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de Bordeaux 28 (2016), 597–620

Mahler bases and elementary p-adic analysis

par Ehud DE SHALIT

Résumé. Divers théorèmes d’analyse p-adique élémentaires, sou-
vent prouvés uniquement sur Qp (cf. [4]), sont généralisés à tout
corps local, avec l’aide de la notion de base de Mahler. Dans la
dernière section nous expliquons la relation entre nos résultats et
ceux de [10].

Abstract. Various theorems in elementary p-adic analysis, com-
monly proved only for Qp, and summarized in [4], are generalized
to any local field, using the concept of a Mahler basis. In the last
section we explain the relation of these results to the work [10].
The paper is largely self-contained.

1. Mahler bases

1.1. Background. Fix a prime number p, let Zp denote the ring of p-
adic integers, and Qp its fraction field. Mahler’s theorem [6] states that the
binomial coefficients

(x
n

)
(n ≥ 0) form an orthonormal basis for the p-adic

Banach space C(Zp,Qp) of continuous Qp-valued functions on Zp. In other
words, every continuous function f from Zp to Qp has a unique uniformly
convergent expansion

(1.1) f =
∞∑
n=0

an

(
x

n

)
where an → 0, and |f |sup = max |an|. Conversely, every such expansion
defines a continuous function.

A fact closely related to Mahler’s theorem is that the functions
(x
n

)
(n ≥ 0) form an algebraic basis for the Zp-module Int(Zp) of polynomi-
als over Qp which are integral valued on Zp.

Various subspaces of C(Zp,Qp) can be described by the asymptotic be-
havior of the Mahler coefficients an. For example, f is Lipschitz if and only
if inf(v(an)−logp n) > −∞, where v is the p-adic valuation, and f is locally
analytic if and only if v(an)− εn→∞ for some ε > 0.
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The Banach dual of C(Zp,Qp) is the space of p-adic measures on Zp, and
is well known to be isomorphic to the Iwasawa algebra Qp⊗Zp[[T ]], convolu-
tion of measures corresponding to the usual multiplication of power-series.
It is instructive to think of the Iwasawa algebra as the algebra of bounded
rigid analytic functions on the open unit disk ∆. In the same vein, the
algebra of locally analytic distributions is isomorphic to the algebra of all
rigid analytic functions on ∆ (a result of Amice, which is equivalent to the
characterization of locally analytic functions by their Mahler coefficients,
mentioned above).

In this note we study the extensions of these results to the ring of integers
of an arbitrary local field. Some of the results are not new, but for the sake
of completeness and uniformity we have included them as well.

Let K be a local field, R its ring of integers, and π a uniformizer. Let q be
the cardinality of the residue field κ = R/πR, and p = char(κ). The field K
may be of characteristic 0 or p.We normalize the discrete valuation v onK×
so that v(π) = 1. We let K be the completion of a fixed separable closure
of K (when K is of characteristic 0 this is the field commonly denoted Cp).

We denote by C(R,K) the K-Banach space of continuous functions from
R to K, with the sup norm. We denote by Int(R) the R-module of poly-
nomials over K which are integral valued on R. Both C(R,K) and Int(R)
have a ring structure, but until much later (cf. Section 6) we shall only
be concerned with their additive structure. In Sections 1–4 we study the
Mahler expansion of an f ∈ C(R,K) and characterize various subspaces
of C(R,K) by means of the asymptotics of Mahler coefficients. In contrast
to the classical case, there is no canonical choice of a Mahler basis such as
the basis of binomial coefficients, so we axiomatize the concept of a Mahler
basis and work with an arbitrary one.

This lack of a canonical basis prevents the analogue of the Iwasawa-Amice
transform from being an isomorphism between algebras of measures (or dis-
tributions) and rings on functions on ∆. It is only an additive isomorphism.
We explain this in Section 5. In a remarkable paper [10] Schneider and Teit-
elbaum discovered how to remedy this, at the expense of introducing a rigid
analytic curve ∆̃ which is a twisted version of ∆. Let L(R,K) be the space
of locally K-analytic functions on R, topologized as in Section 4.1. The
space of locally analytic distributions L(R,K)′ is its topological dual. The
main result of [10] is a canonical isomorphism of algebras between L(R,K)′
and the ring of rigid analytic functions on ∆̃. Section 6 is a self-contained
exposition of the results of Schneider and Teitelbaum. Except for Propo-
sition 6.1, for which we found an elementary proof, we follow their paper
rather closely.

Our exposition employs Lubin-Tate groups, but in a way this is a “red
herring”, allowing us to present elegant proofs for some of the claims, but
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not an essential ingredient in itself. (Lubin-Tate groups will reappear in an
essential way in Section 6, when we discuss the construction of Schneider
and Teitelbaum.)

1.2. Mahler bases. For n ≥ 0, let
(1.2) Intn(R) = {f ∈ Int(R)| deg(f) ≤ n}
and let an ⊂ K be the fractional ideal of leading coefficients of polynomials
from Intn(R). If fn ∈ Int(R) is a polynomial of degree n whose leading
coefficient generates an, then Intn(R) = Intn−1(R) ⊕ Rfn. A sequence
{fn}n≥0 as above will be called a Mahler basis. Note that fn is unique
up to multiplication by a unit and addition of an R-linear combination of
f0, . . . , fn−1.

For every n ≥ 1 write

(1.3) wq(n) =
∞∑
i=1

⌊
n

qi

⌋
.

Clearly wq(qm) = (qm−1)/(q−1), and if n =
∑m−1
i=0 biq

i with 0 ≤ bi ≤ q−1
then

(1.4) wq(n) =
m−1∑
i=0

biwq(qi).

It is well known (cf. [3, Prop. 1.3]) that

(1.5) an = π−wq(n)R.

We give two examples of Mahler bases. To construct the first, let T be
the set of Teichmuller representatives for κ in R (consisting of the roots of
unity of order q − 1 and the element 0). Let

(1.6) Rm =
{
m−1∑
i=0

aiπ
i| ai ∈ T

}
(R0 = {0}) and R =

⋃
Rm. There are qm elements in Rm, constituting

representatives for R/πmR. Let

(1.7) gqm(x) = π−(qm−1)/(q−1) ∏
r∈Rm

(x− r)

and if n =
∑m−1
i=0 biq

i with 0 ≤ bi ≤ q − 1 put

(1.8) gn =
m−1∏
i=0

gbi

qi .

It is easy to check that this is an integral-valued polynomial of degree n,
and since its leading coefficient generates an, the gn form a Mahler basis.
This example appears already in [2].
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For the second example we refer to [11]. Let F be a Lubin-Tate formal
group law over R associated with the prime π [5]. We denote by t its
parameter. The ring R acts as endomorphisms of F, and we denote by
(1.9) [x](t) = xt+ · · ·+ cn(x)tn + · · ·
the endomorphism corresponding to x ∈ R, uniquely determined by the
condition [x]′(0) = x. As a function of x, the coefficient cn is a polynomial of
degree at most n overK. This is seen by using the equation [x]◦[π] = [π]◦[x]
to deduce a recursive relation for the cn. Since cn(x) ∈ R for x ∈ R these
polynomials belong to Int(R). In [11] it was shown that the cqm , for m ≥ 0,
generate Int(R) as a ring over R. It was shown there that deg(cqm) = qm,
that the leading coefficient λqm of cqm has valuation v(λqm) = −wq(qm),
and that πwq(qm)cqm has integral coefficients.

It follows that if n =
∑m−1
i=0 biq

i with 0 ≤ bi ≤ q − 1 as above, then the
polynomial

(1.10) fn =
m−1∏
i=0

cbi

qi

is of degree n and its leading coefficient has valuation −wq(n). The {fn}
form our second example of a Mahler basis.

Remark 1.1. It is not possible to replace the fn by the cn in general. In
fact, for n that are not of the form qm the cn need not be of degree n. As
an example, let F be the formal group law of the elliptic curve y2 = x3− x
over Zp[i] (p ≡ 3 mod 4, i2 = −1), with respect to the formal parameter
t = −x/y. Then cn(x) = 0 unless n ≡ 1 mod 4. We call the formal group
law F neat if for every n, deg cn(x) = n and its leading coefficient λn has
valuation v(λn) = −wq(n). For neat Lubin Tate formal group laws, the
{cn} also form a Mahler basis. It can be shown that neat formal group laws
exist. In a certain sense, they are generic.

1.3. Mahler’s theorem. Let {fn} be a Mahler basis. Let f̄n : R→ κ be
the function obtained from fn by reduction modulo π.
Theorem 1.2.

(i) The f̄n (n ≥ 0) form a basis for the space C(R, κ) of continuous
(i.e. locally constant) κ-valued functions on R.

(ii) Moreover, f̄0, . . . , f̄qm−1 form a basis for the subspace C(R/πmR, κ)
of κ-valued functions that are constant on cosets of πmR.

(iii) Every function in C(R,K) has a unique uniformly convergent ex-
pansion

(1.11) f =
∞∑
n=0

anfn
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where an → 0, and |f |sup = max |an|. Conversely, every such series
converges uniformly and represents a continuous function.

We call an the nth Mahler coefficient of f (with respect to the particular
basis).

Proof. Part (iii) follows from (i) by a standard argument, and (i) is a con-
sequence of (ii). It is clear that the f̄n are linearly independent over κ,
or otherwise the fn would not span Int(R) over R. A dimension count
therefore reduces the proof of the theorem to the verification that f̄n, for
n < qm, is constant on cosets of πmR. Since the validity of this statement is
independent of the particular Mahler basis at hand (if gn is another Mahler
basis, each gn is an R-linear combination of f0, . . . , fn) we may choose to
work with the f ′ns from the second example. It is enough to prove that c̄n,
for n < qm, is constant on cosets of πmR. This, in turn, follows from the
following lemma. �

Lemma 1.3. Let y ∈ πmR. Then
(1.12) [x+ y](t) ≡ [x](t) mod (π, tqm).

Proof. Let {x} (t) = [x](t) mod π ∈ κ[[t]]. Then
(1.13) {x+ y} (t) = F̄ ({x} (t), {y} (t))
where F̄ is the reduction modulo π of F . But F̄ is of π-height h, where
q = ph, so {π} = utq + (higher terms), and the lemma follows. �

We remark that we could have concluded the proof of Theorem 1.2 with
the aid of the basis (1.8) as well. For a generalization of the last lemma, see
Proposition 2.4 below. As a corollary we get that the Weierstrass approxi-
mation theorem holds in K.

Corollary 1.4. (Kaplansky, [8, Theorem 43.3]) The polynomials are dense
in C(R,K).

Another corollary is the following. Let {fn} be a Mahler basis and let
fkn = fn mod πk.

Corollary 1.5. The R/πkR-module C(R,R/πkR) of locally constant
R/πkR-valued functions on R is free, and

{
fkn

}
is a basis for it.

2. Mahler bases and the wavelet basis

2.1. The basis of wavelets and the space of locally constant func-
tions. With T and R defined as in §1.2, let the length of r ∈ R, l(r) = m
if r ∈ R′m = Rm −Rm−1. The basis of wavelets1 is the orthonormal basis

1The terminology is due to Colmez, see [4].
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of C(R,K) given by {χr| r ∈ R} where

(2.1) χr = the characteristic function of the disk Dr = r + πl(r)R.

The locally constant (or step) functions S(R,K) are precisely those admit-
ting a finite expansion in terms of the χr. The largest l(r), for χr appearing
in the expansion of f ∈ S(R,K), is the smallest l ≥ 0 such that f is con-
stant on cosets of πlR. We call it the level of f, and denote it by l(f). Thus
l(χr) = l(r).

The last observation holds in fact with K replaced by any commutative
ring L.

Lemma 2.1. For any commutative ring L, the functions χr form an L-
basis for the free module S(R,L) of L-valued locally constant functions on
R. Moreover, {χr; l(r) ≤ l} is a basis for the subspace S(R/πlR,L) of
locally constant functions which are constant on cosets of πlR.

2.2. The modulo-k level and the level-l modulus. Let k ∈ Z. The
mod -k-level lk(f) of f ∈ C(R,K) is the smallest l such that f mod πk

is constant on cosets of πlR. Let l ≥ 0. The level-l-modulus kl(f) of f
is the maximal k ∈ Z such that f mod πk is constant on such cosets. If
f is locally constant and l(f) ≤ l, then we put kl(f) = ∞. If f is not
locally constant, then all kl(f) are finite. We record the definitions of the
level-l-modulus and the mod-k-level of a function f ∈ C(R,K) side by side:

(2.2)
kl(f) = max

{
k ≤ ∞| |x− x′| ≤ |πl| ⇒ |f(x)− f(x′)| ≤ |πk|

}
lk(f) = min

{
0 ≤ l| |x− x′| ≤ |πl| ⇒ |f(x)− f(x′)| ≤ |πk|

}
.

Lemma 2.2. If f ∈ C(R,K) and

(2.3) f =
∑

brχr

is the wavelet expansion of f, then

(2.4) lk(f) = max
{
l(r)| |br| >

∣∣∣πk∣∣∣} .
Proof. Since lk(f) = lk+1(πf) we may assume that f is R-valued. Passing
to f mod πk we see that the lemma is equivalent to the assertion that
the level of an f ∈ S(R,R/πkR) is the maximal l(r) for r such that χr
appears in the support of f . This follows from the previous lemma, with
L = R/πkR. �

Lemma 2.3. We have the following inequalities
kl(f + g) ≥ min {kl(f), kl(g)}(2.5)
lk(f + g) ≤ max {lk(f), lk(g)} .(2.6)

Equality holds if kl(f) 6= kl(g) (resp. lk(f) 6= lk(g)).
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2.3. The relation between the Mahler coefficients and the wavelet
coefficients. We turn to examine the expansion of a Mahler basis in the
basis of wavelets. Lemma 1.3 can be rephrased as saying that l1(fn) ≤ m
as long as n < qm. We now generalize it.
Proposition 2.4. Let {fn} be a Mahler basis. Then lk(fn) ≤ m if n <
qm+1−k.

Proof. If {gn} is another Mahler basis then lk(gn)≤max{lk(f0), . . . , lk(fn)}.
We may therefore prove the proposition for a particular Mahler basis, and
once again we choose to work with the second example from Section 1.2.
Let Il be the ideal of R[[t]] generated by πlt, πl−1tq, ..., πtq

l−1
, tq

l
. If h ∈ Il

then h ◦ [π] ∈ Il+1. This follows from the fact that [π] ∈ I1. By induction,
if y ∈ πlR then [y] ∈ Il, hence [x+ y] = F ([x], [y]) ≡ [x] mod Il. It follows
that the coefficients cn(x) and cn(x + y) of tn are congruent modulo πk if
n < ql+1−k and |y| ≤ |πl|. This proves the proposition for the cn, and from
there it follows for the fn as well, as they are products of cn with smaller
or equal indices. �

Proposition 2.5. Let
(2.7) fn =

∑
bn,rχr

be the wavelet expansion of the Mahler basis. If n < qm, then |bn,r| ≤
|πl(r)−m|. Equivalently, if n < qm then fkn ∈ C(R/πm+k−1R,R/πkR).
Proof. If n < qm then by the previous proposition lk(fn) ≤ m+ k − 1. By
Lemma 1.3, this means that if l(r) ≥ m+ k then |bn,r| ≤ |πk|. �

Corollary 2.6. Let
(2.8) χr =

∑
ar,nfn

be the Mahler expansion of χr. If l(r) ≤ m, then |ar,n| ≤ |πk| for every
n ≥ qk+m−1. Equivalently, the R-module spanned by fkn with n < qk+m−1

contains C(R/πmR,R/πkR).
Proof. Invert the matrix (bn,r) . �

The proposition and the corollary are the analogue of Proposition 1.21
of [4]. If we let l(n) (the length of n in its expansion in base q) stand for
the smallest m such that n < qm then they are also equivalent to the
inequalities

(2.9)
v(ar,n) ≥ l(n)− l(r)
v(bn,r) ≥ l(r)− l(n).

They also yield the following:

C(R/πmR,R/πkR) ⊂
〈
fk0 , f

k
1 , . . . , f

k
qm+k−1−1

〉
⊂ C(R/πm+2k−2R,R/πkR).
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If k = 1 these inclusions are equalities, in general they are not. The sub-
space

〈
fk0 , f

k
1 , . . . , f

k
n

〉
is nevertheless independent of the particular Mahler

basis. Can one describe it?

3. The Lipschitz condition

The results of this section can probably be deduced also from [2]. A
function f ∈ C(R,K) is Lipschitz (of order 1) if there is a positive constant
A such that

(3.1)
∣∣f(x)− f(x′)

∣∣ ≤ A ∣∣x− x′∣∣ .
We denote the subspace of Lipschitz functions by Lip(R). Since it contains
the locally constant functions, it is dense in C(R,K).

Lemma 3.1. The following are equivalent
(i) f ∈ C(R,K) is Lipschitz.
(ii) kl(f)− l (for l ≥ 0) is bounded below.
(iii) lk(f)− k (for k ≥ 0) is bounded above.

Proof. The equivalence of (i) and (ii) is clear. As to the equivalence of (ii)
and (iii) note that if kl(f) ≥ l − K for all l ≥ 0, then |x − x′| ≤ |πl| ⇒
|f(x)−f(x′)| ≤ |πl−K |, so for k ≥ −K we have lk(f) ≤ k+K. The converse
is equally easy. �

Corollary 3.2. Let br(f) (for r ∈ R) be the wavelet coefficients of f ∈
C(R,K). Then f ∈ Lip(R) if and only if

(3.2) ω(f) = inf
r
{v(br(f))− l(r)} > −∞.

The function |f |Lip = |πω(f)| is a Banach norm on Lip(R).

Proof. By Lemma 2.2, lk(f) − k ≤ K for all k ≥ −K if and only if l(r) >
k + K ⇒ v(br(f)) ≥ k for all such k and every r, i.e., if and only if
v(br(f)) ≥ l(r)−K − 1 for every r. By the previous lemma, f is Lipschitz
if and only if ω(f) > −∞. Now clearly ω(f) is finite for f 6= 0, since at
least one br(f) 6= 0, ω(cf) = v(c) +ω(f), and ω(f + g) ≥ min {ω(f), ω(g)} ,
which means that |.|Lip is a non-archimedean absolute value. The map
f 7→

(
π−l(r)br(f)

)
r∈R

is a norm-preserving isomorphism of Lip(R) with
the Banach space l∞(R) of all bounded functions on R, hence Lip(R) is
complete. �

For example, |χr|Lip = |π−l(r)|, and if {fn} is a Mahler basis, |fn|Lip =
|π−l(n)| (recall that l(n) is the least m ≥ 0 such that n < qm). In fact, we
have the following characterization of the Lipschitz condition in terms of
the Mahler coefficients of f .
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Proposition 3.3. Let {fn} be a Mahler basis. A function f =
∑
an(f)fn ∈

C(R,K) is in Lip(R) if and only if
(3.3) ω′(f) = inf

n
{v(an(f))− l(n)} > −∞

and ω′(f) = ω(f).

Proof. Since
(3.4) an(f) =

∑
r

br(f)ar,n

we have

(3.5)
v(an(f))− l(n) ≥ inf

r
{v(br(f)) + v(ar,n)− l(n)}

≥ inf
r
{v(br(f))− l(r)} = ω(f)

in view of the inequality v(ar,n) ≥ l(n) − l(r). This shows that if f ∈
Lip(R) then ω′(f) ≥ ω(f) > −∞. In a completely analogous way, using
the inequality v(bn,r) ≥ l(r) − l(n) one proves that if ω′(f) > −∞ then
f ∈ Lip(R) and ω(f) ≥ ω′(f). �

When R = Zp this proposition amounts to Theorem 53.4 in [8]. Note
that l(n) ≈ logq n.

4. Locally analytic functions and Amice’s theorem

4.1. The spaces Lh(R,K). Let h ≥ 0 be an integer. The space Lh(R,K)
of locally analytic functions of level h is the subspace of C(R,K) consisting
of functions which are (rigid) analytic on every disk of radius |πh| with
center in R. Such a function extends in a unique way to a rigid analytic
function on

(4.1)
R[h] =

{
x ∈ K| d(x,R) ≤ |πh|

}
=

⋃
r∈Rh

D(r, |π|h)

and
(4.2) |f |Lh

= sup
x∈R[h]

|f(x)|

is a Banach norm on Lh(R,K). Here we denote by K the completion of a
fixed separable closure of K, by d(x,R) the distance from x to the compact
set R, and by D(a, ρ) the affinoid disk in K with center a and radius ρ. The
natural inclusions Lh(R,K) ⊂ Lh+1(R,K) are compact (bounded subsets
in Lh(R,K) have compact closure in Lh+1(R,K)) and we endow the space

(4.3) L(R,K) =
⋃
Lh(R,K)

of locally analytic functions with the inductive limit locally convex topology.
See [9] for nonarchimedean functional analysis.
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4.2. Orthonormal bases in Lh(R,K). Consider the polynomials gn
defined in (1.8). Let

(4.4)
gqm,h = gqm if m < h

= π(qm−h−1)/(q−1)gqm if h ≤ m,

and

(4.5) gn,h =
m−1∏
i=0

gbi

qi,h

if n =
∑m−1
i=0 biq

i with 0 ≤ bi ≤ q − 1.

Lemma 4.1. Fix s ∈ Rh and write

(4.6) gqm,h(s+ πhu) =
qm∑
k=0

aku
k.

(i) Assume m < h. Then |ak| ≤ 1, |ak| < 1 for k > 0, and |a0| = 1 if
and only if in the expansion

(4.7) s = s0 + s1π + · · ·+ sh−1π
h−1

(si ∈ T ) the mth digit sm 6= 0.
(ii) Assume h ≤ m. Then |ak| ≤ 1, |aqm−h | = 1 and |ak| < 1 for

qm−h < k ≤ qm.

Proof. Fix s ∈ Rh and consider the polynomial

(4.8) Γ(u) =
∏

r∈Rm

(s+ πhu− r).

(i) Assume m < h. As long as r 6= s mod πm, |πh| < |s − r|. For the
unique r ≡ s mod πm, still |πh| < |s− r| = |πm| if we assume that sm 6= 0.
An easy computation gives then

(4.9)
ordπ

∏
r∈Rm

(s− r) =
m−1∑
k=0

k(qm−k − qm−k−1) +m

= (qm − 1)/(q − 1),

so, under the assumption that sm 6= 0, |gqm,h(s+πhu)| = 1 for |u| ≤ 1, and
part (i) follows. If sm = 0, then the same computation shows that all the
coefficients of Γ(u) are divisible by π(qm−1)/(q−1)+1, so all the coefficients of
gqm,h satisfy |ak| < 1.

(ii) When h ≤ m we break Γ(u) into the product over r 6= s mod πh and
the product over r ≡ s mod πh, where in the latter we use the substitution
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r = s+ πht, t ∈ Rm−h. We get

(4.10) Γ(u) =
∏

r∈Rm, r 6=s mod πh

(s− r)
(

1 + πhu

s− r

)
·
∏

t∈Rm−h

πh (u− t) .

Note that in the first product |πh| < |s− r|. Since

ordπ
∏

r∈Rm, r 6=s mod πh

(s− r) · πhqm−h(4.11)

=
h−1∑
k=0

k(qm−k − qm−k−1) + hqm−h(4.12)

= (qm − qm−h)/(q − 1),(4.13)

gqm,h(s+ πhu) becomes, in the region |u| ≤ 1, the product of a polynomial
with constant absolute value 1, and the polynomial
(4.14)

∏
t∈Rm−h

(u− t)

so part (ii) follows. �

The following was proved for R = Zp by Amice. We follow Colmez’s
survey paper [4], Théorème I.4.7.

Proposition 4.2. The gn,h form an orthonormal basis for Lh(R,K).

Proof. For

(4.15) n =
m−1∑
i=0

biq
i

(0 ≤ bi ≤ q − 1) put

(4.16) ñ =
m−1∑
i=h

biq
i−h = b n

qh
c.

The previous lemma implies that if we write

(4.17) gn,h(s+ πhu) =
n∑
k=0

aku
k,

then all |ak| ≤ 1, |ak| < 1 for ñ < k, and if none of the “digits” si of s
vanishes, |añ| = 1. Hence
(4.18) |gn,h|Lh

= 1.
Let m ≥ h and consider the space Wm−h of all the functions from R[h]

to OK/πOK, which are the reduction of a polynomial of degree < qm−h

on each πh-residue disk in R[h] separately. This is a free OK/πOK-module
of rank qm. By the lemma, the functions ḡn,h obtained from gn,h upon



608 Ehud de Shalit

reduction modulo π belong there, if n < qm. Among them, the functions
ḡn = ḡn,h for n < qh are constant on each residue disk, and constitute a
basis forW0. This follows from part (ii) of Theorem 1.2. On the other hand
the functions

(4.19)
m−1∏
i=h

ḡbi

qi,h

are linearly independent over OK/πOK on each πh-residue disk in R[h],
since they are given there by monic polynomials of degrees

∑m−1
i=h biq

i−h,
and these degrees are distinct. We deduce that {ḡn,h ; 0 ≤ n < qm} is a
basis for the qm-dimensional space Wm−h. The reduction modulo π of the
unit ball of Lh(R,K) is the union of all the Wd’s, and {ḡn,h} form an
algebraic basis for it. By a standard argument it follows that the gn,h form
an orthonormal basis for the space Lh(R,K). �

4.3. Amice’s theorem. This theorem characterizes functions in L(R,K)
in terms of the asymptotic decay of their Mahler coefficients. When R = Zp,
it was proved in [1]. View also [4], Corollaire I.4.8.

Theorem 4.3. Let {fn} be a Mahler basis, and f =
∑
anfn ∈ C(R,K).

Then f ∈ L(R,K) if and only if there exists an ε > 0 such that v(an)−εn→
∞ as n→∞.

Proof. The criterion being independent of the particular Mahler basis, we
may work with the gn of (1.8). Recall that f ∈ L(R,K) if and only if
f ∈ Lh(R,K) for some h, and by the last proposition, f ∈ Lh(R,K) if and
only if

(4.20) f =
∑

an,hgn,h

where an,h → 0. The relation between gn,h and gn yields an,h = π−ωn,han
where

(4.21) ωn,h =
m−1∑
i=h

bi
qi−h − 1
q − 1 .

As usual, the bi are the digits of n in base q. But

(4.22) b n

qh+1 c ≤ (q − 1)ωn,h ≤ b
n

qh
c

so the existence of h such that f ∈ Lh(R,K) is equivalent to the existence
of an ε > 0 such that v(an)− εn→∞ as n→∞. �
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5. Measures, distributions and the Iwasawa-Mahler-Amice
transform

5.1. Measures and the Iwasawa-Mahler transform. Let C(R,K)′ be
the Banach dual of C(R,K), i.e. the space of bounded linear functionals
on C(R,K). It is well known that this space is identified (via integration)
with the Iwasawa algebra of bounded measures on R. Let {fn} be a Mahler
basis. The Iwasawa-Mahler transform of µ ∈ C(R,K)′ with respect to the
given Mahler basis is the power series

(5.1) Aµ(z) =
∞∑
n=0

(∫
R
fn(x)dµ(x)

)
zn.

For example, if R = Zp and fn(x) =
(x
n

)
is the classical Mahler basis,

this takes the familiar form

(5.2) Aµ(z) =
∫
Zp

(1 + z)xdµ(x).

The following proposition is obvious, and encodes the fact that the dual of
the Banach space c0 is l∞.

Proposition 5.1 (Iwasawa, Mahler). The map µ 7→ Aµ is a norm pre-
serving isomorphism of K-Banach spaces between C(R,K)′ and K⊗R[[z]],
which depends on the choice of a Mahler basis.

Since K ⊗R[[z]] are just the K-rational bounded holomorphic functions
in the open unit disk
(5.3) ∆ = {z ∈ K; |z| < 1} ,
and since the sup norm of such a function is the maximum of the absolute
values of the coefficients in the power series representing it (the Gauss
norm), we get the following corollary.

Corollary 5.2. The map µ 7→ Aµ is a norm preserving isomorphism of
K-Banach spaces between C(R,K)′ and the space O(∆)b of K-rational
bounded holomorphic functions on ∆ (with the sup norm), which depends
on the choice of a Mahler basis.

The subring R[[z]] of holomorphic functions on ∆ which are bounded
by 1 is the classical Iwasawa algebra. The Iwasawa-Mahler transform of δx,
the Dirac measure at x ∈ R, will also be written Aδx = Ax, so that

(5.4) Ax =
∞∑
n=0

fn(x)zn.

We emphasize that the isomorphism does not respect the ring structure
(convolution of measures on one side and multiplication of bounded holo-
morphic functions on the other side) except in the case R = Zp and the
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classical Iwasawa-Mahler transform. In this case AδxAδy = Aδx∗δy , or

(5.5) AxAy = Ax+y

because

(5.6) (1 + z)x(1 + z)y = (1 + z)x+y.

It is easy to see that in general, there does not exist a Mahler basis that
will make the transform a ring isomorphism. The fact that in the classical
case the Iwasawa-Mahler transform respects the multiplicative structure is
crucial in Colmez’ work on the p-adic local Langlands correpondence.

There does not seem to be a satisfactory description of the K-Banach
algebra C(R,K)′ as a ring of holomorphic functions, except when K = Qp.
However, when one replaces continuous distributions by locally analytic
ones, the same question has been answered in the affirmative by Schneider
and Teitelbaum [10] using Lubin-Tate theory. We explain the connection
between our point of view, based on the notion of Mahler bases, and their
results, below.

5.2. Locally analytic distributions and the Amice transform. We
first generalize the Iwasawa-Mahler transform to locally analytic distribu-
tions, where it will be called the Amice transform. Recall that the space of
locally analytic distributions is the topological dual L(R,K)′ of L(R,K).

5.2.1. Some rings of holomorphic functions. As above, let ∆ be the
open unit disk, viewed as a rigid analytic space over K. Let ∆̇ be its com-
plement in P1(K) :

(5.7) ∆̇ = {z ∈ K||z| ≥ 1} ∪ {∞}.

For any K-rational rigid open set U ⊂ P1(K) we denote by O(U) the ring
of K-rational holomorphic (rigid analytic) functions on U, and by O(U)b
the subring of bounded ones. If U =

⋃
Un where each Un is an affinoid and

Un ⊂⊂ Un+1 then we topologize O(U) as the inverse limit of the K-Banach
algebras O(Un), and as such it becomes a K-Fréchèt space. On O(U)b we
put the supremum norm, in which it is complete (Banach).

Consider the two rings

(5.8)
O(∆̇)0 =

{ ∞∑
n=0

anz
−n−1| an ∈ K, v(an)→∞

}
⊃

O(∆̇)†0 =
{ ∞∑
n=0

anz
−n−1| an ∈ K, ∃ε > 0, v(an)− εn→∞

}
.

The first is the K-Banach algebra of functions which are holomorphic on
∆̇ and vanish at ∞. The second is its subring consisting of overconvergent
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functions, i.e. those which converge on

(5.9) ∆̇r = {z ∈ K||z| ≥ r} ∪ {∞}

for some r < 1.We topologize it as the direct limit of theK-Banach algebras
O(∆̇r)0. It is then a space of compact type [9].

The topological duals of these two spaces are, respectively,

(5.10)
O(∆)b =

{ ∞∑
n=0

anz
n| an ∈ K is bounded

}
⊂

O(∆) =
{ ∞∑
n=0

anz
n| an ∈ K; ∀ε > 0, v(an) + εn→∞

}

with their Banach (resp. Fréchèt) topology. The duality pairing is

(5.11) 〈f(z), g(z)〉 = res (f(z)g(z)dz)

where the residue res is the coefficient of z−1dz.
We emphasize that although the second pair of spaces are reflexive [9],

so O(∆̇)†0 is also the topological dual of O(∆), this is not true of the first
pair. The space O(∆)b is the dual of O(∆̇)0, but not vice versa, just as l∞
is the dual of c0, but not the other way around.

5.2.2. Relation to Mahler expansions. Now fix a Mahler basis as be-
fore and use it to identify f =

∑∞
n=0 anfn ∈ C(R,K) with

∑∞
n=0 anz

−n−1 ∈
O(∆̇)0 as in Mahler’s theorem. The locally analytic functions L(R,K) are
then identified with O(∆)†0. This is just a restatement of Amice’s theorem
on the asymptotic decay of Mahler coefficients of locally analytic functions.

Since fn(x) ∈ L(R,K), the Iwasawa-Mahler transform µ 7→ Aµ extends
from C(R,K)′, where it induces an isomorphism with O(∆)b, to L(R,K)′.
This extension, which we call the Amice transform, is an isomorphism be-
tween L(R,K)′ and O(∆). This is clear from the discussion in the previous
section. We summarize everything in the following theorem.

Theorem 5.3. Fix a Mahler basis {fn} as above. Then Mahler expansions
and the Amice transform induce topological isomorphisms

(5.12) C(R,K) ' O(∆̇)0, C(R,K)′ ' O(∆)b

of K-Banach spaces (and their Banach duals) and

(5.13) L(R,K) ' O(∆̇)†0, L(R,K)′ ' O(∆)

of spaces of compact type (and their Fréchèt duals). The isomorphisms are
compatible with duality.
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5.2.3. Some rings of p-adic Hodge theory. This subsection will not
be needed in what follows, and we include it for convenience and reference
only. In p-adic Hodge theory one considers the following spaces, which are
closed under multiplication.

(5.14)
E =

∑
n∈Z

anz
n| an bounded, an → 0 as n→ −∞


' O(∆̇)0 ⊕O(∆)b ' C(R,K)⊕ C(R,K)′.

This ring, introduced by Fontaine, is in fact a field, and the non-archimedean
norm sup |an| is a multiplicative Banach norm on it, i.e. E is p-adically
complete. Note that power series in E need not converge anywhere2. The
unit ball OE in E is a Cohen ring for the field κ((z)) (a complete dis-
crete valuation ring with κ((z)) as a residue field). The Iwasawa algebra
K ⊗R[[z]] ' O(∆)b is sometimes denoted E+.

Similarly, we can put together the locally analytic functions and distri-
butions to get

(5.15)
R =

{ ∑
n∈Z anz

n| ∀ε > 0, v(an) + εn→∞ as n→∞
∃ε > 0, v(an) + εn→∞ as n→ −∞

}
' O(∆̇)†0 ⊕O(∆) = lim

→
O(∆[r,1)) ' L(R,K)⊕ L(R,K)′.

Here ∆[r,1) = {z| r ≤ |z| < 1} . This is the Robba ring3.
The “common part” of E and R is the bounded Robba ring

(5.16) E† = O(∆̇)†0 ⊕O(∆)b = lim
→
O(∆[r,1))b ' L(R,K)⊕ C(R,K)′.

The ring E is the p-adic completion of E†.
We note that it is impossible to make a larger ring in which both E andR

embed by taking the direct sum of C(R,K) with L(R,K)′. The collection
of power series obtained in this way will not form a ring.

6. Relation to p-adic Fourier theory

From now on we assume that we are in the “mixed characteristic case”

(6.1) char(K) = 0.

2It is tempting to speculate that E is the ring of analytic functions on a “non-standard
annulus” in a non-standard model of the p-adics.

3As we shall have no use for the Robba ring in this paper, no confusion should arise from
denoting it by the same letter which was used to denote the set of representatives R.
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6.1. Recall of the results of Schneider and Teitelbaum. As indi-
cated above, the Mahler expansion, and dually, the Iwasawa-Mahler-Amice
transform µ 7→ Aµ, depend on the choice of a Mahler basis. In addition, the
Amice transform is a norm preserving isomorphism ofK-Banach spaces (for
measures) or K-Fréchèt spaces (for locally analytic distributions), but does
not respect the multiplicative structures given by convolution on C(R,K)′
(resp. L(R,K)′), and by multiplication in O(∆)b (resp. O(∆)), except in
the classical case.

In a beautiful but somewhat overlooked paper [10], Schneider and Teit-
elbaum found that, for the locally analytic distributions, both problems can
be fixed if we replace the unit disk ∆ by a twisted version. This twisted
version is a rigid analytic space ∆̃ defined over K, which becomes isomor-
phic to ∆ over K, or, somewhat better, over a large complete subfield of
K which will be described in due course. The main result of Schneider and
Teitelbaum is the construction of a canonical K-algebra isomorphism

(6.2) µ 7→ Ãµ, L(R,K)′ ' O(∆̃).

An equivalent formulation is that over K there is an isomorphism of topo-
logical K-algebras between L(R,K)′ and the ring O(∆̃,K) of K-rational
holomorphic functions on the unit disk. This isomorphism is Galois equi-
variant for the natural action on L(R,K)′, and for a twisted Galois action
on O(∆̃,K), so descends to an isomorphism between L(R,K)′ and O(∆̃).

The approach taken by Schneider and Teitelbaum is Fourier-analytic.
They begin by analyzing the locally K-analytic characters of R. For any
complete field K ⊂ L ⊂ K, denote by X(L) the group of locally K-analytic
homomorphisms χ : R→ U1(L), where U1(L) = 1+mL is the multiplicative
group of principal units of L.

When R = Zp every continuous character is locally analytic, so X is
represented by the open unit disk ∆, the point z ∈ ∆(L) corresponding to
the character χz ∈ X(L) given by

(6.3) χz(x) = (1 + z)x =
∞∑
n=0

(
x

n

)
zn.

Viewed as a function of x, χz(x) is locally analytic and its Mahler coeffi-
cients are zn. Viewed as a function of z (for a fixed x), we see that χz(x)
is holomorphic (rigid analytic) in ∆. In this case Ãµ = Aµ is given by

(6.4) Aµ(z) =
∫
Zp

χz(x)dµ(x).

In the following sections we give an account of the paper [10].
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6.2. Lubin-Tate groups and the description of X(K).

6.2.1. Lubin-Tate groups and their Cartier duals. Recall that in
Chapter 1 we introduced a Lubin-Tate formal group law F associated
to the uniformizer π [5]. This formal group law is a certain power series
F ∈ R[[X,Y ]], and the formal group Ĝ/R that it defines depends only on
π, up to isomorphism. According to the well-known equivalence between
formal groups and p-divisible groups [12], giving Ĝ is the same as giving a
certain p-divisible group G over R. Its special fiber G/κ is connected, one-
dimensional and of p-height [K : Qp]. Moreover, G carries an action of R as
endomorphisms, so Ĝ becomes a formal R-module, and as such has π-height
[κ : Fp].

The precise relation between F and G is the following. The p-divisible
group G is a direct system (Gn) of finite flat group schemes (Gn = G[pn]).
Each Gn = Spec(An) where An is finite and flat over R, and is equipped
with a co-multiplication making it into a Hopf algebra. In fact, An =
R[[Z]]/([pn]F ). The assumptions imply that
(6.5) A = lim

←
An = R[[Z]],

and the co-multiplication in A is given by the original power series F .
Let G′ be the dual p-divisible group. Recall that G′/κ is also of height

[K : Qp] but of dimension [K : Qp]− 1. For any R-algebra S one has
(6.6) G′n(S) = Hom(Gn/S , µpn/S),
where by Hom we mean homomorphisms of finite flat group schemes.

Let K ⊂ L ⊂ K be a complete field over which G′ is trivialized (it is
here that we need char.K = 0), and let S be the ring of integers of L.
Since G′n/S → Spec(S) is proper and separated, the valuative criterion for
properness implies that
(6.7) G′n(S)→ G′n(L)
is a bijection. The action of R on G induces a dual action on G′, and
G′n(L) becomes a cyclic R-module, noncanonically isomorphic to R/pnR.
The Galois action on G′n(L) is given by a character
(6.8) τ ′n : GalK → (R/pnR)× .
These characters fit together to give τ ′ : GalK → R×. If τ : GalK → R× is
the Lubin-Tate character associated with G then, by Cartier duality,
(6.9) τ ′ = τ−1χcyc

where χcyc : GalK → Z×p is the cyclotomic character.
The Tate module

(6.10) T ′ = lim
←
G′n(L)
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(inverse limit under multiplication-by-p maps) is free of rank 1 over R, and
we let t′ be a generator. Then

(6.11) σ(t′) = τ ′(σ) · t′

for any σ ∈ GalK .

6.2.2. The period of G associated with t′. Let µ denote the p-divisible
group of roots of unity. Any t′ ∈ T ′ determines a homomorphism of p-
divisible groups from G/S to µ/S , or, what is the same, a homomorphism
φt′ of formal groups defined over S from Ĝ to Ĝm. In terms of the canonical
parameter X of Ĝm, and the parameter Z of Ĝ corresponing to F, it is
given by a power series

(6.12) φ∗t′(X) = Φt′ = ΩZ + · · · ∈ S[[Z]].

We call Ω the period of the Lubin Tate group G associated with t′ (and the
choice of the parameter Z), and denote it by Ωt′ when we wish to emphasize
the dependence on t′.

Recall that v has been normalized so that v(π) = 1. Let v(p) = e be the
absolute ramification index of K. Part (i) of the following proposition was
proved in the appendix to [10] using results of Fontaine. We give here an
elementary power-series proof.

Proposition 6.1.
(i) Assume that t′ is a generator of T ′ as an R-module. Then

(6.13) v(Ω) = e

p− 1 −
1

q − 1 .

(ii) For every σ ∈ GalK ,

(6.14) Ωσ−1 = τ ′(σ).

(iii) For r ∈ R let rt′ = t′ ◦ [r]. Then

(6.15) Ωrt′ = rΩt′ .

We need two lemmas.

Lemma 6.2. If Φt′(ω) = 0 for some ω ∈ Ĝ(K), then ω is a torsion point
of Ĝ.

Proof. Since Φt′ is a group homomorphism, Φt′([a]ω) = 0 for every a ∈ Z×p .
But all the [a](ω), for a ∈ Z×p , have the same valuation. As a power series
which converges on the open unit disk can have only finitely many zeroes
of a given valuation, ω must be a torsion point. �

The second lemma is well known [7].



616 Ehud de Shalit

Lemma 6.3. Let
(6.16) f(Z) = bZ(1 + b1Z + b2Z

2 + · · · )
be a power series with coefficients in K, and assume that it converges for
|Z| ≤ 1, and has no zeroes for 0 < |Z| < 1. Then |bi| ≤ 1, bi → 0, and
on the annulus |Z| = 1, the function f has only finitely many zeroes. If
|ζ| = 1 then either f has a zero in the residue disk |Z − ζ| < 1, in which
case |f(Z)| < |b| throughout that disk, or |f(Z)| = |b| for every Z satisfying
|Z − ζ| < 1.

Proof. (i) Let ρ ∈ K be an element of valuation v(ρ) = 1/(q − 1) and
consider
(6.17) f(Z) = Φt′(ρZ) = ρΩZ(1 + b1Z + b2Z

2 + · · · ),
which clearly converges for |Z| ≤ 1. Suppose that f(ζ) = 0, where 0 <
|ζ| < 1. Then Φt′(ω) = 0 for ω = ρζ, and by the first lemma ω must
be a torsion point of Ĝ. But the smallest non-zero torsion points of the
Lubin-Tate group Ĝ are of valuation 1/(q − 1). This contradiction shows
that f does not have any zero in 0 < |Z| < 1, so the assumptions of the
second lemma are satisfied. This lemma tells us then that we may find the
valuation of ρΩ by looking at |f(Z)| on any residue disk inside the annulus
|Z| = 1, where f does not have any zero.

Look at the q−1 non-zero π-torsion points of G, which lie on the annulus
v(Z) = 1/(q − 1) and are mapped by Φt′ to the set
(6.18) {ε|(1 + ε)p = 1}.
We claim that at least one of them does not map to 0. In fact, if they all
map to 0, the homomorphism φt′ would factor through [π], and t′ would
not be a generator of T ′ as an R-module. Let ω = ρζ be a π-torsion point
of G which maps to ε 6= 0. Then |ζ| = 1 and f(ζ) = Φt′(ω) = ε. But f does
not have any zeroes in the residue disk |Z − ζ| < 1, because ζ is the only
point in its residue disk for which ρζ is a torsion point of G, and Φt′ can
only vanish at torsion points. It follows that
(6.19) |ρΩ| = |f(ζ)| = |ε|.
As v(ε) = e/(p− 1) and v(ρ) = 1/(q − 1), part (i) follows.

(ii) Consider the homomorphism

(6.20) [χcyc(σ)−1]Gm ◦ φσt′ ◦ [τ(σ)]F
of G to µ. It is easily checked that its effect on any element of Gn(K), for
any n, is the same as that of φt′ , hence they must coincide. Comparing the
coefficient of Z in the power series representing both homomorphisms, we
get part (ii).

Part (iii) is obvious. �
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6.2.3. The characters χz,t′(x). For any Z ∈ Ĝ(K), i.e. Z ∈ K with
|Z| < 1, viewed as a point on the Lubin-Tate formal group Ĝ via the
parameter Z, and any t′ ∈ T ′, we let

(6.21)
〈
t′, Z

〉
= 1 + Φt′(Z) = 1 + ΩZ + · · · ∈ U1(K).

Using the logarithm logF of the formal group law F we can also write

(6.22)
〈
t′, Z

〉
= exp(Ω logF (Z)).

Note that this is a power series with coefficients in the ring of integers S.
For x ∈ R and z ∈ Ĝ(K) let

(6.23) χz,t′(x) =
〈
t′, [x](z)

〉
= 1 + Φt′([x](z)).

Since χz,t′(x+y) = χz,t′(x) ·χz,t′(y), this is a locally analytic character, i.e.

(6.24) χz,t′ ∈ X(K) ⊂ L(R,K).

If r ∈ R we let rt′ = t′ ◦ [r]. Then

(6.25) χz,rt′(x) = χz,t′(rx) = χ[r](z),t′(x).

If we write

(6.26) [x](z) =
∞∑
n=1

cn(x)zn

where cn ∈ Intn(R) as in Chapter 1, then

(6.27) χz,t′(x) =
∞∑
n=0

Cn,t′(x)zn

where Cn,t′ ∈ Intn(R,S) (S-valued polynomials on R of degree at most n),
C0,t′ = 1 and

(6.28) Cn,t′(x) ≡ Ωt′cn(x) mod Intn−1(R,S).

In the notation of [10], Cn,t′(x) = Pn(Ωx).
We conclude that for a fixed x, χz,t′(x) is a rigid analytic function of z,

and is in fact a homomorphism from Ĝ(K) to U1(K).
For a fixed z, χz,t′(x) is a locally analytic function of x. Choosing a

Mahler basis {fn} and expanding

(6.29) Cn,t′(x) =
n∑

m=0
ct
′
n,mfm(x)
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(ct′n,m ∈ S) we get its Mahler expansion

(6.30)
χz,t′(x) =

∞∑
n=0

n∑
m=0

ct
′
n,mfm(x)zn

=
∞∑
m=0

(
∞∑
n=m

ct
′
n,mz

n)fm(x).

Proposition 6.4 ([10, Prop. 3.1]). The map (t′, z) 7→ χz,t′ is a GalK-
equivariant isomorphism of groups

(6.31) T ′ ⊗R Ĝ(K) ' X(K).

Proof. That this map is a Galois equivariant group homomorphism is clear.
Let t′ be a generator of T ′ as an R -module. If Φt′([x](z)) = 0 for all x, then
as we have seen before, z must be a torsion point, or else Φt′(Z) would have
infinitely many zeroes of the same valuation. But if z is a primitive torsion
point of level πn, then φt′ would factor through [πn], contradicting the fact
that t′ is a generator of T ′, hence z = 0. This shows the injectivity of the
map (t′, z) 7→ χz,t′ . For the surjectivity we refer to [10] and the analysis of
the diagram therein, which allows one to obtain that every χ ∈ X(K) is a
χz,t′ as a consequence of [12, Prop. 11]. �

6.2.4. The twisted disk ∆̃. Let X0 be the functor associating to any
L the group of Qp-locally-analytic homomorphisms from R to U1(L). Let
d = [K : Qp]. Since R ' Zdp as aQp-analytic group, fixing a basis (e1, . . . , ed)
of R over Zp shows that X0 is represented by ∆d, and determines d coor-
dinates on X0: the point (z1, . . . , zd) ∈ ∆d corresponds to the Qp-locally-
analytic character sending ei 7→ 1 + zi. It is easy to see that X is a closed
subgroup of X0, hence a rigid analytic space in its own right. In fact, X is
a smooth rigid analytic curve defined over K. The power series expansion
χz,t′(x) =

∑∞
n=0Cn,t′(x)zn shows that in terms of the above coordinates

the embedding

(6.32) T ′ ⊗R Ĝ(K) ' X(K) ⊂ X0(K)

is given by

(6.33) t′ ⊗ z 7→
( ∞∑
n=1

Cn,t′(ei)zn
)d
i=1

.

This means that over K, and once we have fixed a choice of a generator t′
of T ′, the isomorphism T ′ ⊗R Ĝ(K) ' X(K) is given by an injective rigid
analytic morphism from ∆ to ∆d, whose image on K-points is precisely
X(K). One can probably deduce from here by general principles that such
a morphism induces an isomorphism between T ′ ⊗R Ĝ ' ∆ and X as rigid
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analytic groups over K, without going into detailed computations. How-
ever, in [10, Theorem 3.6], the authors do better. They find two explicit,
increasing and exhausting sequences of affinoid subdomains (in T ′⊗R Ĝ and
X respectively) that map isomorphically to each other. The precise knowl-
edge of v(Ωt′) for a generator of T ′ becomes indispensible here. In any case,
T ′ ⊗R Ĝ ' ∆ and X are proved to be isomorphic as rigid analytic group
varieties over K. By Galois descent we conclude that X is isomorphic over
K to the K-form ∆̃ of the unit disk given by the (cohomology class of the)
continuous 1-cocycle

(6.34) τ ′ ∈ H1(GalK , AutK(∆)).

For any complete K ⊂ L ⊂ K,

(6.35) ∆̃(L) = (T ′ ⊗R Ĝ(K))GalL ' X(L).

In particular, ∆̃ becomes isomorphic to the unit disk over the splitting field
of G′.

6.3. The isomorphism L(R,K)′ ' O(∆̃).

6.3.1. Definition of Ãµ and first properties. Let µ ∈ L(R,K)′ and
define

(6.36) Ãµ(t′ ⊗ z) =
∫
R
χz,t′(x)dµ(x).

Substituting the power series expansion of χz,t′(x) (in z) and integrating
we see at once that for a fixed t′,

(6.37) Aµ,t′(z) = Ãµ(t′ ⊗ z)

is a rigid analytic function of z in the unit disk. From the corresponding
properties of χz,t′(x) we get

(6.38) Aµ,rt′(z) = Arµ,t′(z) = Aµ,t′([r](z)).

Here the R-action on µ is the one that extends the action rδx = δrx.
In particular, if σ ∈ GalK then σ(t′) = τ ′(σ)t′, so

(6.39) Aµ,σ(t′)(z) = Aτ ′(σ)µ,t′(z) = Aµ,t′([τ ′(σ)](z)).

The map µ 7→ Ãµ is an algebra homomorphism. It is enough to check it for
Dirac measures δx and δy, where it follows from

(6.40) χz,t′(x+ y) = χz,t′(x)χz,t′(y).

It is also Galois-equivariant. It therefore descends to a homomorphism

(6.41) L(R,K)′ → O(∆̃).
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6.3.2. The main theorem of [10].

Theorem 6.5. The map µ 7→ Ãµ is an isomorphism of K-Fréch èt algebras
between L(R,K)′ and O(∆̃).

Proof. The theorem is a consequence of all that has been done, and the
general fact that the Fourier transform

L(R,K)′ → O(X(K))

(6.42) µ 7→ (χ 7→
∫
R
χdµ)

is a Galois-equivariant isomorphism. This is [10, Theorem 2.3]. �
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