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Hopf-Galois module structure of tame C, X C,

extensions

par PauL J. TRUMAN

RESUME. Soient p un nombre premier impair, K un corps de
nombres contenant une racine primitive p-iéme de 'unité, et L une
extension galoisienne de K de groupe de Galois group isomorphe a
Cp x Cp. Nous étudions en détail les structures locale et globale de
I’anneau des entiers O;, en tant que module sur son ordre associé
Ay dans chacune des algebres de Hopf H induisant une structure
de Hopf-Galois non classique sur I’extension, complétant le cas
p = 2 considéré dans [12]. Pour une telle algebre de Hopf H,
nous montrons que Y, est localement libre sur Ay, calculons des
générateurs locaux, et déterminons des conditions nécessaires et
sufficiantes pour que Oy, soit libre sur 2.

ABSTRACT. Let p be an odd prime number, K a number field
containing a primitive pt" root of unity, and L a Galois extension
of K with Galois group isomorphic to C}, x C,,. We study in detail
the local and global structure of the ring of integers O as a
module over its associated order 20y in each of the Hopf algebras
H giving nonclassical Hopf-Galois structures on the extension,
complementing the p = 2 case considered in [12]. For each Hopf
algebra giving a nonclassical Hopf-Galois structure on L/K we
show that Oy is locally free over its associated order 2y in H,
compute local generators, and determine necessary and sufficient
conditions for O, to be free over Ag.

1. Introduction

This paper is a sequel to [12], in which we studied the nonclassical Hopf-
Galois module structure of rings of algebraic integers in tamely ramified
biquadratic extensions of number fields, and to [11], in which we studied
a larger class of tamely ramified extensions. In the introductions to those
papers, we described how the use of nonclassical Hopf-Galois structures
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has proven to be a fruitful generalization of the classical Galois module
theory of algebraic integers, and posed questions about the applications of
these techniques to tamely ramified extensions in particular. Since in this
paper we are concerned with extensions of number fields, we summarize
the classical theory briefly in this context; a thorough survey can be found
in [10]. If L/K is a finite Galois extension of number fields with Galois
group G then classically one studies the structure of 97, as a module over
the integral group ring O i [G] or, more generally, over the associated order

g ={a € K[G] |a-x €Oy forallz € O}

Noether’s theorem asserts that Oy, is locally free over O i [G] (and therefore
ki) = Ok[G]) if and only if L/K is at most tamely ramified [7, Theo-
rem 3]. In this case, therefore, O defines a class in the locally free class
group Cl (D k[G]), and Frohlich’s Hom Description of this group allows us
to compute this class and determine the global structure of Oy, over Ok [G],
at least up to stable isomorphism. In the case that K = Q, the Hilbert-
Speiser theorem [8] asserts that Oy, is free over Z[G| if G is abelian, and in
general Taylor’s proof of Frohlich’s conjecture [9] identifies the obstruction
to freeness of O, over Z[G] in terms of analytic invariants.

Hopf-Galois theory generalises the classical situation described above
(see [5] for a survey). If L/K is a finite separable extension of fields, we say
that a K-Hopf algebra H gives a Hopf-Galois structure on L/K (or that
L/K is an H-Galois extension) if L is an H-module algebra and addition-
ally the obvious K-linear map

Lo H— EndK(L)

is an isomorphism of K-vector spaces (see [5, Definition 2.7]). A finite Galois
extension of fields L/K admits at least one Hopf-Galois structure, with
Hopf algebra K [G], and we call this the classical structure. We call any other
Hopf-Galois structures admitted by the extension nonclassical. If L/K is
an extension of local or global fields then within a Hopf algebra H giving a
Hopf-Galois structure on the extension L/K we define the associated order
of O, as follows:

Ay ={he H|h-zecOp forall z € O},

and study the structure of Oy, as an Ag-module. This approach has proven
fruitful in the study of wildly ramified extensions (see [3], for example),
but in [11] we considered tamely ramified extensions and investigated the
following natural generalization of Noether’s theorem: If L/K is a finite
separable extension of number fields which is at most tamely ramified and
H is a Hopf algebra giving a Hopf-Galois structure on the extension, is Op,
locally free over 2y, its associated order in H? We proved the following
partial result:
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Theorem 1.1. Let L/K be a finite extension of number fields which is H-
Galois for some commutative Hopf algebra H, and suppose that no prime
lying above a prime number dividing [L : K] is ramified in L/K (i.e. the
extension is domestic). Then Oy is a locally free 2z-module.

Proof. See [11, Theorem 5.9]. O
As a particular case of this, we have:

Corollary 1.2. Let L/K be a finite extension of number fields which is
H-Galois for some commutative Hopf algebra H, and suppose that L/K
has prime-power degree. Then Oy, is a locally free 2 g-module.

In [12], we studied in detail the local and global Hopf-Galois module
structure of tamely ramified Galois extensions of number fields L/K with
group G = Cy x Cy. We used Corollary (1.2) to show that Oy is locally
free over its associated order 2y in any Hopf algebra H giving a Hopf-
Galois structure on the extension, and determined necessary and sufficient
conditions for Oy to be free over 2Ag. In the present paper we perform a
similar analysis of tamely ramified Galois extensions of number fields L/K
with group G = C), x C), for an odd prime number p, under the assumption
that K contains a primitive pt* root of unity. In Section 2, we characterise
these extensions and determine explicit integral bases of O, , for each prime
p of Og. In Section 3 we quote results of Byott, who enumerated and
described all the Hopf-Galois structures admitted by such an extension,
and give the Wedderburn decompositions of the Hopf algebras. In Section 4
we calculate, for each prime p of O, an explicit O p-basis of Agx, and
an explicit generator of Or , over Ap . Finally, in Section 5 We use the
detailed local information from Section 4 to describe the locally free class
group Cl () using a weak version of Frohlich’s Hom-Description ([6, §49])
and derive necessary and sufficient conditions for 97, to be free over Ag.

2. Tame C, X C, Extensions

Let p be an odd prime number, and let K be a number field containing
a primitive p* root of unity (. A Galois extension L of K with group
isomorphic to C), x C, has the form L = K(c, ), where a? = a and ? = b
are coset representatives of linearly independent elements of the Fj,-vector
space K*/(K*)P. In this section we establish congruence conditions on a
and b which are equivalent to the extension L/K being tamely ramified,
and for each prime p of O we calculate an explicit integral basis of the
completed ring of integers O, , over O ,. Many of the results in this section
are straightforward generalizations of the corresponding results in Section 2
of [12], so we omit the details of the proofs. In particular here, as there,
when we take completions with respect to an absolute value arising from
a prime p of O, we shall often tacitly be working not with local fields or
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discrete valuation rings but with finite products of these objects, and so
should regard our elements as tuples.

Proposition 2.1. The extension K («, 3)/K is tamely ramified if and only
if @ and b can be chosen to satisfy a =b =1 (mod (¢ — 1)PO).

Proof. This is very similar to the proof of [12, Proposition 2.1]. The exten-
sion L/K is tamely ramified if and only if both the subextensions K («)/K
and K (f)/K are tamely ramified, so it suffices to consider the subextension
K(a)/K. By [5, (24.2)] this is tamely ramified if and only if we can choose
a such that o” =1 (mod (( —1)POg ) for each prime p lying above p. By
adjusting by the p" power of an integral element and using the Chinese
Remainder Theorem, we arrive at the criterion in the proposition. O

Definition 2.2. For z € K* and p a prime of O, define r,(x) by

rp(z) = V;J}S@J :max{nGZ |n < vngw)}

Proposition 2.3. Let p be a prime of O which does not lie above p, and
let 7, be a uniformiser of Ok . Then the following is an Ok, basis of O .

rp(aibd)

Y
Proof. This is a straightforward generalization of the proof of [12, Propo-
sition 2.3]. O

Definition 2.4. For each prime p of O which lies above p, we shall write
ep = vy (p). Often, if there is no danger of confusion, we shall surpress the
subcript and simply write e. This is divisible by p — 1, and we shall write
e =e/(p—1). We note that €' = v, (( —1).

Proposition 2.5. Let p be a prime of Ok which lies above p, and let m,
be a uniformiser of O p. Then the following is an Ok y-basis of D (4) p:

(=)

and the following is an O g ,-basis of Oy, :

a—1\ (-1

7T§' 7r§'
Proof. This is a straightforward generalization of the proof of [12, Propo-
sition 2.4]. The stated O p-basis of O (4, is computed in [5, (24.4)],
and a similar argument applies to Ok (g),. Noting that the subextensions

K(«a)/K and K(f)/K are arithmetically disjoint at p yields the description
of Or in the proposition. O
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3. Hopf-Galois Structures On Tame C), X C,, Extensions

A theorem of Greither and Pareigis allows for the enumeration of all
Hopf-Galois structures admitted by any finite separable extension of fields,
and a gives a characterisation of the associated Hopf algebras. We state it
here in a weakened form applicable to finite Galois extensions L/K with
Galois group G. Let Perm(G) be group of permutations of G, and let A :
G — Perm(G) be the left regular embedding. Call a subgroup N of Perm(G)
regular if |[N| = |G| and N acts transitively on G. Then we have:

Theorem 3.1 (Greither and Pareigis). There is a bijection between reg-
ular subgroups N of Perm(G) normalised by A(G) and Hopf-Galois struc-
tures on L/K. If N is such a subgroup, then G acts on the group algebra
L[N] by acting simultaneously on the coefficients as the Galois group and on
the group elements by conjugation via the embedding A. The Hopf algebra
giving the Hopf-Galois structure corresponding to the subgroup N is

H=L[N|={2 € L|N] | %2 =z forall g € G} .
Such a Hopf algebra then acts on the extension L/K as follows:

(3.1) (Z cnn> cr = Z cn(n 1))z

neN neN
Proof. See [5, Theorem 6.8]. O

In [2] and [4], Byott enumerated all the Hopf-Galois structure admitted
by a Galois extension L/K with group G = C, x C), and, under the as-
sumption that { € K, described the corresponding Hopf algebras. These
are all commutative and, since in our case K has characteristic zero, they
are therefore separable (see [13, (11.4)]). This implies that each contains
a unique maximal O g-order. In this section we express each of the Hopf
algebras giving nonclassical Hopf-Galois structures on L/K as a product
of fields, and hence describe the unique maximal order in each of them.
Finally, we derive formulae for the action of each Hopf algebra on the ex-
tension L/K.

Theorem 3.2 (Byott). Let L/K be a Galois extension of fields with group
G = C, x Cp. Let T < G have order p, let d € {0,1,...,p — 1}, and fix
o, T € (G satisfying:

T=(r), o'=1 G=/on7).
There are well defined elements p,n € Perm(G) determined by:
p(O’kTZ) — O_lefl

n(ofrl) = oh it k=Dd g ke Z.
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We have pn = np and p? = n? = 1. Now set N = Nrg4 = (p,7n). Then
N = @G. Futhermore, N is regular on G and is normalised by A(G), and
so N gives rise to a Hopf-Galois structure on L/K, with Hopf Algebra
H = Hrg = L[Nrg)® If d = 0 then N = A(G), giving the classical
structure regardless of the choice of T. If d # 0 then the p — 1 possible
choices of d, together with the p + 1 possible choices of T, yield p? — 1
distinct groups N, each giving rise to a nonclassical structure on L/K.
These are all the Hopf-Galois structures on L/K.

Proof. For the enumeration of Hopf-Galois structures, see [2, Corollary to
Theorem 1, part (iii) (corrected)]. For the determination of the permuta-
tions 1 and p, see [4, Theorem 2.5]. O

Since the choice d = 0 gives the classical Hopf-Galois structure on L/K
regardless of the choice of subgroup 7T, we shall henceforth assume that
d # 0, so as to consider only nonclassical structures. Beyond this, we will not
specify a choice of either T" or d, and will therefore work with an arbitrary
Hopf algebra H = Hrp g4 giving a nonclassical structure on the extension.
Next we seek a more explicit description of the Hopf algebra. Since ¢ € K,
the group algebra K[p] has a basis of mutually orthogonal idempotents:

171
es = fchkspk for0<s<p-—1,
P =0
satisfying
pes = Cses-

The subfield LT of L is cyclic of degree p over K. Fix v € (LT) - satisfying

and set
p—1
ay = szes e LT [p].
s=0
Then we have:

Proposition 3.3 (Byott). With the above notation, for d # 0, we have
H = K|p, ayn)].

Proof. See [4, Lemma 2.10]. O

Proposition 3.4. With the above notation we have, for d # 0 and any
choice of T', the following isomorphism of K-algebras.

H~KP x K(v)PL.
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Proof. The following set is a basis of H:
w={es(ayn)'|0<s,t<p—1}.
Clearly we have
(es(avn)’)(es (avm)”) =0
whenever s # s'. By examining elements of the form eq(a,n)*, we find that
eol = Kn},
and by forming orthogonal idempotents within K[n] we have K[n] = KP.
The orthogonal idempotents in K[n] correspond in egH to the elements

10!

=" (Mg (avm)”.

P>

Now considering elements of the form eg(a,n)! for s # 0, we calculate
(es(avn))? = vP%es,
so we see that e;H = K (v®) = K (v). Thus we have
H =~ KP x K(v)P~L, O
Definition 3.5. For r =0,...,p— 1, we shall adopt the following notation
for the idempotents defined in the proof of Proposition (3.4):

12

E, = Z <kdr (avn)k-

P =0
Using the notation introduced in Definition (3.5), we can exhibit an
explicit K-algebra isomorphism ® : K? x K(v)P~! — H:
Definition 3.6. Given an element
(205 2Zp—1, Y15 -+ - Yp—1) € KP x K(v)P~1,
write ys = Zf;ol ws v withwsy € K fors=1,...,p—landt=0,...,p—
1. Let @ : K x K(v)P"! — H be the map defined by

—1p—1

(P(Z()a"'azp—hylw")yp l ZZT’E +Zzw8tes av77
s=11t=0

A consequence of the description of H given in Proposition (3.4) is that
we can identify the unique maximal O g-order in H. Here, and subsequently,
whenever p is a prime of O we write 7, for a uniformiser of K.

Corollary 3.7. We have the following description of the unique maximal
O -order My in H.

~ —1
EJJIH = D% X D%(U).
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It is possible to choose the element v such that in the notation of Propo-
sition (2.1) we have v = o'’ for some nonnegative integers i, j, and we
shall always assume that we have done so. Choosing v in this way we have
V =vP =1 (mod (¢ — 1)POr,), which allows us to use Propositions (2.3)
and (2.5) to describe locally the unique maximal O g-order M.

Corollary 3.8. If p is a prime of Ok which does not lie above p, then an
Ok p basis of My, is:

es(avn)t

{ET|OSTSP_1}U W 0§t§p—1
Tp

1 S S S b= 17 }
Corollary 3.9. If p is a prime of Ok which lies above p, then an O  ,-basis

pl

which implies that an O p-basis of My is

{EMOSTSp—l}u{GS(W?)/‘es)

€
Ty

1 S S S p—= ]-7
0<t<<p—-1 ’
In addition to the notation established in the previous sections, we now

write S for the subgroup (o) of G, and fix an element z € <LS ) g satisfying

7(z) = (x. Once again, it is possible to choose the element x such that in
the notation of Proposition (2.1) we have x = a7 for some nonnegative
integers 4, j, which implies that X = 2P = 1 (mod (¢ — 1)?9O). Then
L = K(z,v), so to determine the action of the Hopf algebra H on L/K, we
need only consider the action of each K-basis element of H on an arbitrary
product z'v’. Recall that the action of H on L is given by equation (3.1).
We calculate:

p'nt(o*r!) = 1g if and only if k =t and [ = r — dt(t — 1)/2,
and so
(3.2) (P 1(1g) = ol —(di(t=1))/2
Proposition 3.10. For s =0,...,p — 1 we have

v ifs=1

0 otherwise

es - (z'7) = {
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Proof. Each es € H, so we use equation (3.2) to calculate eg(z'07).

es - (z'v7) = ZC ks ok (zlod)

pk:O

— ZCkSkZC'U]

pkO

— ZC kSCkZZ'Z’UJ

pkO

P =
K il ifs=1i
N 0  otherwise. O
Proposition 3.11. For t =0,...,p — 1 we have
(avn)t . (xivj) _ C—dtjC—dit(t—l)/Ql,in—&-it‘

Proof. First we observe that

t
p—1
o= () S
s=0

since the es are orthogonal idempotents. Now each (ayn)t € H, so we use
equation (3.2) to calculate (avn)t (7).

(ayn)t - (z'0?) Z vitegn® - (z'v7)

p 1p-—1
:722 St( ks k t (:L,,Uj)
s 0 k=0
i iy
_ ZZUStC ks olr k—dt(t— 1)/2(33 v])
s 0 k=0
1p 1p—1
:722 StC ksC dt]ckl dit(t— 1/23311}]

P =0 k=0
C—dtyg—dzt(t—l)/Qinj p—1lp-1

_ Z Z Ck(ifs)vst

p s=0 k=0
— C*dtjgfdit(tfl)/ZIi,Uj+it' 0

Combining Propositions (3.10) and (3.11) yields:



566 Paul J. TRUMAN

Corollary 3.12. For s =0,...,p—1land t=0,...,p — 1, we have
o C—dtjc—dit(t—l)/Qinj-i-it ifi=s
es(av)’ - (¢'07) = :

0 otherwise.

Proposition 3.13. For r =0,...,p — 1, we have
E, - (xivj) = {

Proof. Recall from Definition (3.5) that

10

E, = Z der (aw)k,

P =0

so it is clear from Corollary (3.12) that E, - (z'v7) = 0 unless i = 0. In this
case we have

r

" ifi=0,=r

0 otherwise

1!

E.- (1) = =3 M ega)® - (v))

pkO

kedr ~—kdj

=15 sy
P>
1

) D
_v 3 ¢hdt=n)

P =
I G
10 otherwise. O
4. Local Freeness

We retain the notation of the previous sections: p is an odd prime num-
ber, K is a number field containing a primitive p** root of unity ¢, and L
is a tamely ramified Galois extension of K with group G = C), x C),. Addi-
tionally, H is a Hopf algebra giving a nonclassical Hopf-Galois structure on
the extension. This is determined by a choice of subgroup 7' of G having
degree p and a choice of integer d € {1,...,p — 1}. We have not made a
particular choice of either T or d, so as to work with an arbitrary Hopf
algebra giving a Hopf-Galois structure on the extension. To describe the
extension relative to this Hopf algebra, we have written G = (o, 7), where 7

X
generates T', and have fixed an element v € (LT> satisfying o(v) = (~%
and an element = € (LS> - satisfying 7(z) = (z.

In this section we establish that Oy is locally free over its associated
order 2y in H, and for each prime p of O we find an explicit O g ,-basis
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of the completed associated order 2z, and a generator of O, as an A ,-
module. In the final section, we shall use this detailed local information to
establish necessary and sufficient conditions for O to be (globally) free
over Ag.

Proposition 4.1. The associated order 2y is the Og-order O [N ]G and
7, is locally free over 2.

Proof. Since L/K is a tame extension of number fields, [L : K] = p?, and H
is commutative, we may apply [11, Theorem 5.10]. More precisely, if p lies
above p then p must be unramified in L, so O, ,[N]¢ is a Hopf order in H,
([11, Proposition 5.3]) and coincides with 2, ([11, Proposition 5.4]). Now
([5, (12.7)]) implies that Oy , is a free O, ,[N]%module. If p does not lie
above p then the characteristic of the residue field O /p does not divide [L :
K], so Op,,[N]¢ is the unique maximal order in H, ([11, Proposition 5.6])
and Op, is a free O, ,[N]%module. Since Oy, is free over Oy, ,[N]¢ for
each prime p of O g we must have g, = Or , [N ]G for each p, and therefore
Ay = O [N]C. O

Proposition 4.2. Let p be a prime of O which does not lie above p.
Then an O g-basis of A, is given by:

68(av77)t
{Er|0§7“§p—1}U{7r;F(Vst)

1§S§p_17
0o<t<p—1 (-

Proof. Since p does not lie above p we have 7, = Oy ,[N]9 = My, the
unique maximal order in Hj, and we computed an O p-basis of this in
Proposition (3.8). O

Proposition 4.3. Let p be a prime of O g which lies above p. For 0 < i <
p—1land 1 <t<p-—1 define

p—1 t i
k v _]. kt
Wit = E 9 ( ) 7.
k=0

el
Ty

Then an O p-basis for Ay, = Op ,[N]¢ is given by

ogigp—l,}

k 4
Wosksp-nufu] 272071

Proof. We follow the method of [1, Lemma 2.1]. Firstly, we find the or-
bits of G in N. Recall from Proposition (3.2) that N = (p,n), and from
Theorem (3.1) that G acts on N by conjugation via the embedding A. We
calculate 9 = p for all g € G and ' = 1,°n = p¥y. The orbits of G in N
are therefore

{p}for0<k<p—1,
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which each have length 1, and
(Pt |o<k<p—1}for1<t<p-1,

which each have length p. Each of the elements forming an orbit of length 1
is an Ok p-basis element of O ,[N]¢. For each of the p — 1 orbits of length
p, we construct p basis elements as follows: for ¢t = 1,...,p — 1 choose i’ as
a representative of the orbit containing it, and note that the corresponding
stabilizer is T' = (7). Using Proposition (2.5), an integral basis of Lg /K, is

given by
vt —1 ‘
< o ) 0<i<p-—-1,,
Tp

and so, for each i = 0,...,p — 1, the following is an O p-basis element of
Orp[N®

-1

ZO’ (v ) "nt. O
P

Finally, we find explicit generators of O, as an gy, = O ,[N]-
module for each prime p of Og. In the case that p does not lie above
p, we first make the following definition:

Definition 4.4. Let p be a prime of O g which does not lie above p. Define
0 < jp <p—1 as follows:
e If v, (X) =0 (mod p) or v, (V) =0 (mod p) then let j, = 0.
e Otherwise, let j, be the unique integer in the range 1,...,p—1 such
that v, (XV7) =0 (mod p).

We note that j, # 0 if and only if (v, (X),p) = (vp (V),p) = 1, that
is, if and only if p is ramified in both of the subextensions K(z)/K and
K (v)/K. Using this definition, we have:

Proposition 4.5. Let p be a prime of O which does not lie above p.
Then the following element -, is a generator for Or, as an Ay p-module:

p—1 s 5],3
T = ZO rp(VI) + Z TP(XSVSJD
]_

Proof. Tt is easy to see from Proposition (2.3) that v, € Op . Since Or
and A, are both free O i p,-modules of rank p?, it suffices to show that the
images of 7, under the O ,-basis elements of 2, form an Ok p-basis of
Orp. Recall the Ok p-basis of A, from Proposition (4.2), and note that
we have Op , = @g;é esOrp. For each r =0,...,p — 1, we have by (3.13)
that

,UT

Er"Yp:W’
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giving an O p-basis of egOrp. For s # 0 and t = 0,...,p — 1, we have
by (3.12) that

ean) _ edan) v

(V) P T T (vt X sy sip

pr( ) pr( ) W;p( VEIR)
st :L’si)sj"

rp(VSY) oy (XsVSIp)
xsvsjp +st
Xs Vsjp “+sty ?
7T;J"p( )

where y ~ y’ denotes that y" = uy for some u € O . The final equality
above holds since by the choice of j, we have

Tp(X V) 1y (V) = g (XV 4o,
Therefore for each s #£ 0, the elements

68(av77)t

Ty

are an O g p-basis of e;,Or, . Together with the basis of egOp ,, we have an
Ok p-basis of Op ;. O

If p is a prime lying above p, then by [11, Proposition 5.3] Ay, =
OrplN ]¢ is a Hopf order in H, and by a straightforward generalization
of [12, Proposition 4.3] it is a local ring, so we may use the method of
Childs and Hurley to identify a generator of Op , as an g p-module (see [5,
(14.7)]).

Proposition 4.6. Let p be a prime of O which lies above p. Then a
generator for Or,, as an Ay p-module is:

1 p—1p—1

’}/p:pzzxivj.

i=0 j=0

Proof. We observe that the trace element
0= Z n

is a left integral of A gy, (see [5, §3]). Therefore by [5, (14.7)] v, is a generator
of O as an ™Ay p-module if and only if v, € O, and 6 -y, = 1. To show
that v, € O, it is sufficient to show that

121
EZLL’/L S DL*;.
i=0
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Recalling the O p-basis of Op, , given in Proposition (2.5), the element

p—1 p—1
r—1 1 Z p—1 o
( e ) T ( ' >(_1)Z$Z
p Pizo\ *

lies in Oy p. (Recall that y ~ y' denotes that y' = uy for some u € Dlx(p.)
But for i =0,...,p — 1 we have

(p‘. 1) = (~1)' (mod p),

1

SO

Pl p 1 R it
< ; )(—1)13:1 = Zm’ (mod pOyp,p),
=0 i=0

1221
]; sz S DL7p.
i=0

Therefore v, € Op . It is straightforward to verify that

and so

0% ="Trr, /K, (W) = 1. [

5. Conditions for Global Freeness

In this section, we determine necessary and sufficient conditions for O,
to be free over Ay. We have shown in Section 4 that Oj is locally free
over A, and so it defines a class in the locally free class group Cl ().
Since H is a commutative Hopf algebra, 2y has the locally free cancellation
property (see [6, (§51)]), and so Oy, is a free Ay module if and only if it
has trivial class in Cl (). Furthermore, again since H is commutative,
we have an isomorphism

J(H)
H>*UAg)’

where J(H) is the group of ideles of H, H* is the subgroup of principal
ideles, and U(™Ag) is the group of unit ideles. (This is a weak form of
Frohlich’s Hom Description, see [6, (§49)].) The class of O in Cl(2y)
corresponds under this isomorphism to the class of an idele (hy), determined
as follows: let I" be a fixed generator of L over H, and for each prime p of O
let hy € Hy be an element such that hy-I'is a generator of O , as an A -
module. In this section we use the detailed local information we computed in
Section 4 first to “sandwich” the locally free class group between products
of ray class groups whose conductors are ideals divisible only by primes
lying above p, and then to compute the idele hy, and hence give necessary
and sufficient conditions for Oy, to have trivial class in Cl(g).

Cl () =
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We begin by studying the group of units of Ay, = O [V ]¢ for each
prime p of Ok

Proposition 5.1. Let p be a prime of Ok. If p does not lie above p then
Qal = Sme (Dlx{p) X (D%
If p lies above p then
Wi, = {2 € My | 2(2) € O, ).
Proof. If p does not lie above p then by [11, Proposition 5.6] Ap, is the

unique maximal order in Hy, and Corollary (3.8) yields the stated descrip-
tion of the units. If p lies above p then Ay, = DL,p[N]G is a local ring

)

whose unique maximal ideal is (pOp ,[N] + ker £)¢ (a straightforward gen-
eralization of [12, Proposition 4.3]), and so an element z € Ay, is a unit if
and only if £(2) € O . O

Proposition 5.2. Let p be a prime of Og lying above p. Let z € My,

and write
e av) = t
z—ZarE —i—ZZast( Y ) €s
s=11t=0 P
Withar,asytEDKp forr,t:(),...,p—l ands:1,...,p—1.ThenZEQKIX_Ip
if and only if

p—1p—1 ] ,
ZZ ( > ( ) )i J7Tp_te ast =0 (mod pm,"* O )

s=i t=)
for]-glimjgp_]-u

—1p—1
(i) Zgjdra +pzz ( > ) jw;te/asyt =0 (mod pzﬁDK,p)

s=1t=j

for0<j<p-1,
p—1p—1

(iii) Zar—&-pZZC ks Yo t as3 =0 (modpQDKp)

s=1t=0
for0<k<p-1,
(iv) aop € Of -
Proof. We rewrite z in terms of the basis elements of 25, given in Propo-
sition (4.3), noting that for each 1 < ¢t < p—1land 0 < s < p—1 we

have
t 1 5 S ie!
es(aym)’ = 72 ;™ Wit

PiZo
By Proposition (5.1), we then have that z € Ql}}m if and only if the coeffi-

cients of these basis elements lie in Oy and e(2) € O . The details of
the proof are lengthy but routine. (]
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Proposition (5.2) is analogous to [12, Proposition 5.1]. Owing to differ-
ences in notation, condition (iii) of Proposition (5.2) corresponds to the
union of conditions (iii) and (iv) of [12, Proposition 5.1]. Note also that the
j = 0 case of the congruences in part (ii) of Proposition (5.2) is identical
to the k = 0 case of the congruences in condition (iii).

We now seek necessary and sufficient conditions for z € Q[IX{,)J in terms of
higher unit groups of Ok y and O (y) p-

Definition 5.3. Define an isomorphism
0 : (KX)P x (K(v)*)P~t) = g~
by composing the automorphism of (K*)? x (K (v)*)®=1 defined by

(Zo, Zlyeeny Zp_l, Y1y yp—l) — (Zo, ZORLy -y Z()Zp_l, 20Y1y - - Zoyp—l)
with the explicit isomorphism ® : K? x K(v)?~1) — H defined in Def-
inition (3.6). Thus given an element (zq,...,2p—1,Y1,.-.,Yp—1) € KP X
K(v)P~1, we write ys = Zf:_& ws 0% with wgy € K for s=1,...,p—1 and
t=20,...,p—1, and then we have

p—1 p—1p—1
O(20, -+ 2Zp—1,Y1s-- > Yp—1) = 20Er Z 2021 By + Z Z zowsvtes(avn)t.
r=1 s=11t=0

We shall also write © for the induced isomorphism

(K x (K (0);) "D = H,
where p a prime of O, and the isomorphism

J(K)P x J(K (v))?~Y = J(H).
Proposition 5.4. Let p be a prime of O lying above p. Then

O (Dp X (L4 P 0xp) P x (14 P20 g ) 7V) C U,
Proof. The image under © of an element of
Ojp X (L Dxcp) P70 x (1 p*D ey )Y

has the form

p—1p—1 a ) t
z—ZaTE +ZZast< ol ) €s

s=11t=0 P
witha,«,as,tEDK,p forr,t:O,...,p—lands:l,...,p—l, and
(a) a0 € Ok,
(b) ar = ap (mod p?*Ofyp) for 1 <r <p-—1.
(¢) aso = ag (modpzDKp) for1<s<p-1.
(d) ast =0 (mod p*Ok,p) for 1 <s,t <p-—1.
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We show that z satisfies the conditions of Proposition (5.2).

By (d) we have ﬂgtela&t =0 (mod pOgy) for 1 <s,t <p—1. So

p—1p—1
ZZ ( >< ) t ]7Tp_t6 ast—O (modpDKm),
s=i t=j

which is sufficient to ensure that condition (i) of Proposition (5.2) holds.
By (b) and (d) we have, for 1 < j < p — 1, that

p—1p—1
chdra +pzz<> t —J ;:teas,t

s=1j=1

= Z ¢ a, (mod p2DK7p)

p—1
= ag Z ¢Idr (mod pQDK,p)
=0 (mod pQDKp),

so condition (ii) of Proposition (5.2) holds.
For 0 < k <p—1 we have by (b),(c) and (d) that

p—1p—1

Zar+p22< ks t —tea&t

s=11t=0

p—1
= Z ap+p Z Ciksa&o (mod pQDKp)
r=0 s=1

=pag+p Y ¢ Fag (mod p?Ok)
s=1

so condition (iii) of Proposition (5.2) holds.
Condition (iv) of Proposition (5.2) holds by (a).

Proposition 5.5. Let p be a prime of Ok lying above p. Then

_ _ (r—1)
071 (25,) SO, X (14 (¢ = 1)) P x (14 (¢~ 1)Dxcquyp)
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Proof. Let

=5 savm) — e\
z—ZarE +ZZast< - ) es € My p

s=11=0 e
with a,,as¢ € Oy for r,t =0,...,p—1and s = 1,...,p — 1, and sup-
pose that z € (DL,p [N]G) *. Then the a, and ag; satisfy the conditions of
Proposition (5.2) and, in particular, ag € Dlxgp. We shall show that this
implies

) y . (1)
67(2) € DFp X (14 (€~ DOx) PV x (14 (¢~ D)Oky) -

It is sufficient to prove that

(a) ar = ap (mod (¢ —1)Oky) for 0 <r <p—-1.

(b) aso=ao (mod (( —1)Oky) for 1 <s<p—1.

(c) asy =0 (mod (( —1)Oky) for 1 <5, <p—1.
Foreach s=1,...,p—1and j=0,...,p— 1, define

t —t
( > ] p eas,t‘

i) of Proposition (5.2) becomes

!
AQM'

Using this notation, condition

p—1
Z <8> Ag ;=0 (mod pﬂ'p_w/DK,p) for1 <i,j<p-—1.
i

s=1

If we consider the case ¢ = p — 1 then this becomes
Ap1; €EOgpfor1 <j<p-—1,
and if we further specialize to the case j = p — 1 then we have

—(p—1)€¢

which is equivalent to
ap—1p—1 =0 (mod pOgp).
Now by considering decreasing values of j in turn we obtain
ap—14 =0 (mod F;e/DKyp) for1<t<p-1.
Finally, considering decreasing values of ¢ in a similar way yields
asy =0 (mod w;e/DKyp) for 1 <s,t<p-—1,

which is sufficient to establish (c). In fact, we have shown that 7, s €
Ogypfor1<t<p-—1.
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Next we establish (a). Summing the congruences in part (ii) of Propo-
sition (5.2) over j with appropriate coefficients we have, for each 0 <1’ <
b— 17

p-1 p-1 p—1
Z ijdr (Z C]d?“ar +pZAS7]) =0 (mOd pZDK,p)

7=0 r=0 s=1
—1p—1 —1p—1
= ZZCJ‘” "a, +pZZC I’ A, ;=0 (mod p*Opyp)
r=035=0 s=1j=0
p—1p—1
= a + Z Z (‘Jd’"/ASJ =0 (mod pOkp).
s=1j=0
To simplify the double summation, note that for each s =1,...,p—1 we
have
p—1 p—1  pl " , ,
ZC—]dr As,j — ZC—]dr Z () (71)t—]ﬂ_p—te (s g
=0 =0 t=5 \/
p—1 ¢
:ZZ<>C jd?" )t]p—te st
t=0 7=0
p—1
_ Z(C dr’ )t,ﬂp—te’a&t
=0

= as0 (mod (¢ —1)Oky),

since we showed above that W‘te,as,t € O,y for 1 <5, < p— 1. Therefore

p
we have
—
ap + Z as0 =0 (mod (¢ —1)Okp)
for any ' = 0,...,p — 1, which implies that all of the a,s are congruent to

ag modulo (( —1)Ok p, as claimed in (a).
To help us establish (b), we note first that we may view the congruences
in part (i) of Proposition (5.2) as follows: for 1 < 1,5,k < p— 1 we have

p—1p—1
ER2p> ( )( ) Dy asr =0 (mod pOicy).

s=1i t=j
Summing these congruences over all 1 < 4, j < p—1 and rewriting the inner

summations using the binomial theorem gives us

p—1p—1

(5.1) YN (¢ F-1)(-1)'m " asy =0 (mod pOp) for 1 < k < p—1.
s=1t=1
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Using this, we establish (b). Summing the congruences in part (ii) of Propo-
sition (5.2) gives us

p—1p—1 p—1p—1p—1
ZZCMT@ ‘H?ZZZ() ) ]ﬂpt ast =0 (modpQDKvp),
7j=1r=0 s=1j=1t=j

which reduces to

p—lp-1 p—1lp— 1
ZZCMT pz ast—O (mod p?Oxyp).
j=1r=0 s=1t= 1

Adding to this one of the congruences from part (iii) of Proposition (5.2)
gives

p—1p—1 p—1p—1
ZZC]drar_'_pZC ksa80+pzz - ks _ 1)(— )tﬂ';teasﬂgEO
7=07r=0 s=1t=1

(mod p?Ok p)

for each £k =0,...,p— 1. If kK = 0 then the final term is zero, and if k # 0
then it is congruent to 0 modulo p*Ok, by congruence (5.1). So we have

ag + Z C_ksas,o =0 (mod pOgy) for 0 <k <p-—1,
=1

and so for each k = 0,...,p — 1 there exists ¢ € O such that

p—1

—k
ap + Z§ fas0 = pcy.
s=1

We therefore have

p—1
ag = Z Ck
k=0

and
p—1
as0 = ZCkSCk for1<s<p-1,
k=0
and so we have
p—1
aso—ag = Y_ (" = 1)eg
k=0

=0 (mod (¢—1)Oky) for1 <s<p-1.

Thus as0 = ap (mod (¢ — 1)Ok ), as claimed in (b). This completes the
proof. O
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By combining Propositions (5.4) and (5.5), we can “sandwich” the group
of unit ideles U(2A ) between products of groups of unit ideles of fields, and
so “sandwich” the free class group Cl () between products of ray class
groups of fields:

Corollary 5.6. There are injections:

U(DK) X Up2(DK)(p_1) X Up2(DK(v))(p_1)

|

U(Rn)

|

U(Ok) x U(gq)(DK)(p_l) X [U(Cfl)(DK(v))(p_l)
and therefore surjections:

Cl(Dk) X Clz(Dk) P~ x ClLa (D)) P~V

|

Cl ()

|

CL(OK) x Clie—1)(Or) PV x Clic1) (D)) P~V

Next we compute an idele whose class in J(H)/H*U(2(g) corresponds
to the class of Oy, in Cl(Ay):

Proposition 5.7. The class of Oy in the locally free class group

J(H)

ClRy) =2 ———2—
corresponds to the class of the idele (hy), where:

—1p—1

ZE S Oy e )it | pO

s=1t=0

Zﬂ. rp(V" )E + Z vasjp) (avn)jp otherwise.

Here q5¢ = {%J for 0 <s,t <p—1 and j, is as defined in Definition (4.4).
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Proof. Define
1 p—1  p-1
== Z v+ Z x5 € L
p 7=0 s=1

Using the formulae in Corollary (3.12) for the action on elements of L of
the elements es(a,n)’ (s =1,...,p—1and t =0,...,p — 1) and those in
Proposition (3.13) for the action of the elements E, (r =0,...,p — 1), we
see that I' is a generator of L over H. To show that the class of O in
Cl(g) corresponds to the class of the idele (hy), in J(H)/H*U(Ay) we
must show that for each prime p of O, the element hy - I' is a generator
of Or over App. First suppose that p | pOx. Then

p—1p—1
hp-F:ZE F+ZZCStdtl Zy7Piste (ayn)t - T
s=11t=0
1 p—1p—1
— ]? Zv +ZZC5tdt 1)/21) Pds,t o (avn)t_xs
s=11t=0
1 p—1p—1
= = ZU +ZZCStdt 1)/2C std(t— 1/2 8 ySt—Pgs,t
p s=11t=0

3

s=1t=0

1 p—1p—1
=7'ZU+ZZW“,

where st denotes the least positive residue of st modulo p. So in this case hy,-
I' coincides with the generator of Op, , over Ap , given in Proposition (4.6).
Now suppose that p { pOg. Then

p—1
hp.F:Z RIoW F+Z Ty rp(X V) es(ayn)’ - T
r=0
1 pP— 1 sY/S] .
_ p2 ;r‘p( )’U _‘_7224- sjpd(jp— 1)/2 rp(XV p)l‘s’l)sjp
r=0

whereas from Proposition (4.5) we have that a generator of Oy, , over A, is

o (V) o (X 5V STp
ZW W+ZW X
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Comparing these two, we see that
p—1 p—1
P X Bt Y D2 ) (g T) =
r=0 s=1

Since both p? and the second factor lie in QLIX{’p, we have that hy - I' is a
generator of Or , over Ag . This completes the proof. O

The idele (hy), corresponds under the isomorphism
J(H) = J(K)P x J(K (v))?~Y
to a tuple of ideles, and this tuple in turn corresponds to a tuple of classes

of fractional ideals via the usual map

B % K @)D = CL©OR)” x € (D) "

In order to use the surjections of class groups of Proposition (5.6) to deter-
mine necessary and sufficient conditions for O, to be a free A g-module, we
must identify this tuple of classes of fractional ideals. First we define some
notation:

Definition 5.8. For any y € K, define a fractional ideal of K by
I, = H prp(y)‘
plyO K
For each s =1,...,p — 1 define an element Us; € K(v)* by

p—1
Us — Z (Std(t—l)/Qv—qs,zvst c K(’U)X.
t=0

For each s =1,...,p — 1 define a fractional ideal J; of K (v) by

Js = (IX% [T w0 1 gpvam)prp(vsfmp)

PO K (v) BIVO K ()
Proposition 5.9. Under the composition of maps

J(H) = J(K)P x J(K(v))P~) = CL(D k)P x C1 (DK(U))(”‘” ,

the idele (hy), defined in Proposition (5.7) corresponds to the tuple of
classes of fractional ideals

—1 -1
(DK7]V 7"'aIV(p71)aJ1a"'aJ(p—1)>a
Proof. Under the isomorphism

J(H) = J(K)? x J(K (v))P~V
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the idele (hyp), is mapped to the tuple of ideles

- <<1>p,( 15 0) e ()

where for s = 1,...,p — 1, the element y,q € K(v)p is defined by

(S

s (Yrp)ps s (y(p—l),qs)fn>
p

-1
T CSHE=D2y syt 3| POK(v)
Ysp = § t=0

—rp(X3VSIP) os .
Tp il )USJP otherwise.

Now for each s = 1,...,p — 1 we define an idele (y )qp € J(K(v)) by

1 B | POk (v)

, 1
y _ U y ’ — _ s1/8] . .
oY s Ysp {U;lﬁp re(XVER) sie otherwise.

Then the tuple of ideles

N i (V —rp(V(P=1)

p

-1
has the same class in the product Cl (D )P x Cl (DK(U))(p ) as the tuple

of ideles J. Mapping the tuple of ideles 7’ to a tuple of fractional ideals,
we see 1mmed1ately that the first component is mapped to the trivial ideal,

and that for » = 2,...,p, the rth component is mapped to the fractional
ideal
_ r— 1
Vr 1 — Hp TP V
plvV

To determine the images of the remaining components we calculate, for
each s # 0 and B a prime of D (,), the valuation vy (y;m) We have:

/ 0 P POK)
up (ys,‘ﬁ) T —up (Us) + vy ( (X ]p)ijP> otherwise.

We observed after Definition (4.4) that j, # 0 only if the prime p of Ox
is ramified in the extension K (v)/K. In addition, we now observe that in
this case we have

Tp(X5VI) = 1y (X5) + 1 (VIP) + 1

and
pup (V) = vg (V) = vy (vF) = pog (v) -
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Using these observations we see that if p is a prime of O such that j, # 0
and ‘B is a prime of O (,) lying above p then we have

- ( —rp (X5VSIp) sjp> = —uy (ﬂ_;p(Xs)) — vy (W;'p(VSjP)-‘y-l) + vy (vsjp)

= —up (ﬂ_;,,(XS)) - pT‘p(Vsjp) —p+ (Vsjp) .

On the other hand, if p is a prime of O such that j, = 0 and *B is a prime
of D,y lying above p then we have

- ( —rp(XSVSIp) sjp> _ U‘B( —Tp(XS))

So we see that the idele (y;7q3>qg corresponds to the fractional ideal

Js = I)_(i H ‘B_vm(Us) H fp”p(VSjp)*prp(V”P)*p :

and so the tuple of idéles J’ corresponds to the tuple of fractional ideals

-1
(DK)IV P V(p l)ajlv "7J(p—1)>'
U

Proposition 5.10. A sufficient condition for Oy, to be free over g is that
the tuple of fractional ideals

(DK,I;l,...,I;(p s ,...,J(p,l)),
has trivial class in the product of ray class groups
Cl(Ok) x CLe (D) P x ClLa(D g Y.

A necessary condition is that the same tuple has trivial class in the product
of ray class groups

CL(OK) x Clc_1) (D)™ x Clic_1) (D).

Proof. By Proposition (5.7), the class of O, in Cl () corresponds to the
class of the idele (hy), in J(H)/H>*U(g), and by Proposition (5.9), this
corresponds to the given tuple of fractional ideals. Recalling the surjections
of Proposition (5.6), the result follows. O
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