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Spinor class fields for generalized Eichler orders

par Luis ARENAS-CARMONA

Résumé. Nous calculons le corps de classes spinoriel pour un
genre d’ordres qui sont des intersections de deux ordres maxi-
maux, dans une algèbre centrale simple de dimension 9 ou plus.
Autrement dit, nous calculons le nombre des classes de conju-
gaison dans un genre de tels ordres, en termes du degré d’une
extension des corps de classes. Nous donnons des applications à
l’étude des groupes d’automorphismes de ces ordres et à l’étude
des représentations d’ordres commutatifs.

Abstract. We compute the spinor class field for a genus of or-
ders, in a central simple algebra of dimension 9 or higher, that are
intersections of two maximal orders, i.e., we compute the number
of conjugacy classes in a genus of such orders, as the degree of an
explicit extension of class fields. We give applications to the study
of the automorphism groups of these orders and to the study of
representations of commutative orders.

1. Introduction
LetK be a number field with ring of integers O. Let A be a central simple

K-algebra (K-CSA or CSA over K) of dimension n2 ≥ 4. All lattices and
orders are assumed to be O-modules.

In recent years there has been an increasing interest in the so called
selectivity problem for maximal orders: Understanding the set of maximal
orders in A containing an isomorphic copy of a given suborder H, usually
a commutative order. This has been partly motivated by the role played
by quaternion orders in the construction of isospectral but non-isometric
hyperbolic manifolds [13]. However, these results have also applications to
the arithmetic of both, the order H and the set of maximal orders containing
H. A couple of questions that easily reduce to selectivity problems [6, §5]
are the following:

(1) When does the order H contains an ideal isomorphic, as an O-
module, to the lattice O × · · · × O × J for a given ideal J ⊆ O?
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(2) If A = Mr(B) is a matrix algebra over a division algebra B, which
maximal orders D ⊆ A have the form D ∼= Mr(B) for some order
B ⊆ B?

The selectivity problem extends naturally to orders of maximal rank, or
as we say in all that follows, full orders in A. In this setting, the problem
is stated in terms of genera. A genus is a maximal set of full orders whose
completions are conjugate locally at all places. The selectivity problem in
this setting consists in studying the set of orders in a genus containing a
copy of a given order H. This is a natural generalization for two reasons:

(1) The set of maximal orders is a genus.
(2) The existence of one order in a given genus containing a copy of H

can be determined by purely local computations.
This extended problem has been studied for some particular types of full
orders in quaternion algebras, like Eichler orders, but aside from a few
existential results little is known for non-maximal orders in the higher di-
mensional case. Mainly because we lack a simple description of the set of
conjugacy classes in a genus.

In this work we give this description for the simplest type of non-maximal
full orders, intersections of two maximal orders, also called generalized Eich-
ler orders (or GEOs) in all that follows. These are split orders in the sense
defined by T. Shemanske in [11], while the set of conjugacy classes of such
orders is simpler to describe, especially for algebras of odd dimension:

Theorem 1.1. The number |A∗\O| of conjugacy classes in a genus O of
GEOs in an odd-dimensional CSA is independent of O. More precisely,
there exists a non-cannonical bijective map ψ from the set A∗\O0 of con-
jugacy classes of maximal orders onto A∗\O of the form ψ

(
cls(D)

)
=

cls
(
D ∩∆(D)

)
, for some map ∆ : O0 → O0.

A fundamental tool for the study of genera is the spinor class field, an
explicit abelian extension Σ/K that classifies conjugacy classes in a genus
O [3, §3], in the sense that we can construct an explicit map ρ : O × O =
O2 −→ Gal(Σ/K), with the following properties (§2):

(1) D is conjugate to D′ if and only if ρ(D,D′) = IdΣ,
(2) ρ(D,D′′) = ρ(D,D′)ρ(D′,D′′), for all (D,D′,D′′) ∈ O3.

This holds for a CSA of dimension 32 or larger, and also for a quater-
nion algebra satisfying Eichler’s condition (§2). The class group defining Σ,
for any genus O of Eichler orders, is already implicit in [12, Cor. III.5.7].
However, for a CSA A of dimension n ≥ 32, only the spinor class field for
maximal orders was previously known explicitly. If f℘(L/K) denotes the
inertia degree of the field extension L/K at any place ℘, while we write
f℘(A/K) = f whenever A℘ ∼= Mf (E℘) for a central division algebra E℘
over K℘, this field can be described as follows: [3, §2]:
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The spinor class field for maximal orders in A is the maximal
exponent-n sub-extension Σ0 of the wide Hilbert class field
of K satisfying the following conditions:
(1) f℘(Σ0/K) divides f℘(A/K) at all finite places.
(2) Σ0/K splits completely at every real place ℘ ofK where

f℘(A/K) = n.
In the same language, the corresponding result for Eichler orders in quater-
nion algebras is as follows [7, Theorem 1.2]:

The spinor class field for Eichler orders of level I =
∏
℘ ℘

α(℘)

in a quaternion algebra A over K is the maximal subfield
Σ, of the spinor class field Σ0 of maximal orders, such that
Σ/K splits at all places where α(℘) is odd.

The purpose of the current work is to give a similar result for GEOs
in a K-CSA A of arbitrary dimension. This is done in Theorem 3.1. The
splitting condition on places where α(℘) is odd is replaced by a local con-
dition depending on the definition on some technical type distance, and
a notion of local symmetry. Here, a local order is called symmetric if a
higher dimensional analog of the branch S0(H) defined in [7, §2], has a
nontrivial symmetry (§3-4). For locally symmetric orders, the correspon-
dence described in Theorem 1.1 is canonical (Cor. 6.6). This machinery is
applied in §5 to the selectivity problem. An additional application is the
following:

Theorem 1.2. Let D be a GEO in the matrix algebra A = Mn(K), and
let N be the normalizer of D in A∗. Then

|N/K∗D∗| = 2t|g(n)|
[Σ0 : Σ] ,

where t is the number of finite places ℘ of K, such that D℘ is a non-maximal
symmetric GEO, g(n) is the maximal exponent-n subgroup of the ideal class
group of K, while Σ and Σ0 are the spinor class fields for the genus of D
and the genus of maximal orders, respectively.

Example 1.3. Let D be an Eichler order in M2(Q), and let N be as in
Theorem 1.2. Then |N/Q∗D∗| = 2t, where t is the number of places dividing
the level of D. When D =

(
Z Z
NZ Z

)
, representatives of all clases in the

quotient N/Q∗D∗ are given by the Atkin-Lehner involutions (see [8] or [9]).

We would not be overly surprised if the techniques presented in this work
can be extended to chain orders [2], or even general split orders. For this, we
need to understand the symmetry group of the convex polytopes described
in [11].
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2. The theory of spinor class field
In this section we review the basic facts about spinor class fields of orders.

All results in this sections can be proved in the more general context of S-
orders in CSA’s over global fields, See [3] or [5] for details. In all that follows
A and K are as in the introduction and D is a full order in A. Let H be an
arbitrary suborder of D (full or otherwise). Completions at a finite place
℘ are denoted D℘ or H℘, and a similar convention applies to algebras. Let
Π = Π(K) be the set of all places in K finite or otherwise, let A ⊆

∏
℘∈ΠK℘

be the adele ring ofK, and let JK = A∗ be its idele group. Let AA = A⊗KA
be the adelization of the algebra. If a = (a℘)℘ ∈ AA is an adelic element,
we let aDa−1 denote the order D′ defined locally by D′℘ = a℘D℘a

−1
℘ at all

finite places ℘. By convention, we set D℘ = A℘ at infinite places, if D is
full.

Since any two maximal orders are locally conjugate at all places, if we fix
a maximal orderD, any other maximal order in A has the formD′ = aDa−1

for some adelic element a ∈ A∗A. More generally, it is said that two full
orders D and D′, in A, are in the same genus if D′ = aDa−1 for some adelic
element a. The spinor class field Σ = Σ(D) is defined as the class field
corresponding to the group K∗H(D) ⊆ JK , where

H(D) = {N(a)|a ∈ A∗A, aDa
−1 = D}.

Let t 7→ [t,Σ/K] denote the Artin map on ideles. The distance between
the orders D and D′ ∈ gen(D) is the element ρ(D,D′) ∈ Gal(Σ/K) de-
fined by ρ(D,D′) = [N(a),Σ/K], for any adelic element a ∈ A∗A satis-
fying D′ = aDa−1. This implies the multiplicative property ρ(D,D′′) =
ρ(D,D′)ρ(D′,D′′), as in §1. We say that two orders D and D′ are in the
same spinor genus whenever their distance is the identity IdΣ. Two conju-
gate orders are in the same spinor genus, and the converse is a consequence
of the strong approximation property for the group SL1(A). In the present
setting, strong approximation is equivalent to EC below, which is assumed
throughout this paper, except in the last example in §6.

Eichler Condition (EC): Either n > 2 or A is unramified
at some archimedean place.

Note for future reference that H(D) = JK ∩
∏
℘∈Π(K)H℘(D), where

H℘(D) = {N(a)|a ∈ A∗℘, aD℘a
−1 = D℘}.

The sets H(D) and H℘(D) are called global and local spinor image, respec-
tively. When k is an arbitrary local field, we also write Hk(E) for the spinor
image of a local order E in a k-CSA A, which is defined analogously. If E
is maximal, and if A ∼= Mf (B) for a division algebra B, it is known that
Hk(E) = k∗fO∗k, see the continuation of Example 1 in §2 of [3].
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3. Locally symmetric GEOs
Let k = K℘ be a local field and let A = Mf (B) be a k-CSA, where B is

a division algebra. Recall that Bf , the space of column vectors, is naturally
a left Mf (B)-module and a right B-module, and this bi-module structure
is the one considered throughout this paper. Every maximal order in A has
the form DΛ = {a ∈ A|aΛ ⊆ Λ}, for some full lattice Λ ⊆ Bf satisfying
ΛOB = Λ, where OB is the maximal order of B. Such lattices are called
OB-lattices. Note that, for λ ∈ B∗, the map x 7→ xλ is not a B-module
homomorphism unless λ is central, but Λ 7→ Λλ defines an action of B∗ on
the set of OB-lattices since λOB = OBλ. In these notations, DΛ = DM if
and only if M = Λλ for some λ ∈ B∗.

Let Λ and M be two full OB-lattices in Bf and let π be a uniformizing
parameter of B. By the theory of invariant factors, there exists a B-basis
{e1, . . . , ef} of Bf , such that Λ =

∑f
i=1 eiOB, and M =

∑f
i=1 eiπ

riOB,
where r1 ≤ r2 ≤ · · · ≤ rf . The elements πr1 , · · · , πrf are call the invariant
factors of the pair (Λ,M). If →u= (1, 1, . . . , 1), the element

T (DΛ,DM ) = (r1, . . . , rf ) + 〈→u〉 ∈ Γ := Zf/〈→u〉

is called the type distance of the pair of orders (DΛ,DM ), and is well defined
by the discussion in last paragraph. A local GEO D = DΛ ∩ DM is said
to be symmetric if T (DΛ,DM ) = T (DM ,DΛ), or equivalently: ri+1 − ri =
rf−i+1 − rf−i for every element i ∈ {1, . . . , f − 1}.

The class ρ℘(DΛ,DM ) = r1 + · · ·+ rf ∈ Z/fZ is called the total dis-
tance between the local maximal orders DΛ and DM . This distance is a
conjugation invariant of the pair (DΛ,DM ), and is related to the global
distance ρ0 between maximal orders by the formula

ρ0(D,D′) =
∏
℘∈R
|[℘,Σ0/K]|ρ℘(D℘,D′℘) ∈ Gal(Σ0/K),

where R = R(D,D′) is the set of finite places ℘ of K satisfying D℘ 6= D′℘,
and J 7→ |[J,Σ0/K]| is the Artin map on ideals. Theorem 3.1 bellow follows
from Lemma 4.11 in §4.

Theorem 3.1. The spinor class field for a global GEO D = D1 ∩ D2 in
a K-CSA A is the maximal subextension Σ, of the spinor class field Σ0
for maximal orders, whose local inertia degree f℘(Σ/K) divides the total
distance ρ℘(D1℘,D2℘) at every place ℘ where D℘ is symmetric.

A global GEO is locally symmetric if every completion is symmetric.
The type distance at ℘ of the pair of completions (D℘,D

′
℘) is denoted

T℘(D,D′). If D = D1 ∩ D2, it is proved in Lemma 4.8 below that the
local pair {D1℘,D2℘} is unique. This, together with the theory of invariant
factors, implies that two global GEOs D = D1 ∩ D2 and D′ = D′1 ∩ D′2
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are in the same genus if and only if, at every finite place ℘, we have either
T℘(D1,D2) = T℘(D′1,D′2) or T℘(D1,D2) = T℘(D′2,D′1).

4. Blocks in Weil apartments.
In all of this section, let k be a non-archimedean local field, and let B be

a central division k-algebra with uniformizing parameter π. Let B be the
Bruhat-Tits building (or BT-building) associated to PGLn(B), as defined
in [1] or [2]. Recall that the vertices of B are in one to one correspondence
with the maximal orders in Mn(B). An apartment is the maximal sub-
complex whose vertices correspond to maximal orders containing a fixed
conjugate of the order P =

⊕n
i=1OBEi,i of integral diagonal matrices,

where {Ei,j}i,j is the canonical B-basis of Mn(B). Consider the apartment
A0 corresponding toP, which we call the standard apartment. Note that the
set of maximal orders in A0 is in correspondence with the homothety classes
of left fractional P-ideals in kP. In other words they are the stabilizers
D→
a

of the lattices of the form
⊕n
i=1 eiπ

aiOB, where {e1, . . . , en} is the
cannonical basis of the column space Bn, and →a= (a1, . . . , an) ∈ Zn.

Let →u= (1, . . . , 1) ∈ Zn. Elements of Γ = Zn/〈→u〉 are denoted in brackets,
e.g., [b] and [d], in all that follows. Furthermore, for every element →a=
(a1, . . . , an) ∈ Zn, we write

[b] = [b1, . . . , bn−1] = [a2 − a1, . . . , an − an−1] :=→a +〈→u〉,

for the corresponding coset. An expression like [d] =→c +〈→u〉 must be inter-
preted analogously. As D→

a+m
→
u

= D→
a
for any →a∈ Zn and any m ∈ Z, this

order is denoted D[b] in the sequel. Furthermore, the permutation group Sn
acts naturally on the order P and its generated K-algebra. This induces an
action of Sn on the group of fractional ideals of P that can be interpreted
as either, an action on the vertices of the chamber, or an action on Γ.

Example 4.1. If n = 5, the permutation σ = (12)(345) satisfies
σ(D[1,2,3,4]) = σ(D(0,1,3,6,10)) = D(1,0,10,3,6) = D[−1,10,−7,3].

Example 4.2. If n = 3, the orbit of D[2,1] is the set{
D[2,1],D[3,−1],D[−2,3],D[1,−3],D[−3,2],D[−1,−2]

}
.

Next result is immediate from the definition:

Lemma 4.3. D0 is the only vertex in the standard apartment stabilized
by the whole of Sn. Every Sn-orbit in the standard apartment contains a
unique order of the form D[b1,...,bn−1] with b1, . . . , bn−1 ≥ 0.

We call either, an element [b] = [b1, . . . , bn−1] with b1, . . . , bn−1 ≥ 0, or
the corresponding order D[b1,...,bn−1], totally positive. Note that the coset
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[b] =→a +〈→u〉 is totally positive if and only if →a= (a1, . . . , an) is an increasing
sequence.

Lemma 4.4. Assume [b] is totally positive. Then the maximal orders con-
taining the GEO D = D0 ∩ D[b] are exactly the orders D[c] with [c] =
[c1, . . . , cn−1] and 0 ≤ ci ≤ bi for every i = 1, . . . , n− 1.

Proof. First note that both D0 and D[b] contain the order P of integral
diagonal matrices, so the same hold for every maximal order containing
their intersection. We conclude that every such order is in the standard
apartment. Next, set [b] =→a +〈→u〉 and [d] =→c +〈→u〉 as before. Then the
inequality bi ≥ ci for i = 1, . . . , n − 1, implies aj − ai ≥ dj − di for every
pair (i, j) with 1 ≤ i < j ≤ n. The result follows if we observe that

D[b] =


OK πa1−a2OK πa1−a3OK · · · πa1−anOK

πa2−a1OK OK πa2−a3OK · · · πa2−anOK
πa3−a1OK πa3−a2OK OK · · · πa3−anOK

...
...

... . . . ...
πan−a1OK πan−a2OK πan−a3OK · · · OK

 ,
and a similar formula holds for every order in the apartment. �

In what follows we denote by S0(H), for every order H, the maximal sub-
complexS of the BT-buildingB such that every vertex ofS corresponds to
a maximal order containing H, and call it the block of H. Note that if H′ is
the intersection of all maximal orders containing H, then S0(H) = S0(H′).
We let S0(H) denote the set of vertices of S0(H). On Γ we define the total
length function

∣∣∣∣[b]∣∣∣∣ =
∑n−1
i=1 |bi|.

Example 4.5. The cell-complexes S0(D′), for D′ in the S3-orbit of D =
D0 ∩D[2,1], are shown in Figure 4.1.

Lemma 4.6. If [b] ∈ Γ is totally positive, for any σ ∈ Sn we have
∣∣∣∣[b]∣∣∣∣ ≤∣∣∣∣σ[b]

∣∣∣∣, with equality if and only if σ[b] ∈ {[b], [b]∗}, where
(4.1) [b]∗ = [−bn−1, . . . ,−b2,−b1].
Furthermore, the complex S0

(
σ(D)

)
, where D = D0∩D[b], is a paralelotope

whose edges are parallel to the axes if and only if σ[b] ∈ {[b], [b]∗}.

Proof. Note that if [b] =→a +〈→u〉, the total length of [b] is the total variation
of the sequence →a= (a1, . . . , an). The first inequality follows. Furthermore,
the orbit of [b] contains exactly two vectors of minimal length, namely the
ones corresponding to an increasing and a decreasing sequence in the orbit
of →a . The Sn-action is linear on the vector space Γ, whence it takes paral-
lelotopes onto parallelotopes and edges onto edges. Note that the length of
[b] can be described as the number of edges in a path going from 0 to [b],
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Figure 4.1. The block S0
(
σ(D)

)
for each element σ in the

symmetric group S3.

running along the edges of a parallelotope whose edges are parallel to the
axes. The last statement follows. �

Note that the correspondence [b] 7→ [b]∗, as in (4.1), has the following
properties:

• D[b]∗ = τ(D[b]), where τ = (1 n)(2 n − 1) · · · is the permutation
reversing the n-tuple (1, 2, . . . , n),
• T (D[b],D0) = −[b]∗, in particular the order D0 ∩D[b] is symmetric
if and only if [b]∗ = −[b].

Example 4.7. Recall that a chain order C is the intersection of all orders
in a simplex of the BT-building [2, §2]. For such an order, the block S0(C)
is a simplex, as follows from Definition 3.1 and Proposition 3.3 in [11].
In particular, the only GEOs that are chain orders are the conjugates of
D0 ∩ D[e(i)], for i = 1, . . . , n − 1, where the i-th coordinate of [e(i)] is 1
and all the others are 0. This order is symmetric only when i = n/2, so in
particular n is even.

The correspondence H 7→ S0(H) reverses inclusions, so that for every
pair of elements [c] and [d] in Γ, with D[c],D[d] ∈ S0(D), the intersection
D′ = D[c] ∩D[d] satisfies S0(D) ⊇ S0(D′). In fact, a stronger statement is
true.

Lemma 4.8. Let D = D0 ∩D[b] be as above. If D[c],D[d] ∈ S0(D), satisfy
S0(D) = S0

(
D[c] ∩D[d]

)
, then ([c], [d]) = (0, [b]) or ([d], [c]) = (0, [b]).
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Proof. Without loss of generality, we can assume that [b] is totally positive.
Observe that

∣∣∣∣[c] − [d]
∣∣∣∣ ≤ ∣∣∣∣[b]∣∣∣∣, with equality if and only if D[c] and

D[d] are opposite vertices of S0(D). Conjugation by the diagonal matrix
diag(1, πc1 , . . . , πc1+···+cn−1) takes D[t] to D[t]−[c] for every [t] ∈ Γ. Note
that there exists a permutation σ ∈ Sn taking [d]− [c] to a totally positive
element [r]. Since Sn acts linearly on Γ, the cell-complex S0

(
D[c] ∩D[d]

)
is a parallelotope having [c] and [d] as opposite vertices. Furthermore, by
hypotheses S0

(
D[c]∩D[d]

)
is a parallelotope whose edges are parallel to the

coordinate axes. It follows from Lemma 4.6 that [d]− [c] ∈ {[r], [r]∗}. Since
[r] is totally positive, we conclude that either [d]− [c] or [c]− [d] is totally
positive. The result follows. �

Lemma 4.9. Let D be as above. Let µ be an automorphism of A satisfying
µ
(
S0(D)

)
= S0

(
D). Then{

µ(D0), µ
(
D[b]

)}
=
{
D0,D[b]

}
.

Proof. Note that µ(D) is contained in exactly the same maximal orders as
D, and furthermore µ(D) = µ(D0)∩µ(D[b]), whence the result follows from
the previous lemma. �

Lemma 4.10. There exists an automorphism of A, satisfying µ(D0) = D[b]
and µ(D[b]) = D0, if and only if [b]∗ = −[b].

Proof. If [b]∗ = −[b], the permutation τ ∈ Sn defined by τ(i) = n− i takes
[b] to −[b], so we can define µ = ρ◦τ , where ρ is conjugation by the diagonal
matrix diag(πa1 , . . . , πan) with [b] =→a +〈→u〉. Sufficiency follows.

We denote by δ the canonical graph-distance on the 1-skeleton of the
BT-building. We say that a pair (D,D′) of maximal orders is of line-type
if there are exactly δ(D,D′) + 1 maximal orders containing D ∩D′. A pair
([c], [d]) ∈ Γ2 is of line-type when (D[c],D[d]) is of line-type. Automorphisms
of A necessarily take pairs of line-type to pairs of line-type. Note that, if
[b] = [b1, . . . , bn−1] is totally positive, then

1 + δ
(
D0,D[b]

)
≤ 1 +

n−1∑
i=1

bi ≤
n−1∏
i=1

(1 + bi),

and equality between the second and third expressions imply that at most
one bi in non-zero. Note that the expression on the right of the preceding
chain of inequalities is actually the number of vertices in S0(D). Hence, if
([c], [d]) is of line type and [d]− [c] is totally positive, then S0

(
D[c] ∩D[d]

)
is a line parallel to one of the axes. We conclude that any automorphism
preserving D0, and mapping D[b] to another totally positive order must
preserve the set of axes of the polytope S0(D0 ∩ D[b]). No automorphism
can take a line parallel to one axis to a line parallel to a different axis, since
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the total distance between consecutive elements in the line is different.
Applying this result to (ρ ◦ τ) ◦ µ with ρ ◦ τ defined as before, we show
that an automorphism interchanging the orders D0 and D[b] must replace a
line where consecutive vertices have a total distance a ∈ Z/nZ with a line
where consecutive vertices have a total distance −a. This can happen only
if −[b] = [b]∗. Necessity follows. �

For simplicity, if D = D′ ∩ D′′, for local maximal orders D′ and D′′

satisfying [b] = T (D′,D′′), we say that D is a local GEO of type [b]. By the
theory developed in §2, Theorem 3.1 follows from the following lemma:

Lemma 4.11. For any GEO D of type [b], we have Hk(D) = Hk(D0) =
O∗kk∗f unless the following conditions hold:

(1) f is even.
(2) [b] = −[b]∗.
(3)

∑f
i=1 ai ≡

f
2 (mod f), where →a +〈→u〉 = [b].

In the latter case Hk(D) = O∗kk∗(f/2).

Proof. For any element λ ∈ B, we have λD[b]λ
−1 = D[b], and the same

holds for a diagonal matrix whose diagonal entries are units. We conclude
that O∗kk∗f ⊆ Hk(D). On the other hand, Hk(D0) = O∗kk∗f , whence, unless
condition 2 holds, we have equality because of Lemma 4.9 and Lemma 4.10.
In the exceptional case, we conclude again from Lemma 4.9, that H(D) is
generated by O∗kk∗f and the norm of an arbitrary element u satisfying
uD0u

−1 = D[b] and uD[b]u
−1 = D0. The norm of such an element must

satisfy N(u)O∗kk∗f = πdO∗kk∗f , where d is the total distance r1 + · · · + rf
between D0 and D[b]. The symmetry condition implies that rm+ rf−m+1 is
independent of m. It follows that either d ≡ 0 (mod f) or d ≡ f

2 (mod f).
Certainly, this distinction is meaningless if f is odd. The result follows. �

5. Representations
Let H be a suborder of a full order D ⊆ A, let Σ = Σ(D) be the spinor

class field, and consider the set
Φ = {ρ(D,D′)|D′ ∈ gen(D), H ⊆ D′} ⊆ Gal(Σ/K).

When Φ is a group, the fixed subfield F (D|H) = ΣΦ is called the repre-
sentation field. More generally, the field F−(D|H) = Σ〈Φ〉, which is usu-
ally easy to compute, is called the lower representation field, while the
fixed field F−(D|H) = ΣΓ, where Γ = {γ ∈ Gal(Σ/K)|γΦ = Φ}, the up-
per representation field, has the trivial bound F−(D|H) ⊆ L when H is
an order contained in the maximal subfield L (see the discussion preced-
ing [4, Prop. 4.1]). Note that the representation field is defined if and only
if Γ = 〈Φ〉, i.e., F−(D|H) = F−(D|H).
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The field F−(D|H) is the class field corresponding to the class group
K∗
〈
I(D|H)

〉
⊆ JK , where I(D|H) = {N(a)|a ∈ AA, H ⊆ aDa−1} is the

relative spinor image. We conclude that the functionD 7→ F−(D|H) reverses
inclusions. In particular, if H is an order in a maximal subfield L, and if we
have F−(D|H) = L for some full order D containing H, the same holds for
every full order D′ with H ⊆ D′ ⊆ D, and the representation field is defined
for any such order. For the ring of integers OL of the maximal subfield L,
we can give a more precise result. We say that a full order D is strongly
unramified if Σ(D) is contained in the spinor class field for maximal orders
Σ0. Recall that a K-CSA has no partial ramification if it is locally a matrix
or a division algebra at all finite places [3].

Proposition 5.1. Assume D is a strongly unramified order, and A has
no partial ramification. Then for every maximal subfield L ⊆ A, such
that OL ⊆ D, the representation field F (D|OL) is defined and in fact
F (D|OL) = Σ(D) ∩ L.

Proof. It follows from [3, Prop. 4.3.4] than F (D0|OL) = Σ0∩L, if OL ⊆ D0
and D0 is maximal. The monotonicity implies that F−(D|OL) ⊇ Σ0∩L for
any full order D containing OL. On the other hand, we always have the
trivial bound F−(D|OL) ⊆ L. Since Σ(D) ⊆ Σ0, we have

Σ(D) ∩ L ⊆ Σ0 ∩ L ⊆ F−(D|OL) ⊆ F−(D|OL) ⊆ Σ(D) ∩ L,
whence equality follows. �

The preceding proposition applies in particular to GEOs. The hypothesis
on A is necessary, even for D = D0, as shown by the counter-example in [3,
§4.3]. This result does not helps us to know whether OL embeds into some
order in the genus of D or not. This is a local problem and can be answered
in some cases by Proposition 5.2 below.

Proposition 5.2. Let H be a local order such that S0(H) is contained in
the standard apartment. Assume D is a local GEO of type [b] ∈ Γ. Then
the following statements are equivalent:

(1) S0(H) has two vertices whose type difference is [b].
(2) There exist two vertices D[c] and D[d] in S0(H), such that [d] − [c]

is in the Sn-orbit of [b].
(3) H is contained in a conjugate of D.

Proof. The equivalence between (1) and (3) follows from the well known fact
that the automorphism group of A acts transitively on pairs of lattices with
the same invariant factors (§3). It is immediate that (2) implies (1), so we
prove the converse. Assume [b] = T (D[c],D[d]) for two maximal orders D[c]
and D[d] in S0(H). By applying the action of Sn on the standard apartment
(§3), we can assume that [d]− [c] is in the first quadrant. We conclude that



690 Luis Arenas-Carmona

(A) •A •A
•A

(B) •A •A

Figure 5.1. Two examples of embeddings of one GEO into another.

[b] and [d]−[c] are in the same orbit under the normalizerN(D0) ⊆ A∗. Now
we can prove that [d]− [c] = [b], reasoning as in the proof of Lemma 4.10.
The result follows. �

Example 5.3. Let D and H be local GEOs of type [3, 1] and [4, 1] respec-
tively. Then S0(D) can be embedded into S0(H) in three different ways,
corresponding to three embeddings of H into D, as shown in Figure 5.1(A).
Note that A denotes the image of one fixed maximal order in S0(D). In
this case the relative spinor image is Ik(D|H) = k∗, since the images of
the vertex A, under each of the three embeddings, are at different total
distances from the origin.

Example 5.4. Let D and H be local GEOs of type [3, 2] and [4, 2] re-
spectively. Then S0(D) can be embedded into S0(H) in just two dif-
ferent ways as in Figure 5.1(B). In this case the relative spinor image
Ik(D|H) = O∗kk∗3 ∪ π2O∗kk∗3 is not a group.

In order to apply this result to commutative orders, we need an explicit
description of the cell complex S0(H). We can do this for the order H =
OE , for a maximal subfield E ⊆ A, when A has no partial ramification.
Recall that, for an extension of number fields E/K, the local completion
E℘ = E ⊗K K℘ is a product of fields, and therefore we need a description
of S0(OL) for a semisimple commutative algebra L = E℘. This is provided
by next result. Here we identify the set of vertices of an n–dimensional
apartment with Zn, and all cartesian products must be understood in this
context.

Proposition 5.5. Assume that the n-dimensional local semisimple algebra
L =

∏r
i=1 Li ⊆ Mn(k) is a product of the fields Li. Then S0(OL) is con-

tained in an apartment A and its set of vertices has a decomposition of the
form

S0(OL) = S1 × Z× S2 × · · · × Z× Sr,
where every Si ⊆ Z[Li:k]−1 is the set of vertices in a simplex of dimension
e(Li/k)− 1.

Proof. Note that the regular representation φ : L→Mn(k) is, up to conju-
gacy, the only faithful n-dimensional representation of the k-algebra L. We
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Figure 5.2. Embedding a maximal separable conmutative
order in a GEO of type [1, 2].

conclude that the maximal orders containing OL are in correspondence with
the classes of fractional ideals in OL up to k∗-multiplication. By choosing
a suitable basis, we can assume that

L =



φ1(λ1) 0 · · · 0

0 φ2(λ2) · · · 0
...

... . . . ...
0 0 · · · φr(λr)


∣∣∣∣∣λi ∈ Li

 ⊆Mn(k),

where φi : Li → M[Li:k](k) is the regular representation with respect to a
basis of the form Si∪πiSi∪ · · ·∪πe(Li/k)−1

i Si of Li, for an arbitrary k-basis
Si of the largest unramified subfield of Li, and an arbitrary uniformizing
parameter πi of Li. Then all fractional ideals in L have the form I1×· · ·×Ir,
where Ii is a fractional ideal in Li. In particular, Ii is is homothetic to one
of the ideals (1),

(
π1
i

)
, . . . ,

(
π
e(Li/k)−1
i

)
. The fact that the corresponding

vertices form a simplex is immediate from the definition of the BT-building
in [2, §3]. �

Example 5.6. Consider the algebra L = F × k, where F is a ramified
quadratic extension of k, identified with the set of matrices of the form(

φ(f) 0
0 a

)
, for f ∈ F , a ∈ k, and φ : F → M2(k) the regular representa-

tion. Then S0(OL) is as shown in Figure 5.2(A).
The picture already tells us that OL is contained in a local GEO D of

type [1, 2], namely the one corresponding to the block in Figure 5.2(B1).
The blocks of the orders EDE−1 and E2DE−2, where E =

(
φ(πF ) 0

0 1

)
and πF is a uniformizing parameter of F , are shown in Figure 5.2(B2) and
Figure 5.2(B3) respectively. Note that the multiplicative group of L acts
transitively on the set of fractional ideals, whence conjugating by such ele-
ments, the block of any GEO representing OL can be moved inside S0(OL),
taking a given vertex to any prescribed possition in this block. This can be
used to give a second proof of Proposition 5.1 for GEOs.
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6. Global cell blocks for GEOs
For a global algebra satisfying EC, there is a simple way to describe the

conjugacy classes in a genus of GEOs in terms of maximal orders. First we
consider an indefinite quaternion algebra A and an Eichler order D ⊂ A
whose level has only two prime divisors, say L(D) = ℘α1

1 ℘α2
2 . Note that

there exists αi + 1 local maximal orders containing D℘i and they lie on a
path of the BT-tree at ℘i for i ∈ {1, 2}. It follows that the global maximal
orders containing D correspond to the vertices of a rectangular grid with
α1 +1 columns and α2 +1 rows. If we label these vertices alternating labels
on each row and column as shown in Figure 6.1(A), each label correspond
to a onjugacy class.

Let O0 be the genus of maximal orders in A and let ρ0 : O0 × O0 →
Gal(Σ0/K) be the distance map on maximal orders. The maximal ordersD1
and D2, corresponding to any pair of horizontally (resp. vertically) adjacent
vertices, satisfy ρ0(D1,D2) = |[℘1,Σ0/K]| (resp. |[℘2,Σ0/K]|), where I 7→
|[I,Σ0/K]| is the Artin map on ideals. It follows that the isomorphism class
of every maximal order in the grid depends only on the isomorphism class of
the order in the lower-left corner. This gives a simple way to describe which
Eichler orders embed into which others whose precise formulation is left to
the reader. Observe that the orders in the two corners of the lower edge
are conjugate when the length of that edge is even, while otherwise, their
distance is |[℘1,Σ0/K]| (See Figure 6.1). A similar result holds for the other
edges, and for Eichler orders of arbitrary level using higher dimensional
grids. According to the description of the spinor class field for Eichler orders
of a given level quoted in the introduction, the spinor class field Σ(D) is the
fixed field of the group generated by the Frobenius elements |[℘,Σ0/K]|,
for all places ℘ for which the valuation v℘(L) of the level L of D is odd. By
a simple counting argument (see the proof of Proposition 6.5 below), next
result follows:

Proposition 6.1. Let D = D1 ∩D2 and D′ = D3 ∩D4 be Eichler orders
of the same level, in a quaternion algebra A satisfying EC, and let Σ ⊆ Σ0
be the corresponding spinor class field. Let O = gen(D), while O0 is the
genus of maximal orders. Let ρ : O×O→ Gal(Σ/K) and ρ0 : O0 ×O0 →
Gal(Σ0/K) be the corresponding distance functions. Then D and D′ are
conjugate if and only if ρ0(D1,D3) ∈ Gal(Σ0/Σ).

More generally, in the hypotheses of the previous lemma, for any idelic
element a ∈ AA satisfying D3 = aD1a

−1, we have

ρ(D,D′) = ρ(D, aDa−1)ρ(aDa−1,D′) = ρ0(D1,D3)
∣∣
Σ,

since, by the preceeding result, aDa−1 and D′ are conjugate.
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Figure 6.1. Maximal orders containing an Eichler order.

Example 6.2. Assume |[℘1,Σ0/K]| and |[℘2,Σ0/K]| are non-trivial and
different. If α1 = 3 and α2 = 5 as in Figure 6.1(A), we have [Σ0 : Σ] = 4,
and D1 ∩ D2 is conjugate to D3 ∩ D4, as soon as D1 is in the class A,
while D3 ∈ A ∪B ∪ C ∪D. In Figure 6.1(C), the level ℘2

1℘
4
2 of the Eichler

order is a square, so there is a unique class of maximal orders, namely A, in
the corners of the grid corresponding to this Eichler order. Such an order
can only be the intersection of two maximal orders in A. Figure 6.1(B)
shows an example where |[℘1,Σ0/K]| = |[℘2,Σ0/K]| is non-trivial, whence
[Σ0 : Σ] = 2. Here the same Eichler order can be defined as the intersection
of two orders in A or two orders in C.

For a GEO D, we can give a similar labeling of vertices to the product
cell complex S(D) =

∏
℘S0(D℘) where the product is taken over all places

at which D is not maximal, and each factor of this product is the block
corresponding to a local GEO as described in §3-§4. When D℘ = D0 ∩D[r]
for a totally positive element [r] ∈ Γ, the pair of vertices (D0,D[r]) is
completely determined up to reversion by Lemma 4.8. We call such a pair,
a pair of opposite vertices, while D0 and D[r] are called extreme vertices.
A vertex in the product cell complex S(D) is called extreme if each of its
coordinates is extreme. We adopt a similar convention for pairs of opposite
vertices. Locally, there are two ordered pairs of opposite vertices, whenever
the order is not maximal. Globally, there are 2t pairs of such vertices, where
t is the number of places where the order is not maximal.

Proposition 6.3. Let A be a CSA over a number field K satisfying EC.
Let D1, D2, D3, and D4 be 4 maximal orders. Then there exists an element
a ∈ A satisfying both D3 = aD1a

−1 and D4 = aD2a
−1 if and only if the

following conditions hold:
• T℘(D1,D2) = T℘(D3,D4) for all finite places ℘.
• D1 and D3 are isomorphic.

Proof. The conditions are obviously necessary, so we prove the sufficiency.
Without loss of generality, we can assume that D1 = D3. In particular,
there exists an adelic element b ∈ A∗A satisfying both D1 = bD1b

−1 and
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D4 = bD2b
−1. Fix a finite place ℘, and write A℘ = Mf (B℘) where B℘

is a local division algebra. By a change of basis, if needed, we can as-
sume also that D2℘ and D1℘ are both in the standard apartment and
D1℘ = Mf (OB). Since D1℘ = b℘D1℘b

−1
℘ , we conclude that b℘ ∈ B∗D∗1℘,

and therefore its reduced norm satisfies N(b℘) ∈ K∗f℘ O∗K℘
. Since conjuga-

tion by a diagonal matrix of the form diag(β1, . . . βf ), where β1, . . . βf ∈ B
are elements with the same absolute value, stabilizes every point in the
standard apartment, we can replace b by an idele whose reduced norm is 1.
Now the result is a consequence of the Strong Approximation Theorem
for the group SL1(A). �

Proof of Theorem 1.1. Let Σ0 and Σ be as in Theorem 3.1. As noted in the
proof of Lemma 4.11, the symmetry condition implies that 2(r1 + · · ·+ rf )
is always a multiple of f = f℘(A/K). We conclude that Σ0/Σ is always
an exponent-2 extension. On the other hand, Σ0/K has exponent n where
n2 = dimK A. If n is odd we conclude Σ = Σ0, and the first statement
follows.

To prove the last statement, we fix an order D in the genus, and an
expression D = D1∩D2. Then for any maximal order D′1 we choose a ∈ A∗A
satisfying D′1 = aD1a

−1 and define ∆(D′1) = aD2a
−1. �

Remark 6.4. Note that ∆(D′1) above depends on the choice of a but the
conjugacy class of D′ = aDa−1 does not, by the preceding result. The
map ψ is, however, non canonical, as it depends on the choice of the pair
(D1,D2) of opposite vertices in S(D).
Proposition 6.5. Let A be a CSA over a number field K satisfying EC.
Let D = D1 ∩ D2 and D′ = D3 ∩ D4 be locally symmetric GEOs of A in
the same genus O, while O0 is the genus of maximal orders. Let Σ ⊆ Σ0 be
the corresponding spinor class fields, and let ρ : O × O → Gal(Σ/K) and
ρ0 : O0 × O0 → Gal(Σ0/K) be the corresponding distance functions. Then
ρ(D,D′) is the restriction of ρ0(D1,D3) to Σ, in particular D and D′ are
conjugate if and only if ρ0(D1,D3) is trivial on Σ.
Proof. The symmetry condition implies T℘(D1,D2) = T℘(D3,D4) for every
finite place ℘. It follows that D and D′ are conjugate if and only if there
is an extreme vertex in S(D) conjugate to D3. By Lemma 4.11, the Ga-
lois group Gal(Σ0/Σ) is generated by the elements λ(℘) = |[℘,Σ0/K]|u(℘),
where ℘ runs over the set T of places at which D is not maximal and
u(℘) is the total distance between opposite vertices in S0(D℘), as defined
in §3. Furthermore, Gal(Σ0/Σ) is a group of exponent 2, so every ele-
ment has the form

∏
℘∈T ′ λ(℘) for some T ′ ⊆ T . In particular, for any

σ ∈ Gal(Σ0/Σ), there exists an extreme vertex in S(D) whose distance to
D1 is σ. If ρ0(D1,D3) ∈ Gal(Σ0/Σ), the last statement follows. The general
case is proved reasoning as in the paragraph following Proposition 6.1. �
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Figure 6.2. Maximal orders containing a GEO.

Corollary 6.6. In the hypotheses o the previous proposition, if Σ = Σ0
all extreme maximal orders in S(D) are conjugate. This is the case, in
particular, when A is odd dimensional.

Example 6.7. Assume A is a 62-dimensional central division algebra hav-
ing ramification degree 2 at ℘1 and 3 at ℘2, and let D be a GEO having
type [1, 1] at ℘1 and [1] at ℘2. Then the complex S(D) is a cube as shown
in Figure 6.2(A). This is a locally symmetric GEO, whence the order D′

whose complex S(D′) has an order in the class D at the lower left corner, as
in Figure 6.2(C), is isomorphic to D. On the other hand, if D′′ is a GEO in
the same algebra having type [2, 1] at ℘1 and [1] at ℘2, the complex S(D′′)
is as shown in Figure 6.2(B). This is not locally symetric at ℘1, and in fact
the order D′′′ in the same genus whose complex S(D′′′) has an order in the
class C in the lower left corner is, in general, not isomorphic to D′′, as a
quick glance to Figure 6.2(D) shows.

Proof of Theorem 1.2. Denote by N(H) the normalizer of every order H.
Let D = D1 ∩D2 = D3 ∩D4. Let ℘1, . . . , ℘r be the places at which D1 and
D2 are different. Assume D is symmetric exactly at the places ℘1, . . . , ℘t.
By Proposition 6.3, there exists an element φ ∈ N = N(D) satisfying
φD1φ

−1 = D3 and φD2φ
−1 = D4 if and only if T℘(D1,D2) = T℘(D3,D4) for

every finite place ℘, while D1 and D3 are isomorphic. The first condition is
equivalent to D1℘ = D3℘ for ℘ ∈ {℘t+1, . . . , ℘r}. There are 2t such vertices,
and they are the extreme vertices in S(D̃) for a locally symmetric GEO D̃

with Σ(D) = Σ(D̃). Note that N0 = N(D1)∩N(D2) is the stabilizer of D1
in N. Reasoning as in the proof of Proposition 6.5 we prove [N(D) : N0] =
2t[Σ0 : Σ]−1.



696 Luis Arenas-Carmona

(A)•

••

•[D]

[D][D′]

[D′] (B)•

••

•[D]

[D′′][D′]

[D′] (C)•

••

•[D]

[D′′][D′′]

[D′] (D)•

••

•[D]

[D′][D′′]

[D′]

Figure 6.3. Some labelings of definite orders in the last
example of §6.

Now, let Λi ⊆ Kn be a lattice satisfying Di = EndOK
(Λi), for i = 1, 2.

If a ∈ N0, then aΛi = biΛi for some idele bi ∈ JK . Note that the ideal
bni OK is the principal ideal generated by det(a), whence b1OK = b2OK ,
so we can assume b1 = b2, and omit the subindex. We define Φ(a) as
the class of the ideal bOK in the ideal class group g of K. In particular,
Φ(a)n ∈ g is the identity. If Φ(a) is the identity, we can assume b ∈ K∗,
so ab−1 ∈ AutOK

(Λi) = D∗i , or a ∈ K∗D∗. It remains to prove that Φ :
N0 7→ g(n) is surjective. For this, let b be any idele such that bnOK is a
principal ideal, say bnOK = λOK with λ ∈ K∗. Then choose any global
matrix c with determinant λ−1, and any adelic matrix d = (d℘)℘ with
determinant λb−n ∈

∏
℘O∗℘ satisfying dΛi = Λi for i = 1, 2. In fact, we

can assume, locally, that D1 and D2 are in the standard apartment and
choose a diagonal matrix whose diagonal entries are units. Let ĝ = bcd ∈
SLn(A). The Strong Approximation Theorem implies the existence of a
global matrix g ∈ SLn(K), such that gΛi = ĝΛi = bcΛi. Now we take
a = c−1g. The result follows. �

We conclude by giving an example of a definite quaternion algebra, and
two Eichler orders in it that are not isomorphic, but the orders in the
lower left (resp. the upper right) corners of the corresponding grids are
isomorphic.

Example 6.8. Set A =
(
−3,−23

Q

)
, the rational quaternion algebra ramify-

ing only at∞ and 23. Note that there is a unique spinor genera of maximal
orders in A, since the wide class number of Q is 1, while there are 3 con-
jugacy classes [10, Eqn. (8)]. In particular, any two maximal orders in A
generate isomorphic Z[1/p]-algebras for any prime p 6= 23.

As usual, we denote by i and j generators of A satisfying i2 = −23,
j2 = −3, and ij = −ji. The order Z[i, j] is maximal at any finite place
outside {2, 3}, so the orders D = Z[i, ω, ν] and D′ = Z[η, j, ν], where j =
2ω − 1, i = 2η − 1, and 3ν = ij + j = 2ηj, are maximal. These two orders
coincide outside the place 2. They are neighbors at 2, since N(i + j) is a
uniformizing parameter, so that Z2[i+ j] = OQ2[i+j] is contained in exactly
2 maximal orders [7, Prop. 4.2]. Note that ω is a unit in D, and conjugation
by ω permutes cyclically the three neighbors at 2 of D. We conclude that
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these neighbors are all isomorphic to D′. In particular D and D′ must fall
in different conjugacy classes, since the Bruhat-Tits tree is connected and
all conjugacy classes must be represented among the orders that coincide
with D outside {2}. For the same reason, D′ must have a neighbor D′′ in
the remaining class.

Fix any finite place q different from 2 and 23. For any Eichler order H
of level 2q, consider the square S(H), horizontal edges denoting neighbors
at 2, with each vertex labeled with the isomorphism class of the corre-
sponding order. If D has a neighbor at q that is isomorphic to D′, we must
have two orders H1 and H2 whose corresponding squares are labeled as in
Figure 6.3(A) and 6.3(B). If not, then D has a neighbor at q isomorphic
to D′′. If D′′ has a neighbor at 2 isomorphic to itself, we have two orders
whose corresponding squares are labeled as in Figure 6.3(C) and 6.3(D).
Otherwise1, every neighbor at 2 of D′′ is isomorphic to D′, and we can
interchange D and D′′ in Figures 6.3(A) and 6.3(B). In every case we have
two squares with two opposite vertices labeled similarly, but not the others,
so they must correspond to non-isomorphic orders.
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