monic
polynomials ¢ € K[z] of minimal degree satisfying pu(¢) < poo(¢). Then,
there is a unique £ € Max(A(u)) such that

Py = {0 € KP (1) | Rpu(¢) = L}
Proof. By [16, Thm. 1.15], any ¢ € ®, . is a key polynomial for p such
that

¢ lug = nlg) < pioo(9),
for any nonzero g € K|[z|. For any fixed ¢ € ®,,,,_, Lemma 2.1 shows that

Qoo = {p e KP(p) | ¢ ~u o}

is the p-equivalence class of ¢ inside KP(u). This ends the proof because,
as seen in (2.1), the fibers of the map R, : KP(u) — Max(A(u)) are the
p-equivalence classes in KP(u). O

Lemma 4.6. The group of values I'(i) of an inductive valuation p satisfies
P(i) = {1(a) | a € K[al, dega < eum,.}.

Proof. By (3.1), i admits a proper key polynomial ¢ of degree e,m,,. Con-
sider a MacLane chain of y as in (2.2) such that ¢ {, ¢,. Let ¢/ = [u; ¢, V]
be any augmentation of u determined by the choice of an arbitrary positive

rational number v. The MacLane chain may be extended to a MacLane

chain of length r + 1 of y/ with last step p o, '

Now, the claimed identity on I'(x) is proved in [1, Lem. 3.2]. O

5. An example

Let p be an odd prime number. Denote by v the p-adic valuation on Q,
and let F = Z/pZ. Consider the polynomial:

f:x4—2(p+p2—p3)x2+p2+2p3—p4—2p5+p6+p8GZ[JC].
Let us apply the OM factorization method to compute the prime factors
of fin Zy[z].
Clearly, Ro(f) = f(y) = y* Thus, the type of order zero, to = (y),

divides all prime factors of f, and we have ordy,(f) = 4. We choose ¢ = x
as a representative of tg.
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Let po be the Gauss valuation extending v to Qp[z], introduced in
Section 2.1. The Newton polygon N, .(f) is one-sided of length 4 and
slope —1/2.

For the computation of residual polynomials we use the explicit recurrent
method described in [7, Sec. 3.1]. we have:

Rygan/2(f) = yP—2y+1=(y—1)>
Thus, we get a unique type of order one dividing all prime factors of f:
t1 = (y; (.CE, 1/27y - 1))a

but we now have ordg, (f) = 2. Hence, either f is irreducible over Z,[z], or
it is the product f = FG of two quadratic polynomials with ordg, (F) =

Ol"dt1 (G) =1.
Take ¢o = 2> — p as a representative of t1. The ¢o-expansion of f is:
(5.1) f=d5=20"—p*) d2+p' — 2" +p° +p°.

The augmented valuation p; = [po;,1/2] on Qp[z] attached to t; acts
on Qp[z] as follows:

1 (Z asxs) = Min {po(as) + s/2} = Min{v(as) + s/2}.

0<s

Since p1(¢2) = 1, the points (s, u1(as¢3)) € R? associated with the ¢o-
expansion (5.1) are (2,2), (1,3), (0,4). Thus, N, 4,(f) is one-sided of
length 2 and slope —1. The corresponding residual polynomial is:

Ry ot (f) =v* =2y +1=(y—1)°.

Again, we get only one type of order two dividing all prime factors of f:
to = (y; (2,1/2,y — 1); (¢2, 1,y — 1)),

still satisfying ordy, (f) = 2. Let us take ¢3 = ¢ — p? = 22 — p — p? as the

simplest representative of ty. The ¢3-expansion of f is:

(5.2) f=¢3+20" b3+ p° +1°.

The non-normalized valuation ps = [u1;¢2,1] attached to ty acts on
Qp[z] as follows:

0<s

12 (Z asqbg) = Min {p1(as) + 2s}.

Since pa(¢3) = 2, the points in R? associated with the ¢3-expansion (5.2)
are (2,4), (1,5), (0,6). Thus, N, ¢,(f) is again one-sided of length 2 and
slope —1. The corresponding residual polynomial is:

Ruposi(f) =9y +2y+1=(y+1)>
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Again, we get only one type of order three dividing all prime factors of f:

ts = (y; (2, 1/2,y — 1); (d2, 1,y — 1); (93, 1,y + 1)),
still satisfying ordg, (f) = 2. Let us take ¢4 = ¢p3 +p° = 22 —p—p? +p? as
a representative of t3. The ¢4-expansion of f is:
(5.3) f=@2+r
The valuation ps = [ug; ¢3, 1] attached to t3 acts on Qp[z] as follows:

ps | > ases | = Min {us(as) + 3s} .
0<s

Since u3(¢4) = 3, the points in R? associated with the ¢4-expansion (5.3)
are (2,6), (0,8). Thus, N, ¢,(f) is again one-sided of length 2 and slope —1.
The corresponding residual polynomial is:

Ry oi1(f)=y*+1.

The factorization of this polynomial in F[y] depends on the class of p
modulo 4. The method proceeds in a different way according to this class.

Case p = —1 (mod 4).

The polynomial y? + 1 is irreducible in F[y] and we get a unique type of
order four dividing all prime factors of f:

ty = (y7 (:U> 1/27 Yy— 1)7 (¢27 17:1/ - 1)7 (¢3’ 17y + 1)? (¢4a 17 y2 + 1))7
for which ordg, (f) = 1. This implies that f is irreducible in Z,[z]. Also, if
L/Q, is the finite extension of @, determined by f, we have

e(L/Qp) = erezeses =2, f(L/Qp) = fofifafsfa =2,
where e; are the lowest term denominators of the slopes of t4 and f; are
the degrees of the y-polynomials of all levels of ty4.
However, the information about f we have been collecting in the type t4
is not intrinsic. It depends on the choices of representatives for the types
to, t1, to, t3. Let us consider the following optimal type equivalent to t4:

t= (y7 (337 1/273/ - 1)7 (¢4> 3>y2 + 1))7
obtained by an iterative application of Lemma 4.2.

By Theorem 4.4, ord¢(f) = 1 and f is a representative of t. Moreover,
since the type t is strongly optimal, the equivalence class of t is the canon-
ical class attached to the Okutsu class of f through the mapping of (1.2).

Therefore, the data supported by t are intrinsic data of f. For instance,
the Okutsu depth of f is two and [z, ¢4] is an Okutsu frame of f [2]. This
means that

> v(h(#)), for all monic h € Zy[z] with degh < 2,
3 =v(¢4(0)) > v(h(#)), for all monic h € Z,[x] with degh < 4,
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where 6 is a root of f in @p. In particular, the slopes 1/2 and 3 are intrinsic
data of f.
Case p =1 (mod 4).

The polynomial 2 + 1 splits as (y —4)(y+14) in F[y], where i € F satisfies
i = —1. We get then two inequivalent types dividing f:

ts = (y; (2,1/2,y — 1); (2, L,y — 1); (¢3, 1,y + 1); (da, 1,y — 7)),
with ordg, (f) = ordy (f) = 1. This implies that f = FF’ splits in Z,[z]
into the product of two monic quadratic irreducible polynomials F', F’ such
that
ordg, (F) =1, ordy (F) = 0; ordg,(F') =0, ordy (F') = 1.

If L/Qp, L'/Q, are the quadratic extensions of Q, determined by these
prime factors, we have

e(L/Qp) = e(L,/Qp) =2, f(L/Qp)= f(L,/Qp) =L
Also, by taking representatives of these types we obtain concrete Okutsu
approximations to the unknown factors I, F’:

Gi=¢s—ip*=a?—p—p*+p>—ip* ~ F,
G=gs+ip' =2 —p—p*+p’ +ip' = F,
where now ¢ € Z is an arbitrary lifting of ¢ € F.
Again, the information about F', F’ contained in the types t4, t), re-

spectively, is not intrinsic. Consider the optimal types equivalent to ty4, t,
respectively:

t=(y;(2,1/2,y = 1); (¢4,3,y — 1)), t' = (y;(x,1/2,y = 1); (44,3, y +1)),

obtained by an iterative application of Lemma 4.2.
By Theorem 4.4, these types satisfiy

ord¢(F) =1, ordy (F) =0; ord¢(F') =0, ordg (F') =1,

and the polynomials G, G’ of (5.4) are representatives of t, t’, respectively.
Caution! The types t and t’ are optimal, but not strongly optimal. Hence,
the information contained in the last level of t, t’ is not intrinsic either. In
this case, the equivalence class of strongly optimal types associated with
the Okutsu class of F' is the class of the type t;. In fact, by Lemma 4.2, F
and F' are representatives of t1. This means that the prime polynomials F,
F’ both correspond to the same strongly optimal type t; by the mapping
of (1.2); hence, these polynomials are Okutsu equivalent. Actually, if we
denote by [g] the Okutsu class of a prime polynomial g € O,[z], we have:

2% = p] = [¢a] = [F] = [F'] = [G] = [G'),

(5.4)
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and all these polynomials determine the same quadratic extension of Q. In
general, the extensions determined by two Okutsu equivalent prime polyno-
mials in Zp[z] have isomorphic maximal tamely ramified subextensions [2].

The type t; contains intrinsic information about all these Okutsu equiv-
alent prime polynomials in Z,[z]. They all have Okutsu depth one, the
family [z] is an Okutsu frame and the slope 1/2 has the following intrinsic
meaning:

% =v(f) > v(h(8)), for all monic h € Zy[z] with degh < 2.

This situation enlightens an important feature of the OM factorization
algorithm. When some prime factors of the input polynomial are in the same
Okutsu class, the algorithm computes first the common strongly optimal
(equivalence class of the) type attached to them, but then it must work
further to enlarge this type with an adequate last level which enables one
to distinguish the different prime factors.
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