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Level raising for p-adic Hilbert modular forms

par James NEWTON

Résumé. Ce travail généralise les résultats antérieurs de l’auteur
au cas de formes automorphes surconvergentes p-adiques pour une
algèbre de quaternions totalement définie sur un corps totalement
réel. Nous montrons des résultats qui sont les analogues de résul-
tats classiques « d’augmentation du niveau » dans la théorie des
formes modulaires mod p.

Grosso modo, nous montrons qu’une forme propre surconver-
gente p-adique de pente finie dont la représentation galoisienne
locale associée à un idéal premier auxiliaire l - p est, à torsion par
une caractère près, somme directe de caractères triviaux et cyclo-
tomiques réside dans une famille de formes propres dont les repré-
sentations galoisiennes locales en l sont génériquement (à torsion
près) une extension ramifiée du caractère trivial par le caractère
cyclotomique.

Nous donnons quelques exemples explicites de formes auto-
morphes p-adiques à laquelle nos résultats sont applicables, et
donnons une famille générale d’exemples dont l’existence résulte-
rait de contre-exemples à la conjecture de Leopoldt pour les corps
totalement réels.

Ces résultats sont utilisés dans un autre travail de l’auteur sur le
problème de compatibilité locale–globale aux places de Steinberg
pour les formes modulaires de Hilbert « de poids partiel un ».

Abstract. This paper generalises previous work of the author
to the setting of overconvergent p-adic automorphic forms for a
definite quaternion algebra over a totally real field. We prove re-
sults which are analogues of classical ‘level raising’ results in the
theory of mod p modular forms. Roughly speaking, we show that
an overconvergent eigenform of finite slope whose associated local
Galois representation at some auxiliary prime l - p is (a twist of)
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a direct sum of trivial and cyclotomic characters lies in a family
of eigenforms whose local Galois representation at l is generically
(a twist of) a ramified extension of trivial by cyclotomic.

We give some explicit examples of p-adic automorphic forms
to which our results apply, and give a general family of exam-
ples whose existence would follow from counterexamples to the
Leopoldt conjecture for totally real fields.

These results also play a technical role in other work of the
author on the problem of local–global compatibility at Steinberg
places for Hilbert modular forms of partial weight one.

1. Introduction

In the paper [17], we proved some results related to the levels of over-
convergent p-adic automorphic forms associated with definite quaternion
algebras over Q (as defined by Buzzard [4]). The main result is, roughly
speaking, that an overconvergent automorphic form whose associated local
Galois representation at some auxiliary prime l is (a twist of) a direct sum
of trivial and cyclotomic characters, lies in a family of eigenforms whose lo-
cal Galois representation at l is generically (a twist of) a ramified extension
of trivial by cyclotomic. Any classical member of such a family necessarily
generates an automorphic representation whose local factor at l is (a twist
of) Steinberg, so this can be regarded as an analogue of the level raising re-
sults of Ribet [22] and Diamond–Taylor [12]. Such results were conjectured
by Paulin in his work on local–global compatibility [19] (see also [20]).

In this paper we generalise results of [17] to definite quaternion algebras
over a totally real field F . Something which we would like to emphasize
in this paper, which was not made clear in our previous work, is that our
results apply to many p-adic automorphic forms whose attached Galois
representation is reducible — we only have to exclude things which look
something like a weight 2 Eisenstein series.

We briefly set-up some notation so we can describe a version of our main
theorem, Theorem 4.3. Let D be a definite quaternion algebra over a totally
real number field F . Fix a prime p and let n be an ideal of OF , coprime
to p and the discriminant δ of D. Denote by ED(n) the reduction of the
eigenvariety of tame level U1(n)1 constructed in [5, Part III]. Let l be a
prime ideal of OF , coprime to npδ. As remarked above, our results do not
apply to certain points of ED(n) — they all have reducible associated Galois
representations, and their weights are, up to a shift in central character and
twist by a finite order character, of parallel weight two. We call such points
‘very Eisenstein’ — more precisely, the points correspond to very Eisenstein
maximal ideals of Hecke algebras in the sense of Definition 2.17.

1by which we mean the usual subgroup of (D ⊗F AF,f )×, see Section 2.1



Level raising for p-adic Hilbert modular forms 623

Theorem. Suppose we have a point φ ∈ ED(n) which is not very Eisen-
stein, and with T 2

l (φ)−(Nl+1)2Sl(φ) = 0. Let the roots of the l-Hecke poly-
nomial2 corresponding to φ be α and (Nl)α where α ∈ C×p . Then the image
of the point φ in ED(nl) lies in a family of l-new points3. In particular, all
the classical points in this family arise from automorphic representations
of (D ⊗F AF )× whose factor at l is a special representation4.

We also give some examples of p-adic Hilbert modular forms to which
our main theorem applies. In fact, all our examples are p-ordinary. The first
collection (see 4.2.1) only exists if Leopoldt’s conjecture is false for F and
p, and for these examples it is crucial that our results hold in the reducible
case. The second kind of example (see 4.2.2) is found by doing some explicit
computations with members of a Hida family — we just discuss the case
F = Q for simplicity. We have also taken the opportunity to include some
corrections to [17] at the end of the paper.

In comparison to [17], we have to generalise our arguments to work
over a higher dimensional base (since weight space has dimension greater
that 1), and also take care of any possible Leopoldt defect. These modifi-
cations could be avoided if one was happy to just work over, say, the one-
dimensional subspace of ‘parallel weights’ in weight space. On the other
hand, one of the main technical ingredients in our work is a form of Ihara’s
Lemma (Lemma 2.20) which requires a more complicated combinatorial
argument in this setting, regardless of the region of weight space one works
over.

These results also provide a technical input to some recent work on the
question of local–global compatibility at Steinberg places for Hilbert mod-
ular forms of partial weight one [18].

2. Modules of p-adic overconvergent automorphic forms and
Ihara’s lemma

In this section we will prove the results we need about modules of p-adic
overconvergent automorphic forms for quaternion algebras over totally real
fields.

2.1. Some notation and definitions. We begin by setting out some
notation and definitions, following the presentation of [5, Part III]. Let p
be a fixed prime, and fix a totally real field F of degree g over Q, with ring
of integers OF . Let K0 denote the closure in Qp (a fixed algebraic closure
of Qp) of the compositum of the images of all the field homomorphisms
F → Qp. We let K be any complete extension of K0, and denote by I the

2this is X2 − Tl(φ)X + (Nl)Sl(φ)
3these are the points arising from the natural analogue of l-newforms — more precisely, we

mean points lying in the subspace E D(nl)l-new, constructed in Proposition 4.2
4i.e. a twist of the Steinberg representation of GL2(Fl)
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set of field homomorphisms F → K. If we fix an isomorphism C ∼= Qp then
we may identify I with the set of real places of F . We let J denote the set
of primes of F dividing p. For j ∈ J we denote by Fj the completion of F
at j, with ring of integers Oj . Set Op = OF ⊗Z Zp and Fp = F ⊗QQp. Then
Op =

∏
j∈J Oj and Fp =

∏
j∈J Fj . Fix uniformisers πj of each Fj and let

π ∈ Fp be the element with jth component πj for each j ∈ J . We also use
π to denote the ideal of OF which is the product of the prime ideals over p.

Any i ∈ I gives a map Fp → K, factoring through the projection Fp → Fj
for some j := j(i) ∈ J . The map i 7→ j(i) hence induces a natural surjection
I → J . For any set S, (aj) ∈ SJ and i ∈ I we write ai to denote aj(i).

Let D be a totally definite quaternion algebra over F with discriminant δ
prime to p. Fix a maximal order OD of D and isomorphisms OD⊗OF

OFv
∼=

M2(OFv ) for all finite places v of F where D splits. Note that these induce
isomorphisms D⊗F Fv ∼= M2(Fv) for all such v. We define Df = D⊗F AF,f ,
where AF,f denotes the finite adeles over F . WriteNm for the reduced norm
map from D×f to A×F,f . Note that if g ∈ Df we can regard the projection of
g to D ⊗F Fp, gp, as an element of M2(Fp).

For a J-tuple α ∈ ZJ≥1, we let Mα denote the monoid of matrices

(
a b
c d

)
∈M2(Op) = Dp

such that παj

j |cj , πj - dj and ajdj − bjcj 6= 0 for each j ∈ J . If U is an open
compact subgroup of D×f and α ∈ ZJ≥1 we say that U has wild level ≥ πα

if the projection of U to D×p is contained in Mα.
We will be interested in two key examples of open compact subgroups

of D×f . For n an ideal of OF coprime to δ, we define U0(n) (respectively
U1(n)) to be the subgroup of D×f given by the product

∏
v Uv, where Uv =

(OD ⊗ Ov)× for primes v|δ, and Uv is the matrices in D×v = GL2(Ov) of

the form
(
∗ ∗
0 ∗

)
(respectively

(
∗ ∗
0 1

)
) mod vvalv(n) for all other v. For

α = (αj)j∈J ∈ ZJ≥1, U1(n) has wild level ≥ πα if for each j ∈ J π
αj

j divides
the ideal generated by n in Oj .

Suppose we have α ∈ ZJ≥1, U a compact open subgroup of D×f of wild
level ≥ πα and A a module over a commutative ring R, with an R-linear
right action of Mα. We define an R-module L (U,A) by

L (U,A) = {f : D×f → A : f(dgu) = f(g)up ∀d ∈ D×, g ∈ D×f , u ∈ U}

where D× is embedded diagonally in D×f . If we fix a set {di : 1 ≤ i ≤ r} of
double coset representatives for the finite double quotient D×\D×f /U , and
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write Γi for the group d−1
i D×di ∩ U , we have an isomorphism

L (U,A)→
r⊕
i=1

AΓi ,

given by sending f to (f(d1), f(d2), . . . , f(dr)).
For f : D×f → A, x ∈ D×f with xp ∈ Mα, we define f |x : D×f → A by

(f |x)(g) = f(gx−1)xp. Note that we can now also write

L (U,A) = {f : D×\D×f → A : f |u = f for all u ∈ U}.

We can define double coset operators on the spaces L (U,A). If U , V
are two compact open subgroups of D×f of wild level ≥ πα, and A is as
above, then for η ∈ D×f with ηp ∈ Mα we may define an R-module map
[UηV ] : L (U,A) → L (V,A) as follows: we decompose UηV into a finite
union of right cosets

∐
i Uxi and define

f |[UηV ] =
∑
i

f |xi.

2.2. Overconvergent automorphic forms. We let W denote the weight
space defined in [5, p. 65] — it is a rigid analytic space over K with di-
mension g+ 1 + d, where d is the defect in Leopoldt’s conjecture for (F, p).
Affinoid K-spaces X equipped with a map to W correspond bijectively
with continuous group homomorphism κ : O×p × O×p → O(X)×, such that
the kernel of κ contains a subgroup of O×F of finite index (where O×F is
embedded in O×p × O×p via the map γ 7→ (γ, γ2)).

We write κ = (n,v) where n : O×p → O(X)× is the composition of the
map γ 7→ (γ, 1) with κ, and v : O×p → O(X)× is defined similarly with
respect to the second component of O×p × O×p .

We define locally algebraic (or classical) points in the weight space W
following [5, §11] (although we use a different notation for weights of Hilbert
modular forms). Suppose we have k ∈ ZI≥2, w ∈ Z such that the components
ki of k are all congruent to w mod 2, and ε : O×p → K ′× a finite order
character (with K ′/K a finite extension). Then we denote by (k, w, ε) ∈
W (K ′) the point corresponding to the map

κ : O×p × O×p → K ′×

(a, b) 7→ ε(a)
∏
i∈I

aki−2
i b

w−ki
2

i .

In the above ai denotes the image in K of aj(i) ∈ Fj under the embedding
i (and similarly for bi).

Let NK denote the set {|x| : x ∈ K
×
, |x| ≤ 1} and let N ×

K denote
NK\{1}.
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For r ∈ (NK)J we define Br as in [5, pp. 64-65] — it is a rigid analytic
subvariety of the unit g-polydisc over K. For all complete extensions K ′/K
we have

Br(K ′) = {z ∈ K ′I : ∃y ∈ Op such that for all i, |zi − yi| ≤ ri}.
Similarly if r ∈ (N ×

K )J we have B×r satisfying

B×r (K ′) = {z ∈ K ′I : ∃y ∈ O×p such that for all i, |zi − yi| ≤ ri}.
Supposing we have a map of rigid spaces X → W , where X is a reduced

K-affinoid. We have an associated continuous group homomorphism κ =
(n,v) : O×p × O×p → O(X)×. The map n factors as a product (over j ∈ J)
of maps nj : O×j → O(X)×. Let r ∈ (N ×

K )J . We say that κ is r-analytic if
for each j ∈ J the character nj is induced by a morphism of rigid analytic
varieties nj : B×r ×X → Gm.

Now for r ∈ (NK)J we define AX,r to be the K-Banach algebra O(Br ×
X). We endow AX,r with the supremum norm. Suppose we have α ∈ ZJ≥1.
We let r|πα| denote the element of (N ×

K )J with j component equal to
rj |π

αj

j |. If κ is r|πα|-analytic then we can define a (continuous, norm-
decreasing) right action of Mα on AX,r as in [5, pp. 71-72]. First we extend
v to a map v : F×p → O(X)× by setting v(πj) = 1 for all j ∈ J . The formula

‘on points’ for the Mα-action is that if f ∈ AX,r, γ =
(
a b
c d

)
∈Mα,

(f · γ)(z, x) = n(cz + d, x)v(det(γ), x)f
(
az + b

cz + d
, x

)
,

where x ∈ X(K ′) and z ∈ Br(K ′). It follows from [5, Proposition 8.3] that
for fixed (κ, r) as above, there exists an α such that κ is r|πα|-analytic.

We now define spaces of overconvergent automorphic forms, as in [5,
Part III].

Definition 2.1. Let X be a reduced affinoid over K and let X → W
be a morphism of rigid spaces, inducing κ : O×p × O×p → O(X)×. If we
have r ∈ (NK)J and α ∈ ZJ≥1 such that κ is r|πα|-analytic, and U a
compact open subgroup of D×f of wild level ≥ πα, then define the space of
r-overconvergent automorphic forms of weight κ (or ‘weight X’) and level
U to be the O(X)-module

SDX(U ; r) := L (U,AX,r).

If we endow SDX(U ; r) with the norm |f | = maxg∈D×
f
|f(g)|, then the

isomorphism

(2.1) SDX(U ; r) ∼=
r⊕
i=1

A Γi
X,r
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induced by fixing double coset representatives di is norm preserving. As
discussed in [5, pp. 68-69], the groups Γi act on AX,r via finite quotients,
and AX,r is an ONable Banach O(X)-module (it is the base change to
O(X) of O(Br), and all Banach spaces over a discretely valued field are
ONable), so SDX(U ; r) is a Banach O(X)-module satisfying property (Pr)
of [5].

Lemma 2.2. Suppose X, κ, r and α are as in Definition 2.1. Then for
any reduced K-affinoid Y → X the natural map AX,r → AY,r induces an
isomorphism of Banach modules

SDX(U ; r)⊗̂O(X)O(Y ) ∼= SDY (U ; r).

Proof. It is enough to check that the natural map

A Γi
X,r⊗̂O(X)O(Y )→ (AX,r⊗̂O(X)O(Y ))Γi = A Γi

Y,r

is an isomorphism. Denote by eX the idempotent projection onto the Γi-
invariants, so that A Γi

X,r = eXAX,r

AX,r = eXAX,r ⊕ (1− eX)AX,r,

hence
AY,r = AX,r⊗̂O(X)O(Y )

= eXAX,r⊗̂O(X)O(Y )⊕ (1− eX)AX,r⊗̂O(X)O(Y ).
We also have

AY,r = eY AY,r ⊕ (1− eY )AY,r

and it is clear that
eXAX,r⊗̂O(X)O(Y ) ⊂ eY AY,r

and
(1− eX)AX,r⊗̂O(X)O(Y ) ⊂ (1− eY )AY,r

so we deduce that both these inclusions are equalities, and in particular
eXAX,r⊗̂O(X)O(Y ) = eY AY,r. �

There are maps from spaces of classical automorphic forms into our
spaces of overconvergent automorphic forms (with locally algebraic weight),
which we now describe. Let U0 be a compact open subgroup of D×f of the
form U ′ × GL2(Op), and choose α ∈ ZJ≥1. Choose a character ε : ∆ :=
U0∩U0(πα)/U0∩U1(πα)→ K ′× for K ′/K finite. Suppose we have a locally
algebraic weight (k, w, ε). Then as in [5, §9] we can define a finite dimen-
sional K-vector space Lk,w with a K-linear right action of Mα, such that
L (U0 ∩ U1(πα), Lk,w) is isomorphic (after tensoring with C) to a classical
space of automorphic forms for D. Denote by L (U0 ∩U1(πα), Lk,w)(ε) the
ε-eigenspace (over K ′) for the left action of ∆, induced by f 7→ f |u−1. As
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described in [5, §11], for any r ∈ (NK)J there is an embedding (equivariant
with respect to the Hecke operators defined below)

ι : L (U0 ∩ U1(πα), Lk,w)(ε)→ SD(k,w,ε)(U0 ∩ U0(πα); r).

2.3. An explicit description of the action of special elements of
Mα on AX,r. Later in this paper we will have to perform a rather explicit
calculation involving AX,r and the action of a certain element of Mα. Sup-
pose we have r ∈ (NK)J such that for every j ∈ J , rj = |xj | for some
xj ∈ K (we can always enlarge K to ensure this). Let Ir denote the ideal
in Op whose elements are y ∈ Op such that |yj | ≤ rj for each j ∈ J . Let
S ⊂ Op denote a set of representatives for Op/Ir. We write Br as a disjoint
union of connected rigid spaces

Br =
∐
s∈S

Bsr

where we have
Bsr(K ′) = {z ∈ K ′I : such that for all i, |zi − si| ≤ ri}.

Let 1 ∈ (NK)J denote the element with 1 in every component. There is an
isomorphism

νr : S × B1 =
∐
s∈S

B1 → Br

which maps (s, z) on the left hand side to (zixi + yi)i∈I ∈ Bsr. This induces
an isomorphism ν∗r : AX,r →

∏
s∈S AX,1. We choose N a positive integer,

sufficiently large so that |πj |N < rj for all j ∈ J , and compute how νr

intertwines the action of γ =
(

1 πN

0 1

)
. Note that γ ∈Mα for all α.

Lemma 2.3. For f ∈ AX,r, x ∈ X and (s, z) in S × B1 we have

ν∗r (f · γ)((s, z), x) = ν∗r (f)((s, (zi + πNi /xi)i∈I), x).

Proof. This is a simple calculation. Note that the assumption on N implies
that (zixi + yi + πN )i∈I remains in the connected component Bsr �

2.4. Dual modules. Suppose A is a Banach algebra. Given a Banach A-
module M we define the dual M∗ to be the Banach A-module of continuous
A-module morphisms from M to A, with the usual operator norm. We
denote the O(X)-module A ∗X,r by DX,r.

If the map κ corresponding to X is r|πα|-analytic, then Mα acts continu-
ously on AX,r, so DX,r has an O(X)-linear right action of the monoid M−1

α

given by (f ·m−1)(x) := f(x ·m), for f ∈ DX,r, x ∈ AX,r and m ∈ Mα.
If U is as in Definition 2.1 then its projection to GL2(Fp) is contained
in Mα ∩ M−1

α , so it acts on DX,r. This allows us to make the following
definition:
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Definition 2.4. For X, κ, r, α and U as above, we define the space of
dual r-overconvergent automorphic forms of weight X and level U to be
the O(X)-module

VD
X(U ; r) := L (U,DX,r).

As in (2.1), we have a norm preserving isomorphism

(2.2) VD
X(U ; r) ∼=

r⊕
i=1

DΓi
X,r.

Thus VD
X(U ; r) is a Banach O(X)-module, not necessarily satisfying the

property (Pr) (since DX,r is not necessarily ONable).
If U , V are two compact open subgroups of D×f of wild level ≥ πα,

then for η ∈ D×f with ηp ∈ M−1
α we get double coset operators [UηV ] :

VD
X(U ; r)→ VD

X(V ; r).

2.5. Hecke operators. For an ideal a of OF , we define the Hecke algebra
away from a, T(a), to be the free commutative O(X)-algebra generated by
symbols Tv, Sv for finite places v of F prime to a. If δp divides a then we
can define the usual action of T(a) by double coset operators on SDX(U ; r):
for v - δ define $v ∈ Af to be the finite adele which is πv at v and 1 at the
other places. Abusing notation slightly, we also write $v for the element

of D×f which is
(
πv 0
0 πv

)
at v and the identity elsewhere. Similarly set ηv

to be the element of D×f which is
(
πv 0
0 1

)
at v and the identity elsewhere.

On SDX(U ; r) we let Tv act by [UηvU ] and Sv by [U$vU ]. Similarly on
VD
X(U ; r) we define Tv to act by [Uη−1

v U ] and Sv by [U$−1
v U ]. We use

different notation for Hecke operators at primes above p. If p factors in F
as
∏
j∈J p

ej

j then we let Uj denote the Hecke operator [UηpjU ] acting on
SDX(U ; r) and let Uπ denote

∏
j∈J Uj . It follows from [5, Lemma 12.2] that

Uπ is a norm-decreasing compact endomorphism of SDX(U ; r).
As remarked above, for a locally algebraic weight (k, w, ε), there is an

embedding

ι : L (U0 ∩ U1(πα), Lk,w)(ε)→ SD(k,w,ε)(U0 ∩ U0(πα); 1).

The well-known classicality criterion in this setting (for example, it is a
special case of [14, Theorem 3.9.6]) tells us that generalised eigenvectors for
the operator Uπ on the right hand side of the above map, with eigenvalue
of sufficiently small slope, lie in the image of ι. We do not need to recall
the precise criterion here, it will be sufficient to record its consequences for
Zariski density of classical points in the eigenvariety.
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Definition 2.5. Let ED(n) be the reduction of the eigenvariety of tame
level U1(n) constructed (as in [5]) from the spaces of overconvergent forms
defined in Definition 2.1, the compact operator Uπ and the Hecke algebra
T(δpn). It comes equipped with a map ED(n) → W . We say that a point
of ED(n) is classical if it corresponds to a system of Hecke eigenvalues
arising in the image of ι, with the caveat that we exclude points arising
from f = ι(f0) where f0 : D×f → Lk,w factors through the reduced norm
Nm : D×f → A×F,f (so k = (2, . . . , 2)), and denote the set of classical points
by Z cl.

We say that a point x of ED(n) is essentially classical if there exists
a p-adic character ψ of Gal(F/F ), unramified at places not dividing pδn,
such that the twist by ψ of the p-adic Galois representation associated to
x is isomorphic to the Galois representation associated to some cuspidal
Hilbert modular form. We denote the set of essentially classical points by
Z ecl.

The reason for our terminology is that the classical points arise from
cuspidal Hilbert modular eigenforms of cohomological weight. Note that
we could formulate the definition of essentially classical purely in terms of
Hecke eigenvalues, but it seems simplest to give the Galois theoretic descrip-
tion. We have to use the notion of essentially classical to avoid assuming
Leopoldt’s conjecture for (F, p): the Zariski closure of the classical weights
in W has dimension 1 + g whilst W has dimension 1 + g + d. See also [7],
before the statement of Theorem 5.9, for the same notion.

The following is a consequence of [5, Part III] (see also [7], following the
statement of Theorem 5.9).

Theorem 2.6. The eigenvariety ED(n) is equidimensional of dimension
1 + g + d. The map ED(n) → W is locally finite, and Z ecl is a Zariski
dense subset of ED(n).

2.6. A pairing. In this section X, κ, r, α and U will be as in Defini-
tion 2.1. We will denote by V another compact open subgroup of wild level
≥ πα. We fix double coset representatives {di : 1 ≤ i ≤ r} for the double
quotient D×\D×f /U .

Definition 2.7. For x ∈ D×f we denote by γU (x) the rational number

[x−1D×x ∩ U : O×,+F ∩ U ]
[O×,+F : O×,+F ∩ U ]

where O×,+F denotes the group of totally positive units.
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Lemma 2.8. For u ∈ U , d ∈ D× and x, g ∈ D×f we have

• γU (dxu) = γU (x)
• γU (x) = γgUg−1(xg−1)
• if U ′ ⊂ U we have

γU (x)
γU ′(x) = [x−1D×x ∩ U : x−1D×x ∩ U ′]

Proof. For the first item, observe that conjugation by u maps the coset
space x−1D×x ∩ U/O×,+F ∩ U bijectively to (dxu)−1D×dxu ∩ U/O×,+F ∩ U.

Similarly the second item follows from considering conjugation by g.
Finally, we have

γU (x)
γU ′(x) = [x−1D×x ∩ U : O×,+F ∩ U ]

[O×,+F : O×,+F ∩ U ]
[O×,+F : O×,+F ∩ U ′]

[x−1D×x ∩ U ′ : O×,+F ∩ U ′]

= [O×,+F ∩ U : O×,+F ∩ U ′] [x−1D×x ∩ U : O×,+F ∩ U ]
[x−1D×x ∩ U ′ : O×,+F ∩ U ′]

= [x−1D×x ∩ U : O×,+F ∩ U ′]
[x−1D×x ∩ U ′ : O×,+F ∩ U ′]

= [x−1D×x ∩ U : x−1D×x ∩ U ′]. �

Remark 2.9. The quantity γU (x) is the natural measure of the size of the
group x−1D×x∩U , which is commensurable with O×,+F . If F = Q we have
O×,+F trivial and γU (x) is the cardinality of the finite group x−1D×x ∩ U .

We define an O(X)-bilinear pairing between the spaces SDX(U ; r) and
VD
X(U ; r) by

(2.3) 〈f, λ〉 :=
r∑
i=1

γU (di)−1〈f(di), λ(di)〉,

where f ∈ SDX(U ; r), λ ∈ VD
X(U ; r) and on the right hand side of the

above definition 〈· , ·〉 denotes the pairing between AX,r and DX,r given by
evaluation.

This pairing is independent of the choice of the double coset represen-
tatives di, since for every d ∈ D×, g ∈ D×f , u ∈ U , f ∈ SDX(U ; r) and
λ ∈ VD

X(U ; r) we have

〈f(dgu), λ(dgu)〉 = 〈f(g)up, λ(g)up〉 = 〈f(g)upu−1
p , λ(g)〉 = 〈f(g), λ(g)〉

and γU (g) = γU (dgu).
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Lemma 2.10. The pairing 〈− ,−〉 induces an isomorphism of Banach
O(X)-modules VD

X(U ; r) ∼= SDX(U ; r)∗.

Proof. Given the isomorphisms (2.1) and (2.2) and the definition of the pair-
ing, it suffices to show that for d ∈ D×f and Γ = d−1D×d∩U the evaluation
pairing between AX,r and DX,r induces an isomorphism (A Γ

X,r)∗ ∼= DΓ
X,r. As

we recalled in the proof of Lemma 2.2, since Γ acts on AX,r via a finite quo-
tient, we have a continuous idempotent projector eX ∈ EndO(X) AX,r (given
by a finite linear combination of elements of Γ) with eXAX,r = A Γ

X,r and
AX,r = eXAX,r⊕(1−eX)AX,r. The dual endomorphism e∗X ∈ EndO(X) DX,r

is the idempotent projector from DX,r to its Γ-invariants.
Taking duals we obtain

DX,r = A ∗X,r = (eXAX,r)∗ ⊕ ((1− eX)AX,r)∗

and comparing with the idempotent decomposition for e∗X we see that the
evaluation pairing induces an isomorphism

(A Γ
X,r)∗ = (eXAX,r)∗ ∼= e∗XDX,r = DΓ

X,r. �

The following proposition is a mild generalisation of [17, Proposition 3].
We give the proof here since the proof in loc. cit. omits a factor.

Proposition 2.11. Let f ∈ SDX(U ; r) and let λ ∈ VD
X(V ; r). Let g ∈ D×f

with gp ∈Mα. Then
〈f |[UgV ], λ〉 = 〈f, λ|[V g−1U ]〉.

Proof. We have
f |[UgV ] =

∑
v∈(g−1Uη)∩V \V

f |(gv),

hence
〈f |[UgV ], λ〉 =

∑
d∈D×\D×

f
/V

γV (d)−1〈f |[UgV ](d), λ(d)〉

=
∑

d∈D×\D×
f
/V

∑
v∈(g−1Ug)∩V \V

γV (d)−1〈f |(gv)(d), λ(d)〉

=
∑

d∈D×\D×
f
/V

∑
v∈(g−1Ug)∩V \V

γV (dv−1)−1〈f(dv−1g−1) · gpvp, λ(d)〉

=
∑

x∈D×\D×
f
/(g−1Ug)∩V

γ(g−1Ug)∩V (x)−1〈f(xg−1), λ(x) · g−1
p 〉

=
∑

y∈D×\D×
f
/U∩(gV g−1)

γU∩(gV g−1)(y)−1〈f(y), λ(yg) · g−1
p 〉

=〈f, λ|[V g−1U ]〉
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where we pass from the third line to the fourth line by substituting x = dv−1

and observing that under the map
P : D×\D×f /V × (g−1Ug) ∩ V \V → D×\D×f /(g

−1Ug) ∩ V

(d, v) 7→ dv−1

a fibre P−1(x) has cardinality γV (x)/γ(g−1Ug)∩V (x) (applying the final part
of Lemma 2.8). For the next line we substitute y = xg−1 and apply the
second part of Lemma 2.8. The final line follows by similar calculations to
the first 5 lines. �

2.7. Slope decompositions. Let X → W be a reduced affinoid and de-
note by F (T ) the characteristic power series of Uπ acting on SDX(U ; r).
Suppose we have a factorisation F (T ) = Q(T )S(T ) with Q(T ) a polyno-
mial in 1 + TO(X)[T ] of degree n with unit leading coefficient, such that
Q and S are coprime. Denote by Q∗(T ) the polynomial TnQ(T−1). Then,
applying [5, Theorem 3.3], we have a Uπ stable decomposition

SDX(U ; r) = SDX(U ; r)Q ⊕N,

where Q∗(Uπ) is zero on SDX(U ; r)Q and invertible on N. Its formation
commutes with base change: for a reduced affinoid Y → X we write QY
for the polynomial obtained from Q by applying the map O(X) → O(Y )
to its coefficients. Then we have

SDY (U ; r) = SDY (U ; r)QY ⊕NY ,

and we can identify SDY (U ; r)QY with SDX(U ; r)Q ⊗O(X) O(Y ).
The space SDX(U ; r)Q is a projective finitely generated O(X)-module.

The decomposition into SDX(U ; r)Q and N is stable under the action of
T(δp), since the Tv and Sv operators for v - p commute with Uπ.

Recall that we have used the pairing (2.3) to identify VD
X(U ; r) and the

O(X)-dual of SDX(U ; r). We define the submodule VD
X(U ; r)Q of VD

X(U ; r)
to be those maps from SDX(U ; r) to O(X) which are 0 on N. This space
is also stable under the action of T(δp) and is naturally isomorphic to the
O(X)-dual of SDX(U ; r)Q. The pairing (2.3) is perfect when restricted to
SDX(U ; r)Q ×VD

X(U ; r)Q, by [17, Lemma 4].

Lemma 2.12. Suppose Y ↪→ X is a closed immersion of reduced affinoids.
Then we can identify VD

Y (U ; r)Q with VD
X(U ; r)Q⊗O(X)O(Y ). In particular,

they are isomorphic as Hecke modules.

Proof. Denote the finitely generated projective O(X)-module SDX(U ; r)Q by
M and denote by I the kernel of O(X) � O(Y ).

Since we have already identified VD
X(U ; r)Q with the dual of M , to

prove the lemma we need to show that we can identify HomO(Y )(M ⊗O(X)
O(Y ),O(Y )) and HomO(X)(M,O(X))⊗O(X) O(Y ).
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We apply the exact functor HomO(X)(M,−) to the short exact sequence
of O(X)-modules

0→ I → O(X)→ O(Y )→ 0
to obtain a short exact sequence

0→ HomO(X)(M, I)→ HomO(X)(M,O(X))→ HomO(X)(M,O(Y ))→ 0.

Since M is finitely generated, we have an isomorphism

HomO(X)(M,O(X))/HomO(X)(M, I) ∼= HomO(X)(M,O(X))⊗O(X) O(Y ).

Since HomO(X)(M,O(Y )) = HomO(Y )(M⊗O(X)O(Y ),O(Y )), we deduce
the lemma. �

2.8. Old and new. Fix a non-zero ideal n of OF (the tame level) coprime
to p and fix another finite place l - npδ. Let X → W be a reduced affinoid.
We assume X is such that the associated character κ is r|πα| analytic, for
some α ∈ ZJ≥1 and r ∈ (NK)J . Set U = U1(n)∩U0(πα), V = U1(n)∩U0(lπα).
To simplify notation we set

L := SDX(U ; r)Q

L∗ := VD
X(U ; r)Q

M := SDX(V ; r)Q

M∗ := VD
X(V ; r)Q.

We define a map i : L× L→M by

i(f, g) := f |[U1V ] + g|[UηlV ].

Since the map i is defined by double coset operators with trivial component
at all places dividing p it commutes with Uπ and thus gives a well defined
map between these spaces of Q-bounded forms.

Regarding f and g as functions on D×f we have f |[U1V ] = f , g|[UηlV ] =
g|ηl. The image of i inside M will be referred to as the space of oldforms.

We also define a map i† : M → L× L by

i†(f) := (f |[V 1U ], f |[V η−1
l U ]).

We regard the kernel of i† as a space of l−new forms. The maps i and i†
commute with Hecke operators Tv, Sv, where v - nplδ.

The same double coset operators give maps

j : L∗ × L∗ →M∗,

j† : M∗ → L∗ × L∗.

Using Proposition 2.11 we have

〈i(f, g), λ〉 = 〈(f, g), j†λ〉
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for f, g ∈ L, λ ∈M∗. Similarly
〈f, j(λ, µ)〉 = 〈i†f, (λ, µ)〉

for d ∈M , λ, µ ∈ L∗.
A calculation shows that i†i acts on the product L × L = L2 by the

matrix (acting on the right)(
Nl + 1 [U$−1

l U ][UηlU ]
[UηlU ] Nl + 1

)
=
(

Nl + 1 S−1
l Tl

Tl Nl + 1

)
.

We have exactly the same double coset operator formula for the action
of j†j on the product L∗ × L∗ = L∗2. The Hecke operators Sl, Tl act by
[U$−1

l U ], [Uη−1
l U ] respectively on L∗. Also, the double coset UηlU is the

same as U$lη
−1
l U , since the matrix which is the identity at every factor

except l and
(

0 1
1 0

)
at l is in U. From these two facts we deduce that, in

terms of Hecke operators, j†j acts on L∗ × L∗ by the matrix (again acting
on the right) (

Nl + 1 Tl
S−1
l Tl Nl + 1

)
.

Lemma 2.13. Suppose A is an integral domain, which we assume to be
normal and equidimensional of dimension d. Suppose B is an A-algebra
which is integral over A and A-torsion free. Then B is equidimensional of
dimension d.

Proof. Recall that a Noetherian ring R (of finite Krull dimension d) is
equidimensional of dimension d if R/p has Krull dimension d for all minimal
prime ideals p of R. The lemma follows from applying the going up and
going down theorems. Note that we do not need to assume that B is an
integral domain — the A-torsion free condition suffices for going down (see,
for example, [26, Ch. V, Theorem 6]). �

Proposition 2.14. Suppose that X is an admissible affinoid open in W .
Then the map i†i is injective.

Proof. We assume without loss of generality that X is connected. Let L0
be the O(X)-module ker(i†i). The submodule L0 ⊂ L2 is stable under the
action of T(npδ)[Uπ], as is the image, denoted L1, of L0 in L under the
first projection map from L2. We denote by HL the image of T(npδ)[Uπ] in
EndO(X)(L), and denote by HL1 the image of T(npδ)[Uπ] in EndO(X)(L1)
(which is naturally a quotient of HL).

Suppose that L0 is non-zero. For (f, g) in L0 we have (Nl+1)f+S−1
l Tlg =

Tlf + (Nl + 1)g = 0. Eliminating g we get T 2
l f − (Nl + 1)2Slf = 0,

so the Hecke operator T 2
l − (Nl + 1)2Sl maps to 0 in HL1 . Since L1
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is O(X)-torsion free, HL1 (and (HL1)red) is O(X)-torsion free. Apply-
ing Lemma 2.13 we conclude that (HL1)red is equidimensional of dimen-
sion dim(O(X)). We now have a closed immersion of reduced rigid spaces
Sp(H red

L1
) → Sp(H red

L ), where the source and target are equidimensional
of the same dimension. It follows from [9, Proposition 1.2.3] (see also [10,
Corollary 2.2.7]) that the image of this closed immersion is a union of ir-
reducible components of Sp(H red

L ). Therefore the zero locus of the Hecke
operator T 2

l −(Nl+1)2Sl contains an irreducible component of the eigenvari-
ety ED(n), so by Theorem 2.6 this Hecke operator vanishes on an essentially
classical point. Recalling that the definition of essentially classical involves a
twist by a character which is unramified at l, it follows that T 2

l −(Nl+1)2Sl
vanishes at a classical point, which violates the Hecke eigenvalue bounds
given by the Ramanujan-Petersson conjecture for Hilbert modular forms
([2, Theorem 1]) (alternatively, the local factor at l of a cuspidal automor-
phic representation of GL2(AF ) must be generic, and the Hecke eigenvalue
condition implies that we are in the non-generic principal series). We obtain
a contradiction, so the kernel L0 must be zero. �

Note that the injectivity of i†i implies the injectivity of i. The above
shows that if X is as in the statement of Proposition 2.14, we have ker(i†)∩
im(i) = 0 so the forms in M cannot be both old and new at l. However, if
we look at overconvergent automorphic forms with weight a smaller dimen-
sional affinoid in W (which does not contain a Zariski dense set of classical
weights), then i†i may have a kernel - this corresponds to families of p-adic
automorphic forms which are both old and new at l.

2.9. Very Eisenstein modules. We retain the notation of the preceding
subsection. In this subsection we define a notion of a very Eisenstein module
for a certain Hecke algebra. The motivation for the terminology is that the
systems of Hecke eigenvalues appearing in these modules have reducible
associated Galois representations, and their weights are, up to a shift in
central character and twist by a finite order character, of parallel weight
two.

Definition 2.15. Denote by H the image of T(δpnl) in End(M). Suppose
N is an H -module which is finitely generated as an O(X)-module. We say
that N is very Eisenstein if every prime ideal P of H in the support of N ,
with p = P ∩ O(X), satisfies:

• the induced character

n : O×p → (O(X)/p)×

has finite order
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• there exists a finite étaleK-algebra extension O(X)/p ↪→ A, a finite
Abelian extension F ′/F and a continuous character

ψ : F×\A×F /U1(n)pF×,+∞ → A×

such that if v - npδl is a prime of F which splits completely in F ′
then ψ($v) is in (O(X)/p)× and Tv−ψ($v)(Nv+1) = 0 in H /P.

Remark 2.16. Since minimal elements of SuppH (N) are the same as
minimal elements of AssH (N) ([16, Theorem 6.5]), the very Eisenstein
condition can alternatively be checked on associated primes.

Definition 2.17. We say that a prime ideal P of H is very Eisenstein
if the H -module H /P is very Eisenstein. Equivalently, we require P to
satisfy the itemised conditions in Definition 2.15.

Lemma 2.18. Suppose we have a sequence of H -modules

A→ B → C

which is exact in the middle, and that A and C are very Eisenstein. Then
B is very Eisenstein.

Suppose O(X) is an integral domain and let N be a very Eisenstein
H -module. Let E denote the field of fractions of O(X).

If HomO(X)(N,E/O(X)) is a finitely generated O(X)-module, then it is
very Eisenstein.

Proof. Since the support of B is contained in the union of the support of
A and the support of C, the first part is obvious.

For the second part, since

annH (N) ⊂ annH (HomO(X)(N,E/O(X)))

the support of HomO(X)(N,E/O(X)) is contained in the support of N , so
again the result is obvious. �

2.10. An analogue of Ihara’s Lemma. We can now generalise the ver-
sion of Ihara’s Lemma appearing in [17] to the Hilbert modular setting
setting. The following two Lemmas will be used to show that certain mod-
ules are very Eisenstein.

Lemma 2.19. Let Y ↪→ X be a closed immersion with Y a reduced irre-
ducible affinoid. Let y ∈ SDY (U ; r) be non-zero. Suppose y factors through
Nm, that is y(g) = y(h) for all g, h ∈ D×f with Nm(g) = Nm(h). Then
the map

n : O×p → O(Y )×

associated with Y is a finite order character and there exists a finite étale
cover Y ′ → Y , a finite Abelian extension F ′/F , a compact open subgroup
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Up ⊂ Ap,×F,f and a continuous character

ψ : F×\A×F /UpF
×,+
∞ → O(Y ′)×

such that if v - npδl is a prime of F which splits completely in F ′ then
ψ($v) is in O(Y )× and Tvy = ψ($v)(Nv + 1)y. The field F ′ (and the
cover Y ′) may be chosen independent of y.

Proof. Suppose y is as in the statement of the lemma. First we show that n
is a finite order character. Suppose we have u ∈ U such that up ∈ SL2(Fp)
and uv is the identity away from p. Then, since Nm(u) = 1, y(g) = y(gu) =
y(g) · up for all g ∈ D×f . If we denote by ua the element of U with p factor

equal to
(

1 a
0 1

)
for a ∈ Op, and other factors equal to the identity, then we

see that y(g)(z, x) = y(g) · ua,p(z, x) = y(g)(z+ a, x) for all a ∈ Op, z ∈ Br,
x ∈ Y , so y(g)(z, x) is constant in z (for fixed x), since non-constant rigid
analytic functions have discrete zero sets.

Recall that U = U1(n) ∩ U0(πα), so if we denote be u0 the element of U

with p factor equal to
(

1 0
πα 1

)
and other factors the identity, then again

we have y(g) = y(g) · u0,p. This implies that y(g) · u0,p(z, x) is, for fixed
x ∈ Y , a constant function of z. Let n be a positive integer such that
|πn+αj

j | ≤ rj |π
αj

j | for all j ∈ J . We have
(y(g) · u0,p)(z, x) = n(παz + 1, x)y(g)(z, x),

which implies that the character n : O×p → κ(x)× is trivial on the subgroup
1 + π

αj+n
j Oj of each factor O×j (we first deduce this for the characters nx

with x such that y(g)(z, x) is non-zero, then extend to all x ∈ Y by analytic
continuation, since Y is irreducible). Hence n is a finite order character.
This implies that v is trivial on a finite index subgroup, Γ, of O×F .

Also, for each g ∈ D×f we have y(g) · γ = v(det γ)y(g) for all γ in the
projection of U1(nπα+n) to Mα+n, since these matrices all have bottom
right hand entry congruent to 1 mod πα+n.

SinceGm/F satisfies the congruence subgroup property ([8,Théorème1]),
we have O×F ∩ Up(1 + πrOp)F×,+∞ ⊂ Γ for some compact open subgroup
Up ⊂ Ap,×F,f and r ∈ Z≥1. Therefore, setting Γ′ = O×F ∩ Up(1 + πrOp)F×,+∞ ,
we have an injective map

Γ′\(1 + πrOp) ↪→ F×\A×F /UpF
×,+
∞

with finite cokernel. Therefore we have Y ′ and ψ as in the statement of the
lemma, with ψ|(1+πrOp) = v|−1

(1+πrOp).
We let F ′ be the class field for the (narrow) ray class group

F×\A×F /U
p(1 + πrOp)F×,+∞ ,
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so if v splits completely in F ′ we do indeed have ψ($v) = v(x) ∈ O(Y )× for
x ∈ 1 + πrOp with F×$vU

pF×,+∞ = F×xUpF×,+∞ (such an x exists because
$v has trivial image in the narrow ray class group).

Suppose a finite place v of F splits completely in F ′ and is coprime to
nδpl. Since Nm(U1(nπα+n)) = OF ⊗Z Ẑ, we may choose u0 in U1(nπα+n)
such that we have an equality in A×F

$v = aNm(u0)α
for some a ∈ F×, α ∈ F×,+∞ . Therefore we have an equality $v = aNm(u0)
in A×F,f , with a ∈ F×,+. The image of the reduced norm map on D× is
precisely F×,+, by the Hasse–Schilling–Maass theorem [21, 33.15], so we
have d ∈ D× such that Nm(ηv) = $v = Nm(du0).

Now we can compute

Tv(y)(g) =
∑

u∈(η−1
v Uηv)∩U\U

y(gu−1η−1
v ) · up

=
∑

u∈(η−1
v Uηv)∩U\U

y(gη−1
v u−1) · up

=
∑

u∈(η−1
v Uηv)∩U\U

y(gη−1
v ) = (Nv + 1)y(gη−1

v )

= (Nv + 1)y(gu−1
0 ) = v(detu−1

0,p)(Nv + 1)y(g).
By the definition of ψ, we have

v(detu−1
0,p) = ψ(detu0,p) = ψ(Nm(du0)) = ψ($v),

so we are done. �

Lemma 2.20. Let Y ↪→ X be a closed immersion with Y a reduced irre-
ducible affinoid. Let y ∈ VD

Y (U ; r). If y factors through Nm, then y = 0.

Proof. This is similar to the proof of [17, Lemma 7 (ii)], but we rely on an
explicit computation with AY,r which becomes more complicated when the
dimension of Br (which is equal to [F : Q]) grows.

Without loss of generality (by extending K if necessary) we can assume
that for every j ∈ J , rj = |xj | for some xj ∈ K. With this assumption, we
define an isomorphism

ν̃∗r : AY,r
∼=
∏
s∈S

O(Y )〈Ts,1, ..., Ts,g〉

as in Section 2.3, where S ⊂ Op is a finite set defined as in that section.
Write monomials in O(Y )〈Ts,1, ..., Ts,g〉 as T j

s , where j = (j1, ..., jg) ∈ (Z≥0)I
and T j

s =
∏
i∈I T

ji
s,i.

We denote the inverse of ν̃∗r by θ. By duality, this induces an isomorphism
θ∗ between DY,r and

∏
s∈S O(Y )〈[τs,1, ..., τs,g]〉, where O(Y )〈[τs,1, ..., τs,g]〉
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denotes a ring of power series with bounded coefficients in O(Y ) (as always,
we use the supremum norm on the reduced affinoid algebra O(Y )). For
monomials in O(Y )〈[τs,1, ..., τs,g]〉 we write τ l

s =
∏
k∈I τ

li
s,k for l ∈ (Z≥0)I and

the pairing between AY,r and DY,r is induced component-wise by 〈T j
s , τ

l
s〉 =

δj,l. Here δj,l denotes the function which is 1 if j = l and 0 otherwise.

Now we can compute the action of γ =
(

1 −πN
0 1

)
∈Mα on DY,r, where

N is an integer chosen to be sufficiently large that |πj |N < rj for all j. We
use Lemma 2.3. Let f be an element of DY,r, with θ∗(f) = (Fs)s∈S where
Fs =

∑
bl
sτ

l
s. We have

〈θ(T j
s), f ·

(
1 −πN
0 1

)
〉 = 〈θ(T j

s) ·
(

1 πN

0 1

)
, f〉

= 〈ν̃∗r (θ(T j
s) ·

(
1 πN

0 1

)
), (Fs)s∈S〉.

Now by Lemma 2.3 we have

ν̃∗r (θ(T j
s)) ·

(
1 πN

0 1

)
) =

∏
i∈I

(Ts,i + πNi /xi)ji .

Sublemma 2.21. Suppose

f ·
(

1 −πN
0 1

)
= f.

Then f = 0.

Proof. We show that for every monomial T j
s we have

bj
s = 〈θ(T j

s), f〉 = 〈θ(T j
s), f ·

(
1 −πN
0 1

)
〉 = 0.

We induct on (Z≥0)I using colexicographic ordering, a well-ordering with
minimal element (0, ..., 0). Note that we fix an ordering of I (e.g. as we
have done previously we label the elements of I as 1, ..., g). We recall the
definition of the colexicographic ordering.

Definition 2.22. Given j = (j1, ..., jg), j′ = (j′1, ..., j′g) ∈ (Z≥0)I we say
that

j′ <colex j

if there is an m ∈ I such that for all i > m we have ji = j′i and we have
jm > j′m.

We now proceed with our inductive proof.
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Suppose we have j = (j1, ..., jg) ∈ (Z≥0))I , and for all j′ ∈ (Z≥0))I with
j′ <colex j we have bj′

s = 0. Set j+ = (j1 + 1, j2, ..., jg). Then we have

bj+
s = 〈θ(T j+

s ), f〉

= 〈θ(T j+
s ), f ·

(
1 −πN
0 1

)
〉

= 〈(Ty,1 + πN1 /x1)j1+1
g∏
i=2

(Ty,i + πNi /xi)ji , Fs〉.

Now this final pairing is just equal to

〈T j+
s + (j1 + 1)(πN1 /x1)T j

s , Fs〉

since all other monomials in the left hand side of the pairing have index
<colex j, hence by the inductive hypothesis pair to 0 with Fs. So we obtain
bj+
s = bj+

s + (j1 + 1)(πN1 /x1)bj
s, so bj

s = 0 as required. Note that this simul-
taneously handles the ‘base case’ j = (0, ..., 0) and the ‘inductive step’. �

Now we return to the statement in the lemma and suppose y ∈ VD
Y (U ; r)

factors through Nm. Let u1 be the element of U ⊂ D×f with p component

equal to γ =
(

1 −πN
0 1

)
and all other components the identity. For all

g ∈ D×f , y(gu1) = y(g)γ since u1 ∈ U and y(gu1) = y(g) since Nm(u1) = 1.
Hence y(g) = y(g)γ and Sublemma 2.21 shows that y(g) = 0 for all g. �

Remark 2.23. Comparing the preceding two Lemmas reveals a curious
asymmetry. We attempt to give some explanation of this. Denote by A triv

Y,r ⊂
AY,r the subspace of functions which are constant in the variable z ∈ Br.
This subspace is preserved under the action ofMα, for weights κ as specified
in part (1) of the above lemma. Dual to the embedding A triv

Y,r → AY,r there
is a M−1

α -equivariant projection DY,r → D triv
Y,r , where D triv

Y,r = (A triv
Y,r )∗. The

point of the above calculation is to show that this projection does not
admit an M−1

α -equivariant section D triv
Y,r → DY,r. This fact presumably has

a representation–theoretic interpretation.

Lemma 2.24. Let Y ↪→ X be a closed, reduced and irreducible sub-affinoid.
Then the module TorO(X)

1 (M/iL2,O(Y )) is very Eisenstein.

Proof. We have a short exact sequence

0 // L2 i // M // M/iL2 // 0 .
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Noting that L2 andM are projective O(X)-modules, hence flat, and taking
derived functors of −⊗O(X) O(Y ) gives an exact sequence

0 // TorO(X)
1 (M/iL2,O(Y )) δ // L2 ⊗O(X) O(Y )

i

{{
0 M/iL2 ⊗O(X) O(Y )oo M ⊗O(X) O(Y )oo

.

To prove the proposition, it suffices to prove that kernel of the map
i : L2 ⊗O(X) O(Y )→M ⊗O(X) O(Y )

is very Eisenstein. We can identify L⊗O(X) O(Y ) with SDY (U ; r)QY and M
with SDY (V ; r)QY , so it in fact suffices to prove that the kernel of the natural
‘level raising’ map iY : SDY (U ; r)⊕2 → SDY (V ; r) is very Eisenstein.

Suppose iY (y1, y2) = 0. Then y1 = −y2|ηl, so we have y2 ∈ SDY (U ; r),
y2|ηl ∈ SDY (U ; r). Therefore y2 and y2|ηl are both invariant under the action
of the group U , so y2 is invariant under the action of the group generated
by U and ηlUη

−1
l in D×f . It follows as in the proof of [17, Proposition 8]

that y1 and y2 factor through Nm and now Lemma 2.19 shows that the
annihilator of (y1, y2) in H is very Eisenstein. So every associated prime
of ker iY is very Eisenstein, and therefore ker iY is very Eisenstein. �

Lemma 2.25. Let Y ↪→ X be a closed, reduced and irreducible sub-affinoid.
The module TorO(X)

1 (M∗/jL∗2,O(Y )) is 0.
Proof. We proceed as in the proof of Lemma 2.24. With the help of
Lemma 2.12 and Lemma 2.20, we obtain the desired result. �

The following consequence of the preceding two lemmas will be the most
convenient analogue of Ihara’s Lemma for our applications.
Lemma 2.26. Suppose that O(X) is an integral domain.

(1) The H -module (M/iL2)tors of O(X)-torsion elements in M/iL2 is
very Eisenstein.

(2) The module (M∗/jL∗2)tors of O(X)-torsion elements in M∗/jL∗2

is equal to 0.
Proof. We begin by proving the first part of the lemma. Suppose P is an
associated prime ideal (in H ) of (M/iL2)tors. So we have m ∈M/iL2 and
0 6= α ∈ O(X) with αm = 0 and annH (m) = P. Since α is not a zero-
divisor, the H -submodule of α-torsion elements in M/iL2 is isomorphic
to TorO(X)

1 (M/iL2,O(X)/(α)). So it suffices to prove that the H -module
TorO(X)

1 (M/iL2,O(X)/(α)) is very Eisenstein.
By [16, Theorem 6.4] there is a chain 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn =

O(X)/(α) of O(X)-submodules such that for each i we have Mi/Mi−1 ∼=
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O(X)/p with p a prime ideal of O(X). By applying Lemma 2.18 and a sim-
ple dévissage, we are done if we can prove that TorO(X)

1 (M/iL2,O(X)/p)
is very Eisenstein for any prime ideal p of O(X), which is precisely
Lemma 2.24.

The second part of the lemma follows similarly from Lemma 2.25. �

3. Raising the level

We retain the assumptions and notation of Section 2.8. We moreover
assume that X is a connected admissible open affinoid in W . We denote
the fraction field of O(X) by E. If A is an O(X)-module we write AE for
the E-vector space A⊗O(X) E.

We begin this section by noting that the injectivity of i†i implies the
injectivity of j†j:

Suppose j†j(λ, µ) = 0. Then 〈(f, g), j†j(λ, µ)〉 = 0 for all (f, g) ∈ L2
E , so

(by Proposition 2.11) 〈i†i(f, g), (λ, µ)〉 = 0 for all (f, g) ∈ L2
E . Now since

i†i : L2
E → L2

E is an injective endomorphism of a finite dimensional vector
space, it is an isomorphism, so we see that λ = µ = 0. Hence j†j (thus a
fortiori j) is injective.

We now define two chains of modules which will prove useful:
Λ0 := L2 Λ∗0 := L∗2

Λ1 := i†M Λ∗1 := j†M∗

Λ2 := i†(M ∩ i(L2
E)) Λ∗2 := j†(M∗ ∩ j((L∗E)2))

Λ3 := i†iL2 Λ∗3 := j†jL∗2.

We note that Λ0 ⊃ Λ1 ⊃ Λ2 ⊃ Λ3, and that
Λ2/Λ3 = i†(M ∩ i(L2

E)/iL2) = i†((M/iL2)tors),
with analogous statements for the starred modules.

We fix the usual action of T(nδpl) on all these modules. We can now
describe some pairings between them which will be equivariant under the
T(nδpl) action. They will not all be equivariant with respect to the action of
Tl.

We have a (perfect) pairing 〈 , 〉 : L2
E × (L∗E)2 → E which, since j is

injective, induces a pairing
Λ0 × (M∗ ∩ j((L∗E)2))→ E/O(X),

which in turn induces a pairing
P1 : Λ0/Λ1 × (M∗ ∩ j((L∗E)2)/j(L∗2))→ E/O(X).

The fact that this pairing is perfect follows from [17, Lemma 6] (the proof
of which applies verbatim to the more general setting of this paper).

In exactly the same way, we have a perfect pairing
P2 : (M ∩ i(L2

E))/i(L2)× Λ∗0/Λ∗1 → E/O(X).
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The final pairing we will need is induced by the pairing between M and
M∗. It is straightforward to check that this gives a perfect pairing:

P3 : ker(i†)×M∗/(M∗ ∩ j((L∗E)2))→ O(X).

Corollary 3.1. The modules Λ2/Λ3 and Λ∗0/Λ∗1 are very Eisenstein. The
modules Λ∗2/Λ∗3 and Λ0/Λ1 are equal to 0.

Proof. The statement about Λ2/Λ3 follows from the first part of
Lemma 2.26, since Λ2/Λ3 is a homomorphic image of (M/iL2)tors. The
statement about Λ∗0/Λ∗1 follows from the duality (via pairing P2) between
this module and (M/iL2)tors. The other two statements follow similarly
from the second part of Lemma 2.26. �

Recall that H denotes the image of T(nδpl) in EndO(X)(M). If M is a
maximal ideal of H , then there is an attached semi-simple Galois repre-
sentation ρM : Gal(F/F ) → GL2(Qp). We normalise things so that the Tv
eigenvalue arising from M is equal to the trace of ρM(σv), where σv de-
notes an arithmetic Frobenius element. If M is very Eisenstein, then this
Galois representation is reducible, but the requirement that the character
n : O×p → (O(X)/M)× is finite order imposes an additional restriction on
the Galois representation (that can be translated into a condition on its
generalised Hodge–Tate weights).

We let HL denote the image of T(nδp) in EndO(X)(L). There is a map
H →HL coming from the embedding L ↪→M (given by regarding a form
of level U as a form of level V ). If I is an ideal of HL we denote by IM
the inverse image of I in H . Note that if N is any finitely generated HL-
module, then annH (N) = (annHL

(N))M , and so if P is in SuppHL
(N)

then PM is in SuppH (N).

Proposition 3.2. Suppose P is a prime ideal of HL such that PM is not
very Eisenstein. Moreover, suppose that P contains T 2

l − (Nl+1)2Sl. Then
PM is in the support of the H -module ker(i†) ⊂M .

Proof. Consider the HL-module

Q := Λ∗0/Λ∗3 = L∗2
/
L∗2

(
Nl + 1 Tl
S−1
l Tl Nl + 1

)
,

The HL-supports of L and L∗ are equal, and det
(

Nl + 1 Tl
S−1
l Tl Nl + 1

)
∈ P,

so P is in support of Q (the HL,P-module QP/PQP is non-zero since it is
the cokernel of a map of vector spaces with determinant zero). Therefore
PM is in the support of Q.

Corollary 3.1 implies that ifPM is in the support of Λ∗0/Λ∗1 or Λ∗2/Λ∗3 then
it is very Eisenstein, so it must be in the support of Λ∗1/Λ∗2. This quotient
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is a homomorphic image of M∗/(M∗ ∩ j(L∗2E )), so PM is in the support of
M∗/(M∗ ∩ j(L∗2E )). Finally we can apply pairing P3 (which is equivariant
with respect to the action of H ) to conclude that PM is in the support of
ker(i†). �

4. Applications

In this section we explain an application of the preceding results.

4.1. Level raising for p-adic Hilbert modular forms. Let ED(n) be
the reduced eigenvariety of tame level U1(n) as defined in Definition 2.5.
Similarly we denote by ED(nl) the reduced eigenvariety of tame level U1(n)∩
U0(l), where we construct this eigenvariety using the Hecke operators at l
in addition to the usual Hecke operators away from the level. This allows
us to relate ED(nl) and the reduction ED,l-old(nl) of the two-covering of ED

corresponding to taking roots of the l-Hecke polynomial.

Lemma 4.1. There is a closed embedding ED,l-old(nl) ↪→ ED(nl), with
image the Zariski closure of the essentially classical l-old points in ED(nl).

Proof. This is proved exactly as [17, Lemma 14]. �

We need one more definition before we can state our main theorem.
Recall that ED(nl) has an admissible open cover by affinoids Sp(Tred),
where T is the image of T(npδ)[Uπ] in End(SDX(V ; r)Q), with X ⊂ W a
connected admissible open affinoid, Q a suitable polynomial factor of the
characteristic power series of Uπ on SDX(V ; r) and V = U1(n) ∩ U0(lπα) for
suitable r, α. For T of this form, we define Tl-new to be the quotient of T
given by restricting the Hecke operators to ker(i†) ⊂ SDX(V ; r)Q.

Proposition 4.2. There exists a unique reduced closed subspace
ι : ED(nl)l-new ↪→ ED(nl)

such that pulling ι back to the admissible open Sp(Tred) of ED(nl) gives the
closed immersion

Sp(Tl-new,red) ↪→ Sp(Tred).
Moreover, ED(nl)l-new is equidimensional of dimension dim(W ), and is

therefore a union of irreducible components of ED(nl).

Proof. We simply need to glue the closed immersions
Sp(Tl-new) ↪→ Sp(T)

and then pass to reduced spaces.
For Y ⊂ X an admissible open sub-affinoid, recall that there are Hecke

equivariant isomorphisms
SDX(U ; r)Q ⊗O(X) O(Y ) ∼= SDY (U ; r)QY
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and
SDX(V ; r)Q ⊗O(X) O(Y ) ∼= SDY (V ; r)QY

which allow us to identify ker(i†)⊗O(X) O(Y ) with

ker[i†Y : SDY (V ; r)QY → (SDY (U ; r)QY )⊕2].

Therefore the image of T(npδ)[Uπ] in End(ker(i†Y )) can be identified with
T⊗O(X) O(Y ). This is enough to glue our closed immersions (we leave the
details to the reader). Note that since all our O(X)-modules are finitely
generated, the ordinary tensor products ⊗O(X)O(Y ) in the above can be
replaced with completed tensor products [3, 3.7.3, Proposition 6].

The fact that ED(nl)l-new is equidimensional of dimension dim(W ) fol-
lows from the fact that the O(X)-module ker(i†) is O(X)-torsion free, so
we can again apply Lemma 2.13, as in the proof of Proposition 2.14. �

We can now state the main theorem of this paper.

Theorem 4.3. Suppose we have a point φ ∈ ED(n) which is not very
Eisenstein5, and with T 2

l (φ) − (Nl + 1)2Sl(φ) = 0. Let the roots of the l-
Hecke polynomial corresponding to φ be α and Nlα where α ∈ C×p . Then
the point over φ of ED,l−old(nl) corresponding to α also lies in ED(nl)l-new.

Proof. It follows from the construction of the eigenvariety that there exists
an admissible affinoid open X ⊂ W , an α, an r and a Q such that the point
φ corresponds to a maximal ideal Mφ in the support of L = SDX(U ; r)Q,
with U = U1(n) ∩ U0(πα).

Now Proposition 3.2 applies, so MM is in the support of

ker(i†) ⊂M = SDX(V ; r)Q.

Therefore ED(nl)l-new contains a point φ′ with the same Hecke eigenvalues
(away from l) as φ. A calculation using the fact that φ′ comes from an
eigenform in the kernel of i† shows that the point φ′ corresponds to the
root α. �

Remark 4.4. Note that the same conclusion as the above Theorem holds
for a family of points of ED(n) on which T 2

l − (Nl + 1)2Sl vanishes. Since
this Hecke operator is non-vanishing on essentially classical points, it cuts
out a codimension one subspace on each irreducible component of ED(n)
where it is not invertible.

Remark 4.5. Recall that the eigenvarieties ED(n) and ED(nl)l-new are con-
structed using Hecke operators away from n. We can replace these eigenva-
rieties by the ‘full’ reduced eigenvarieties constructed using Hecke operators

5i.e. it is associated with a maximal ideal of a Hecke algebra which is not very Eisenstein
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at all finite places (including the places v dividing δ — here the Hecke oper-
ator is given by the double coset operator [U$vU ], where $v ∈ D×v ↪→ D×f
is a uniformiser of ODv), and obtain exactly the same statement as Theo-
rem 4.3.

4.2. Examples.

4.2.1. Examples if Leopoldt’s conjecture does not hold for (F, p).
Suppose [F : Q] is even, and let D/F be a definite quaternion algebra
non-split at all infinite places and split at all finite places.

Proposition 4.6. Suppose that Leopoldt’s conjecture does not hold for
(F, p). Then there is a point xL of ED(OF ), lying over the point of W
corresponding to the character

κ : O×p × O×p → K×

(a, b) 7→
∏
i∈I

a−2
i bi

such that Tv(xL) = 1 + (Nv)−1 and Sv(xL) = (Nv)−2 for all finite places
v of F with v - p, and Uπ(xL) = 1. In particular, the semisimple represen-
tation of GF = Gal(F/F ) attached to xL is 1 ⊕ χ−1

cyc, where 1 denotes the
trivial character and χcyc denotes the p-adic cyclotomic character.

For any prime l of F which is coprime to p the point of ED,l−old(l)
lying over xL which corresponds to the root (Nl)−1 of the Hecke polynomial
X2 − (1 + (Nl)−1)X + (Nl)−1 also lies in ED(l)l-new.

Proof. It is explained in [24, §4.3] that the desired system of Hecke eigen-
values arises from the cuspidal ordinary Λ-adic Hecke algebra for GL2/F .
There are then several ways to see that this system of eigenvalues must also
appear in (an ordinary component of) the eigenvariety ED(OF ).

For example, one can apply [6, Théorème 1] to systems of (in this case,
finitely generated) Banach modules provided by, on the one hand, the or-
dinary part of the modules defined in Section 2.2 (with the weights varying
in the one dimensional family with v trivial and n ‘parallel’) and on the
other hand, the generic fibre of the ordinary part of the modules of Katz
p-adic Hilbert modular forms.

Note that the Tv and Sv eigenvalues (tv and sv respectively) can be read
off from the characteristic polynomial of an arithmetic Frobenius element
acting on the Galois representation attached to xL, which is X2 − tvX +
(Nv)sv.

Now for the last part of the proposition we can immediately observe that
the point xL appearing in the above proposition satisfies the conditions of
Theorem 4.3 for any prime l of F which is coprime to p. �
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Ribet’s method can be applied to the family of Galois representations
(or, more precisely, pseudorepresentations) of GF = Gal(F/F ) attached
to an irreducible component C of ED(l)l-new passing through the point of
ED(l)l-new lying over xL which is provided by Theorem 4.3. We therefore
obtain the following:

Corollary 4.7. There exists a non-split extension V (xL) of representations
of GF over a finite extension K/Qp

(4.1) 0→ K → V (xL)→ K(−1)→ 0

where K denotes the trivial K-representation and K(−1) denotes the rep-
resentation given by the inverse of the cyclotomic character.

Moreover, V (xL) is unramified outside l (in particular, V (xL) is locally
a split extension at places dividing p).

Proof. The construction of V (xL) is a standard application of ‘Ribet’s
Lemma’ — for example see [1, Proposition 9.3] for an application in a
more complicated situation. By construction we get an extension which is
unramified outside pl. But the extension V (xL) also splits at every place
p|p, since the local Galois representations at these places have an unramified
character as a quotient ([25]). �

One can then ask whether V (xL) is actually ramified at l or not. We
have constructed V (xL) using a family of Galois representations which is
generically ramified at l, and the monodromy filtrations on the local Weil-
Deligne representations at classical points in this family are compatible
with the extension structure (4.1), so this extension is not forced to split
at l, in contrast to what happens at primes above p. But in fact there are
no extensions of K(−1) by K which are ramified at a single prime l:

Lemma 4.8. The representation V (xL) of Corollary 4.7 is unramified ev-
erywhere.

Proof. First note that the twist V (xL)(1) corresponds to a line in the kernel

K1(l) = ker[H1
ur,{pl}(GF ,K(1))→

⊕
p|p

H1(GFp ,K(1))],

where H1
ur,{pl}(GF ,K(1)) denotes the global cohomology classes which are

unramified away from pl. If we denote by K1 the kernel of the map

H1
ur,{p}(GF ,K(1))→

⊕
p|p

H1(GFp ,K(1))

from the Selmer group where the cohomology classes are unramified outside
p, then there is an inclusion K1 ⊂ K1(l). It remains to show that the
inclusion K1 ⊂ K1(l) is an equality.
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We need to show that K1 and K1(l) have the same dimension. Kummer
theory gives isomorphisms

K1(l) ∼= ker[O×F,pl ⊗Z K →
⊕
p|p

F̂×p ⊗Zp K]

= ker[α : O×F,l ⊗Z K →
⊕
p|p

F̂×p ⊗Zp K]

and

K1 ∼= ker[O×F,p ⊗Z K →
⊕
p|p

F̂×p ⊗Zp K]

= ker[β : O×F ⊗Z K →
⊕
p|p

F̂×p ⊗Zp K].

Here OF,a denotes the a-units, for an ideal a of OF and F̂×p denotes the Zp
module lim←−n F

×
p /(F×p )pn . We can think of the maps α and β as being the

localisation maps from global Bloch–Kato Selmer groups. Observe that if l
is the rational prime under l, there is an element x of O×F,l withNF/Q(x) = la

for a non-zero a (take a suitable power of the ideal l to obtain a principal
ideal and then take x to be a generator, or the square of a generator).

By Dirichlet’s theorem for S-units the dimension of the source of α is
one larger than the dimension of the source of β. To show that K1 and
K1(l) have the same dimension it suffices to show that the dimension of
the image of α is larger than the dimension of the image of β.

Consider the norm map⊕
p|p

F̂×p ⊗Zp K → Q̂×p ⊗Zp K.

Now α(x) maps to something non-zero under this norm map, whilst

β(O×F ⊗Z K)

maps to zero. This shows that the image of α strictly contains the image
of β, as desired. �

Note that if we allow ramification at two auxiliary primes then the above
argument breaks down and one may obtain ramified extensions. However,
the fact that the extension V (xL) turns out to be unramified at l indicates
that it will be difficult to ensure that any extensions constructed using
Ribet’s method are ramified at these auxiliary primes.
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4.2.2. An example for F = Q. We sketch how to construct an exam-
ple of an ordinary p-adic modular form such that its transfer to a p-adic
automorphic form on a definite quaternion algebra over Q satisfies the as-
sumptions of Theorem 4.3. All computations were done in Sage [23].

The space of cusp forms S2(Γ0(15)) is one-dimensional. Denote by f ∈
S2(Γ0(15)) the normalised newform in this space. If we set p = 3, then
there is a unique 3-adic Hida family passing through f , so we have an
isomorphism of Λ-algebras T0(Γ0(15)) ∼= Λ = Zp[[T ]], where T0(Γ0(15))
denotes the Λ-adic ordinary cuspidal Hida Hecke algebra (generated by
Hecke operators prime to 15). The form f satisfies T 2

13(f)−(13+1)2S13(f) =
((−2)2 − (13 + 1)2)f = 0 mod 3.

Let D be a definite quaternion algebra over Q which is non-split at the
infinite place and the prime 5, and split at all other primes. By the main
result of [6], the generic fibre of the Hida family through f transfers to a
one–dimensional rigid subspace of ED(Z).
Proposition 4.9. There is a characteristic 0 point of the Hida family
through f such that the associated point x of ED(Z) satisfies the conditions
of Theorem 4.3 for l = (13). In particular there is a point of ED((13)) with
the same system of Hecke eigenvalues as x (away from 13) which is a point
of intersection between two irreducible components6.
Proof. If we consider the image of the Hecke operator T 2

13 − 142S13 in Λ,
we obtain an element pµP (T )U(T ) where µ ∈ Z≥0, P (T ) is a distinguished
polynomial, and U(T ) ∈ Λ×. Since P (T ) is distinguished, its roots lie in
pOK for K/Qp finite, so if the degree of P (T ) is non-zero then specialising
our Hida family to the weights corresponding to the ideals (T − α) ⊂
Λ ⊗Zp OK for α a root of P (T ) gives the desired p-adic modular form
(which may be transferred to a definite quaternion algebra, non-split at 5).
If P (T ) has degree zero, then the p-adic valuation of pµU(α) is equal to µ
for all α ∈ pZp, so we just need to show that the valuation of the Hecke
eigenvalue for T 2

13−142S13 is not constant in our Hida family. This is easily
done in this example: at weight 2 the valuation is 1, at weight 4 it is 2 (and
at weight 10 it is 3). �

In fact, in the above example one can see directly that the conclusion
of Theorem 4.3 holds, without applying the results of this paper (this
was explained to the author by Frank Calegari) — the new subspace of
S2(Γ0(13 · 15)) is also one-dimensional, so we again have a Hida Hecke al-
gebra isomorphic to Λ, and a similar argument to the above, applied to the
ideal describing the intersection between the two Hida families, shows that
is enough to observe that the 13-new Λ-adic form and the 13-old Λ-adic
form become more congruent at weights other than 2. This can be checked

6One lying in E D,(13)-old((13)), the other in E D,(13)-new((13)).
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by doing the computation described in the above proof and applying [11,
Theorem 6.C], or it can be checked directly.

Remark 4.10. By contrast, consider the one-dimensional space S2(Γ0(21))
and its normalised newform g. If we set p = 3 and l = 13, then the valuation
of the eigenvalue for T 2

13 − 142S13 is 1 for the weight 2j specialisations of
the Hida family through g, with 1 ≤ j ≤ 40. So it is possible that the
intersection between the two Hida families is just the ideal (p) — it would
be interesting to determine whether this is the case (for example, there
may be no lift of the relevant Galois representation to a representation
with coefficients in Z/p2Z whose local representation at l has the correct
form, in which case the intersection must be given by (p)).

Remark 4.11. Finally, we note that the same arguments apply to the
example discussed in [13, Example 5.3.2]. In this case, the two Hida families
described in that example do intersect at a characteristic zero point.

5. Corrections to [17]

We take this opportunity to make a couple of corrections to the pa-
per [17].

5.1. Proof of Lemma 7(ii). This proof should be modified as in the
proof of Lemma 2.19 above to take account of the change of variables z 7→ rz
made when fixing an isomorphism

Ax,r
∼=

n∏
α=1

K ′〈T 〉.

This entails computing the action of
(

1 −pr−1

0 1

)
on Dx,r. The statement

of the lemma is unaffected. We reproduce the correct computation here
(this should replace the displayed formulae at the bottom of [17, p. 346]):

〈ei,α, f ·
(

1 −pr−1

0 1

)
〉 = 〈T i, (

∑
bj,αT

j) ·
(

1 −pr−1

0 1

)
〉

= 〈T i ·
(

1 pr−1

0 1

)
,
∑

bj,αT
j〉

= 〈(T + p)i,
∑

bj,αT
j〉

= 〈
i∑

k=0

(
i

k

)
pi−kT k,

∑
bj,αT

j〉

=
i∑

j=0

(
i

j

)
pi−jbj,α.
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We can now see that if we have f = f ·
(

1 −pr−1

0 1

)
we get

i∑
j=0

(
i

j

)
pi−jbj,α = bi,α

for all i and α, which implies that f = 0.

5.2. Section 3. A minor comment is that E old as defined in section 3.1
should be replaced by its underlying reduced space. More seriously, the
statement in the proof of Theorem 15 that ‘M is not Eisenstein since the
Galois representation attached to φ is irreducible’ is false. There are points
on the cuspidal GL2 eigencurve with reducible attached Galois represen-
tation, and these show up on the eigencurve for the definite quaternion
algebra. For example in the definite quaternion algebra case, in classical
weight 2, the space of constant functions on D×f always gives rise to such
a point. Hence in the statement of Theorem 15 we must assume that the
point φ does not give rise to a ‘very Eisenstein’ (in the terminology of the
current paper) maximal ideal in the Hecke algebra. The statement of The-
orem 17 must also be modified to exclude these very Eisenstein points. We
note that the question of level lowering/raising for points precisely of this
kind has been studied in a recent preprint of Majumdar [15].
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