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A Note on Extensions of Qtr

par Lukas POTTMEYER

Résumé. Dans cette note, nous étudions le comportement de
la hauteur de Weil (logarithmique, absolue) h sur les extensions
du corps Qtr des nombres totalement réels. On sait qu’il y a un
écart entre zéro et la plus petite valeur non nulle de la hauteur
sur le corps Qtr, tandis que dans Qtr(i) il y a des nombres de
hauteur (non nulle) arbitrairement petite. Nous prouvons que tous
les éléments de petite hauteur dans une extension finie quelconque
de Qtr sont déjà dans Qtr(i). Cela permet de donner une réponse
positive à une question d’Amoroso, David et Zannier, concernant
l’existence de corps pseudo algébriquement clos avec l’écart de
hauteur que nous avons mentionné.

Abstract. In this note we investigate the behaviour of the
absolute logarithmic Weil-height h on extensions of the field Qtr

of totally real numbers. It is known that there is a gap between 0
and the next smallest value of h on Qtr, whereas in Qtr(i) there
are elements of arbitrarily small positive height. We prove that all
elements of small height in any finite extension of Qtr already lie in
Qtr(i). This leads to a positive answer to a question of Amoroso,
David and Zannier, if there exists a pseudo algebraically closed
field with the mentioned height gap.

1. Introduction
We assume throughout the paper that all algebraic extensions of Q are

contained in a fixed algebraic closure Q ⊆ C. For a definition and basic
properties of the height h we refer to the first Chapter of [6]. For a number
field K we define

Ktr = {α ∈ Q|σ(α) ∈ R ∀σ ∈ Gal(Q/K)} .

We do not assume that K is a real number field, so we do not necessarily
have K ⊆ Ktr.

A theorem of Schinzel [16, Theorem 2] implies h(α) ≥ 1
2 log

(
1+
√

5
2

)
for

all α ∈ Qtr(i)∗ which do not lie on the unit circle. In this note we will
generalize this result in the following way.
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Theorem 1.1. Let K be a number field and F a finite extension of Ktr.
There is an effective positive constant cF such that h(α) ≥ cF for all α ∈ F ∗
with at least one K-conjugate not on the unit circle; i.e. for all α ∈ F ∗ such
that |σ(α)| 6= 1 for some σ ∈ Gal(Q/K).

Using the terminology of Bombieri and Zannier from [7], we say that a
field F ⊆ Q has the Bogomolov property if and only if there is a positive
constant c such that the height h on elements of F is either zero or bounded
from below by c. By Northcott’s theorem every number field has the Bogo-
molov property. Hence, the interesting cases are those where the Bogomolov
property is satisfied by extensions of infinite degree over Q. Schinzel’s result
implies that Qtr has the Bogomolov property. More fields with the Bogo-
molov property and infinite degree over Q, are maximal abelian [3] and
maximal totally p-adic [7] extensions of a given number field, and fields of
the form Q(Etors) where E is an elliptic curve defined over Q [10].

The Bogomolov property is in general not preserved under finite exten-
sions. This is due to the fact that there are elements in Qtr(i) of arbitrarily
small positive height (in particular Schinzel’s bound does not hold if we
drop the assumption |α| 6= 1). This follows from an early result of May [13,
Example 1] where he studies the multiplicative groups of subfields of Qtr

and Qtr(i). The first explicit proof of the failure of the Bogomolov property
in the regarded extension is due to Amoroso and Nuccio in [2]. A proof
using dynamical height function can be found in [15, Remark 4.5]. An ex-
plicit sequence of elements in Qtr(i) of height tending to zero is given by
taking n-th roots of the element 2+i

2−i (see for example [1, Example 5.3] or
Lemma 2.2 below).

The extension Qtr(i)/Qtr is essentially the only known example of a fi-
nite field extension where the Bogomolov property is not preserved; i.e. in
all examples of such extensions L/F there is a sequence of points of small
height contained in L ∩Qtr(i). It is not known whether these are the only
possible examples of finite extensions not preserving the Bogomolov prop-
erty. Theorem 1.1 implies that a finite extension of Ktr has the Bogomolov
property if and only if it does not contain the element i (see Corollary 2.3).
This clarifies the matter of extensions L/F , where the Bogomolov property
gets lost, in the case that F is (contained in) a field of the form Ktr. How-
ever, there might be other undiscovered examples of field extensions with
this curious behaviour.

Since the Bogomolov property is in general not preserved under finite
extensions, one can ask whether or not it is preserved for other special field
extensions; for instance its Galois closure.

Question 1.2. Is there a field which satisfies the Bogomolov property but
the Galois closure over Q of this field does not?



A Note on Extensions of Qtr 737

In Example 3.1 we will construct an explicit field to provide a positive
answer to this question. By a result of Widmer [17, Corollary 2] it is known
that the Northcott property of a field is not preserved under taking the
Galois closure of this field. Here a field F ⊆ Q has the Northcott property
if every set of elements in F with bounded height is finite. In particular, the
Northcott property implies the Bogomolov property. It would be interesting
to know whether the Galois closure of a field with the Northcott property
necessarily satisfies the Bogomolov property.

As a further application of our result we will provide a positive answer to
a question of Amoroso, David and Zannier concerning the relation between
fields with the Bogomolov property and pseudo algebraically closed fields.

Definition. A field F is called pseudo algebraically closed (PAC) if and
only if every absolutely irreducible variety defined over F has an F -rational
point.

If F ⊆ Q, then by [8, Theorem 11.2.3] F is PAC if and only if for
every polynomial f(x, y) ∈ Q[x, y] which is irreducible in Q[x, y] there are
α, β ∈ F with f(α, β) = 0.

Obviously every algebraically closed field is PAC. Moreover every alge-
braic extension of a PAC field is again PAC. Hence, in sharp contrast to the
Bogomolov property which is obviously inherited to subfields, the property
of a field to be PAC indicates that a field is large. This vague observation
leads to the following question.

Question 1.3 ([1, Problem 6.1]). Is there a PAC field which satisfies the
Bogomolov property?

The authors of [1] raise some doubts towards a positive answer. In partic-
ular they disprove the Bogomolov property for some PAC fields contained
in Q. However, surprisingly there are PAC fields satisfying the Bogomolov
property. In Example 3.2 we will explicitly construct such a field as a to-
tally imaginary finite extension of Qtr. This example comes from a deep
result of Pop [14] concerning the arithmetic of the field Qtr. For detailed
information about PAC fields we refer to [8, Chapter 11].

In the next section we will study the field Ktr and prove Theorem 1.1.
The proof of this result is elementary and the only non standard contri-
bution is an effective lower height bound in terms of the ratio of the real
embeddings of an algebraic number due to Garza [9] (see also [11] for a
short proof of Garza’s result).

In the last section of this note we will present explicit positive answers
to Questions 1.2 and 1.3.
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2. Proof of Theorem 1.1
Let throughout this section K be any number field. In order to prove

the main observation in this note, we need some more notation. For an
algebraic number α we denote by rα,K the number of real K-conjugates of
α, and we set Rα,K = rα,K

[K(α):K] . We have the following inequality.

[K : Q]Rα,Q = rα,Q[K : Q]
[Q(α) : Q] ≥

rα,K [K : Q]
[Q(α) : Q]

= rα,K
[K(α) : K]

[K(α) : Q]
[Q(α) : Q] ≥ Rα,K .

(2.1)

The next two lemmas provide some basic information on the fieldKtr which
are used in the proof of Theorem 1.1.

Lemma 2.1. We have Ktr = (K ∩ R)tr and Qtr ⊆ Ktr ⊆ R.

Proof. It follows straight from the definition that (K ∩ R)tr ⊆ Ktr. For
α ∈ Q let f ∈ K[x] be its minimal polynomial. Then α is in Ktr if and
only if all roots of f are real. If this is satisfied, then all coefficients of f
are real and hence f is defined over K ∩ R. Thus, f is also the minimal
polynomial of α over K ∩ R. This immediately implies α ∈ (K ∩ R)tr and
hence Ktr = (K ∩ R)tr. The second statement of the lemma is trivial. �

It is well known that Qtr(i) is the maximal CM-field and hence generated
by all elements having all Q-conjugates on the unit circle (see [2, Proposi-
tion 2.3] or [5, Theorem 1]). This generalizes word for word if we replace Q
by any number field K.

Lemma 2.2. Let α ∈ Q \ {±1} with |σ(α)| = 1 for all σ ∈ Gal(Q/K).
Then Ktr(α) = Ktr(i).

Proof. Let α be as described and σ ∈ Gal(Q/K) arbitrary. The assumption
on α implies σ(α)−1 = σ(α), where the bar denotes complex conjugation.
Therefore, σ(1

2(α+α−1)) = 1
2(σ(α)+σ(α)−1) ∈ R. This means that Re(α),

the real part of α, is in Ktr. In the same fashion we get σ( i2(α − α−1)) =
± i

2(σ(α)− σ(α)−1) ∈ R, which is equivalent to the statement that Im(α),
the imaginary part of α, is in Ktr, too. By assumption α 6∈ R and hence
Im(α) 6= 0. This yields i = α−Re(α)

Im(α) ∈ K
tr(α) and of course α ∈ Ktr(i). �

Proof of Theorem 1.1. By Lemma 2.1 we can and will assume without loss
of generality thatK is a real number field. Recall that this impliesK ⊆ Ktr.

Let us assume first that F has at least one realK-embedding. This means
that F = Ktr(α) for an α ∈ Q such that there is a σ ∈ Gal(Q/K) with
σ(α) ∈ R. Then the existence of a positive lower bound for the height on
F ∗ \ {±1} follows from Bilu’s famous equidistribution result [4]. Using a
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theorem of Garza we can achieve an effective constant, which we will prove
in the following paragraph.

Let β be an arbitrary element in F ∗ \ {±1}. We choose a number field
L/K with L ⊆ Ktr and β ∈ L(α). Since a K-embedding of L(α) is real if
and only if it is an extension of a real K-embedding of K(α), we know that
there are exactly rα,K [L(α) : K(α)] of those. Furthermore, every real K-
embedding of L(α) is an extension of a realK-embedding ofK(β). Together
this yields

(2.2) Rβ,K = rβ,K [L(α) : K(β)]
[L(α) : K] ≥ rα,K [L(α) : K(α)]

[L(α) : K] = Rα,K 6= 0 .

Therefore, (2.1) implies Rβ,Q ≥ Rα,K [K : Q]−1 = CF . Note that by (2.2)
the positive constant CF does not depend on the choice of the generator α.
Now we can use [9, Theorem 1] to achieve

(2.3) h(β) ≥ CF
2 log

(
21−1/CF +

√
41−1/CF + 4

2

)
= cF > 0

which is the claimed result.
Now we assume F = Ktr(α) to have no real K-embedding. Let F ′ be

the intersection of the normal hull of F over K with R. Then F ′ is a finite
extension of Ktr that has a real K-embedding. Hence we know from above
that there exists an effective positive constant cF ′ with h(β) ≥ cF ′ for all
β ∈ F ′∗ \ {±1}. Since Galois conjugates have the same height, it follows
that every element in F with a real conjugate has height greater or equal
to cF ′ .

Assume there is a β ∈ F ∗ with h(β) < cF ′
2 < cF ′ . Then, as mentioned

above, for all σ ∈ Gal(Q/K) the element σ(β) is not in R. Let β be the
complex conjugate of β. Then ββ is an element in F ′. But from basic
properties of the height h we also have h(ββ) ≤ 2h(β) < cF ′ . This means
that |β| = ββ = 1. By construction of F ′, the same is true for all K-
conjugates of β. Hence, all K-conjugates of β lie on the unit circle, proving
the theorem with cF = cF ′

2 . �

Corollary 2.3. A finite extension F of Ktr has the Bogomolov property if
and only if i 6∈ F .

Proof. Let F/Ktr be a finite extension. If i ∈ F then we know that Qtr(i) ⊆
F , and hence F does not have the Bogomolov property. If, on the other
hand, i 6∈ F then Lemma 2.2 yields that the only elements in F whose K-
conjugates all lie on the unit circle are ±1. By Theorem 1.1 we can conclude
that F has the Bogomolov property. �
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3. Applications
Now we can provide positive answers to Questions 1.2 and 1.3. We will

give one explicit example for each question, these examples can be varied
and extended in many ways.

First we will use Corollary 2.3 to answer Question 1.2.

Example 3.1. Let p be your favorite prime and set F = Q(√p)tr. By
Theorem 1.1 we know that F has the Bogomolov property. However, a 4-th
root of p is contained in F , and hence the Galois closure contains i and
does not have the Bogomolov property.

Next we will use Theorem 1.1 to construct a PAC field which has the
Bogomolov property, and hence give a positive answer to Question 1.3. We
say that a field F is formally real if and only if −1 cannot be written as a
sum of squares in F .

Example 3.2. By Pop’s result [14, Theorem S] every finite extension of
Qtr which is not formally real is PAC (see [12, Section 7] for a short expla-
nation). By Corollary 2.3 all finite extensions of Qtr which do not contain
i have the Bogomolov property. In order to find a PAC field which has the
Bogomolov property, it remains to construct a finite extension F/Qtr with
i 6∈ F and such that F is not formally real. Let F be the splitting field of
f(x) = x5 + x3 + 1 over Qtr. We claim that F is of the prescribed form.

We first note that the roots of f(x) are not all real, and hence the ex-
tension F/Qtr is nontrivial. The Galois group of f(x) ∈ Q[x] is isomorphic
to S5. Hence, since Qtr/Q is Galois, the group Gal(F/Qtr) is isomorphic to
a nontrivial normal subgroup of S5. Moreover, the discriminant of f(x) is
equal to 3233 which is a square in Qtr. Therefore, Gal(F/Qtr) is isomorphic
to a subgroup of A5, and hence Gal(F/Qtr) ∼= A5. As this is a simple group,
there is no degree two extension of Qtr contained in F . In particular, i 6∈ F .

We denote the roots of f(x) by α1, . . . , α5. The second Newton-Girard
formula yields

5∑
j=1

(
αj√

2

)2
= −1 .

The element αj√
2 is contained in F for all j ∈ {1, . . . , 5}. Thus F is not

formally real, proving the claim.
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Remark. Let F be the field from Example 3.2. The lower bound we achieve
for the height on elements in F ∗ \ {±1} is very low indeed. The field F ′ =
F ∩R is a degree |A5|

2 = 30 extension of Qtr, and some analysis shows that
F ′ has exactly two real embeddings. Therefore, with the notation from the
proof of Theorem 1.1, it is CF ′ = 1

15 and we get

h(α) ≥ 1
60 log

(
2−14 +

√
4−14 + 4

2

)
>

1
2000000 for all α ∈ F ∗ \ {±1}.
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