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Journal de Théorie des Nombres
de Bordeaux 28 (2016), 539–556

On π-exponentials II:
Closed formula for the index

par Rodolphe RICHARD

Résumé. Cet article poursuit la série, entamée avec [17], dédiée
aux π-exponentielles de Pulita et aux équations différentielles p-
adiques de rang 1 polynomiales dans une extension ultramétrique
du corps des nombres p-adiques. Nous rajoutons à [17] une for-
mule close pour l’indice. En particulier cela résoud un problème
étudié dans [15]. Nous répondons également à une question [21,
§2.4] de Robba sur la comparaison de la cohmologie rationnelle
vers celle de Dwork (c.-à-d. la cohomologie rigide sur un disque
avec coefficient). Nous indiquons même une procédure pour pallier
les cas où il n’y a pas isomorphisme. Nous établissons en passant
une caractérisation computationelle des équations solubles à équi-
valence près sur l’algèbre dague. En appendice nous déterminons
la complexité polynomiale de l’algorithme déduit.

Abstract. This article pursues the series, initiated by [17], ded-
icated to Pulita’s π-exponentials and p-adic differential equations
of rank one with coefficient a polynomial in a ultrametric exten-
sion of the field of p-adic numbers. We complement [17] with a
closed formula for the index. In particular this answers one prob-
lem studied in [15]. We also answer a question [21, §2.4] of Robba
on the comparison from rational cohomology toward Dwork co-
homology (i.e. rigid cohomology on a disk with coefficient). We
also indicate a procedure to palliate the lack of isomorphy of this
comparison. We establish by the way a characterisation of soluble
equations up to equivalence on the dagger algebra. An appendix
determine the polynomial complexity of the derived algorithm.

This paper deals with rank one isocrystals over the rigid affine line in
characteristic p > 0. This corresponds to the datum of an ordinary linear
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differential equation of order one, over a disk of radius 1 + ε for unspeci-
fied ε > 0.

Such equations have been actively studied since Bernard Dwork, [7],
and Philippe Robba [20], [22], and more recently by Bruno Chiarelotto [1],
Daniele Chinellato [3], Gilles Christol [4], Richard Crew [6], Laurent Gar-
nier [9], Shigeki Matsuda [14], Andrea Pulita [16], [2].

This class of isocrystals are investigated because they constitute a fam-
ily of handy examples where essentially all interesting phenomena arises
explicitly.

However explicit computations were quite involved since the paper of
Pulita who obtained a systematic description of isomorphism classes of
these equations in term of Witt vectors (following an original unexploited
idea of Robba also used by Dwork, Chinellato, Matsuda).

General notations. Fix a prime p and a ultrametric field extension K
of Qp, and write |−| for its absolute value. An element x of K is a (ul-
trametric) integer of K if |x| ≤ 1. We denote R the ring of integers of K,
and κ its residue field.

(characteristic 0) K ←↩ R� κ (characteristic p)

1. Results

1.1. Problem. For any L(T ) inK[T ] we consider the differential equation

(1.1) y′ = L(T ) · y .

Let P (T ) be given by: P (0) = 0 and P ′(T ) = L(T ), so that the series

(1.2) e(T ) = exp(P (T ))

is defined in K[[T ]] and is a solution of (1.1).
We may refer indifferently to a differential equation like (1.1) through

the equation (1.1) itself, the corresponding polynomial P (T ), or the corre-
sponding series e(T ).

1.1.1. Denote O† ⊆ K[[T ]] the sub-algebra of “overconvergent” series:
convergent series with unspecified radius of convergence > 1. We con-
sider (1.1) as a differential equation over O†.

One says that (1.1)
• is trivial if e(T ) has radius > 1, and, more generally,
• is soluble if e(T ) has radius ≥ 1 (radius 1 is included).

1.1.2. Given two differential equations such as (1.1), with corresponding
series e1(T ) and e2(T ), they are equivalent if the identity e1 · O† = e2 · O†
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holds. Equivalently, the series e1(T )/e2(T ) (which corresponds to the dif-
ference1 of the equations) is in O†: its radius of convergence is > 1.

1.1.3. We are concerned here with the computation of a numerical invari-
ant, under equivalence 1.1.2, associated with soluble (1.1): its index χ ∈ Z
(cf. §1.5). Invariants holding equivalent information are the p-adic irregu-
larity of [16, §2.4], the first slope in [4, Definition 2.6], the Swan conductor
([16, Théorème 1.4.4. 4.], see also [2] for a more refined version of the Swan
conductor, in the rank one case, which also involves the first slope, and [12]
for general differential modules).

Remark 1.1. In principle, the determination of the radius of convergence
function from [17, §5 (23)] allows us to infer quite directly the slopes and
then the index. Nevertheless, formula [17, §5 (23)] is computationally more
involved than [17, Théorème 3]. We will obtain here a computationally more
direct approach, yielding a more satisfying answer regarding the applica-
tions 2.1 and 2.2. We refer to the first article of our series [17] for comparison
between the present approach and earlier work of Robba, Matsuda, Pulita
on these questions.

1.2. Some notations from [17]. Fix an integer D ≥ deg(P ) and write

(1.3) d =
⌊
logp(D)

⌋
, and di =

⌊
logp(D/i)

⌋
for 1 ≤ i ≤ D.

We assume that K has a primitive root of unity ζ of order pd+1, and denote

(1.4) πi = ζp
d−i − 1 for 1 ≤ i ≤ d .

(uniformisers of a tower Qp(π0) ⊆ . . . ⊆ Qp(πd) of ramified cyclotomic
extensions.)

Write P (T ) as
∑D
i=1 ai · T i, let

P̃ (T ) =
D∑
i=1

ai · T i
/
πdi

ẽ(T ) = exp(P̃ (T )) (mod
(
TD+1

)
).

(1.5)

Remark 1.2. The integers (1.3) are the ones which describe the decom-
position of the ring of truncated universal Witt vectors of length D into
products of rings of p-typical Witt vectors, of lengths the di (cf. [17, §2.6]
and §1.6.2). The uniformisers πi, and more general ones, come from the
work [16] of Pulita. These ones were already found in [14]. The appen-
dix [17, §C] applies here: everything proceeds without modification with
the more general πi of Pulita.

1We mean actually difference on the right-hand side only of (1.1). In terms of differential
module of ranks one, the addition of right-hand sides corresponds to ⊗ operation, which is a
group operation.
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1.3. Some results of [17]. This gathers what we need from [17].

Theorem 1.3 ([17]). The following are equivalent (with notations above):
(1) the radius of convergence of e(T ) is ≥ 1 (resp. > 1);
(2) the coefficients of e(T ) are integers (resp. are divisible by π0, except

maybe for finitely many);
(3) the coefficients of ẽ(T ) are integers (resp. ẽ(T ) reduces to 1 in the

quotient κ[T ]/(TD+1)).

Remark 1.4. Recall this corresponds to the solvability (resp. triviality)
of (1.1). We note that, in condition (3), the reduction invoked in the trivial
case is meaningful thanks to the integrality expressed in the solvable case.

The solvable case of Theorem 1.3 is namely [17, §2.5 Théorème 2, §2.10
Corollaire 1]. What is left to prove is the triviality case (the “resp.” inside
parentheses).

Proof. The equivalence of the first two statements in the triviality case
follows from [17, Proposition 4]. The equivalence of the first and third
statement in the triviality case follows from the formula for the radius of
convergence [17, Théorème 3]. �

1.4. Characterisation. In the solvable case, cf. Remark 1.4, we may re-
duce ẽ(T ) into

(1.6) ê(T ) ∈ κ[T ]/(TD+1).

As a consequence of Theorem 1.3, a soluble (1.1) is characterised by ê(T )
as follows.

Proposition 1.5 (Characterisation of differential equations). Consider
• two polynomials L1(T ) and L2(T ) in K[T ], each of degree at most D;
• the corresponding differential equations, say (1.1)1 and (1.1)2 resp.;
• and the corresponding truncated series ê1(T ) and ê2(T ).

Assume solubility of (1.1)1 or (1.1)2. Then (1.1)1 and (1.1)2 are equivalent
if and only if

(1.7) ê1(T ) = ê2(T ).

As may be expected we will extract the index form this complete invari-
ant ê(T ).

Proof. Solubility is invariant under equivalence; we can assume both (1.1)1
and (1.1)2 are soluble. It suffices to show the equation associated with
L1(T )− L2(T ) is trivial. The associated truncated series is

ẽ1(T )/ẽ2(T ) (mod
(
TD+1

)
).
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It has integral coefficients (recall 1 + TR[[T ]]/(TD+1) is a multiplicative
group). The identity(1.7) is equivalent to the triviality of the reduction
of ẽ1(T )/ẽ2(T ) in κ[[T ]]/

(
TD+1

)
. By Theorem 1.3, this is equivalent to

condition (1) of Theorem 1.3. This concludes. �

Remark 1.6. Conversely, we may lift a given ê(T ) to some ẽ(T ) in
R[T ]/(TD + 1), write P̃ (T ) the logarithm of the latter, considered as a
polynomial, deduce P (T ), take its derivative L(T ) and get an equation (1.1)
which will produce this ê(T ).

Remark 1.7. The construction of ê(T ) from (1.1) depends on the choice
ofD. For example, take for L(T ) the constant polynomial π0, so that e(T ) =
exp(π0 · T ), which is known to have radius 1.

(1) For D = 1, one gets P̃ (T ) = T , and one has
ẽ(T ) = 1 + T (mod (T 2))
ê(T ) = 1 + T (mod (T 2)).

(2) For D = p− 1, one gets P̃ (T ) = T , and one has
ẽ(T ) = 1 + T + . . .+ T p−1/(p− 1)! (mod (T p))
ê(T ) = 1 + T + . . .+ T p−1/(p− 1)! (mod (T p)).

(3) For D = p, one gets P̃ (T ) = π0
π1
T , and one has

ẽ(T ) = 1 + π0
π1
T + . . .+

(
π0
π1
T

)p−1
· 1
(p− 1)! +

(
π0
π1
T

)p
· 1
p! (mod (T p+1))

ê(T ) = 1 + 0 +u · T p (mod (T p+1)) for the unit u = −1 of Z/(p).

Remark 1.8 (cf. [16, Introduction]). A famous landmark result is the
p-adic local monodromy theorem (formerly Crew’s conjecture). The rank
one case yields in particular a correspondence between Artin-Schreier-Witt
characters of absolute Galois group of a local field in characteristic p and
rank one differential equations over the Robba ring. Pulita’s π-exponential
was developed in order to made this correspondence explicit. Given a solv-
able differential equation (1.1), and some D, we constructed a complete in-
variant ê(T ). This is a truncated power series, but can be interpreted equiv-
alently as a truncated universal Witt vector, by first theorem of Cartier
theory of Witt vectors. Witt motivation for Witt vectors was the classifi-
cation of cyclic coverings on characteristic zero. The universal Witt vec-
tor obtained has a p-typical decomposition, and each factor corresponds
to some Artin-Schreier-Witt covering, composed with a Kummer covering.
Each of this coverings generates by relative rigid cohomology, a degree 1
“F -isocrystal” over the affine line in characteristic p with action of Z/pdZ
for some d. The choice of ζ determines a character χζ of Z/pdZ and allows



544 Rodolphe Richard

to consider the χζ-equivariant sub-F -isocrystal, which is actually of rank 1.
It is to be expected that the product of these F -isocrystals of rank 1 are
realised by the original equation (1.1). Our constructions would provide a
computationally accessible exhibition of this correspondence. The details
and precise computations for establishing such a fact require lengths in
contextualising that should be offered in another article.
1.5. The index χ. We assume the solubility of (1.1). Associated to (1.1)
is its index χ.

1.5.1. It is the index of the differential operator2 in the de Rham complex:

(1.8) 0 −→ O† f(T )7→df−L·f ·dT−−−−−−−−−−−→ O† · dT −→ 0
namely, the Euler-Poincaré characteristic χ = dimH0 − dimH1 of the
cohomology groups of the complex (1.8). In other words, it is the rigid co-
homology of the affine line with coefficient in the differential equation (1.1).

1.5.2. The slope ([4][Definition 2.6 onward]). There is yet another
interpretation of this invariant, due to Robba3. See [4], [22, §9-10] for the
notion of a Dwork (or Berkovich) generic point gr at radius r ∈ R≥0 and
more details. We consider the radius of convergence RoC(r) of (1.1) centered
at gr: considering the differential equation given by the coefficient L(T−gr),
it is the radius of convergence of the solution exp (P (T − gr)− P (−gr)).
Consider the function RoC viewed in logarithmic abscissa and ordinate:
(1.9) v 7→ log(RoC(exp(v))),
It happens to be continuous and piecewise affine: a polygonal line (cf. [17,
§5]). Its right derivative at v = 0 (the right4 slope), in the non trivial case5,
is χ.

1.6. Formula for the index. By Proposition 1.5, a soluble (1.1) is char-
acterised by the associated (1.6). One should be able to recover the index
from (1.6). For that purpose, we introduce the notation vT (−) for the val-
uation associated with T . Namely
(1.10) vT (ê(T )− 1) is the multiplicity of 0 as a root of ê(T )− 1,

2Equivalently, the index of d : O† · e(T ) f 7→df−−−−→ O† · e(T )dT .
3See [19, §1.3 with a=1] for a statement with the algebra H+ of functions converging on

the closed disk instead of the dagger algebra, and for the non solvable case. (see also [22, Theo-
rem 10.2.2]) We need to consider the algebra of overconvergent series, instead ofH+, as otherwise,
in the solvable case, there is no index (loc. cit.). We refer to the extension [20, §5] of [18] results.

4If we parameter the axes with respect to valuations (opposite of logp), this is the left slope.
Compare the examples from the algorithm joined with [17].

5In the trivial case χ is h0−h1 = 1−0 = 1, but the slope is zero, as the radius of convergence
is constant on the convergence disk. In order to interpret the index χ as a slope, one introduces
a subtlety in the definition of RoC, namely that, at a generic point of radius r, the function RoC is
the minimum min{r; ρ} between r and the radius of convergence ρ at this point. Trivial equations
will not be of any useful interest here, and we will not need to take this into account.
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obviating the case ê(T ) − 1 = 0 which corresponds to trivial equations.
The algorithm joined to [17] computes ẽ(T ) with some precision. With the
slightest extra cost, this allows to exactly deduce ê(T ), then vT (ê(T )) and
finally (1.12).

1.6.1. p-typical case. We first treat the p-typical case. This is the case
where

(1.11) P (T ) ∈
⊕
i≥1

K · T pi
.

Theorem 1.9 (Closed formula for the index in the p-typical case). Assume
solubility and non triviality 6 of (1.1) and assume (1.11). Then the index
of (1.1) is

(1.12) χ = 1− pd

vT (ê− 1) .

Remark 1.10. As an implied statement: vT (ê − 1) is a power of p. As a
corollary: the negative of χ − 1, which is the dimension of H1, is a power
of p.

Example 1.11. In the three cases of Remark 1.7, formula (1.12) becomes
respectively χ = 1 − p0/1 for (1); χ = 1 − p0/1 for (2); and χ = 1 − p1/p
for (3).

1.6.2. p-typical decomposition. In general we may uniquely write

(1.13a) P (T ) =
∑

1≤m≤D,p-m
Pm(Tm), where each Pm satisfies (1.11).

We can correspondingly construct em(T ) := exp(Pm(T )) so that

(1.13b) e(T ) =
∏

1≤m≤D,p-m
em(Tm).

We form the corresponding ẽm(T ) and still have

(1.13c) ẽ(T ) =
∏

1≤m≤D,p-m
ẽm(Tm).

It happens ẽ(T ) is integral if and only if each factor ẽm(Tm) is (cf. [17,
§X]). Assuming solubility for (1.1), we can consider the corresponding re-
duction êm(Tm) of ẽm(Tm) as in (1.6), and still have

(1.13d) ê(T ) =
∏

1≤m≤D,p-m
êm(Tm).

6The non-triviality assumption becomes superfluous under the convention that for the null
truncated series vT (0 (mod TD+1)) = +∞, so that the fraction in (1.12) evaluates to 0.
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1.6.3. General “global” case. Recall (1.13d), (1.3), (1.10).

Theorem 1.12 (Closed formula for the index). Assume solubility of (1.1)
and consider the decomposition (1.13d). Then the index of (1.1) is

(1.14) χ = 1− max
1≤m≤D,p-m

m · pdm

vT (êm − 1) .

2. Applications

2.1. Application to exponential sums. Let us indicate a last inter-
pretation of the index. Given a p-typical soluble (1.1) one can construct
families of exponential sums, which are written down in [15, §2.3], and
some generating function, the L-function, actually an Euler factor, con-
cretely a polynomial of some degree, say ∆. The thesis [15] investigates
these L-functions. Its first, of two, problems is this degree ∆, and [15,
Ch. 3, cf. Ch. 5] succeeds in providing bounds using Robba formulas by
direct computations of radii of convergence.

On the other hand, the trace formula gives a cohomological interpretation
of the L-function, and its degree is dim(H1). It follows that ∆ is given:

• in the trivial case, by dim(H1) = 0 (but χ = dim(H0) = 1 6= 0);
• in the non trivial (but still soluble) case, by dim(H1) = −χ.

More precisely, [15] sums are constructed from a polynomial (Witt) vec-
tor f(T ) = (f0(T ), . . . , fm(T )), and allegedly associated with the equa-
tion (1.1) corresponding to (cf. [15, §2.1])

(2.1) P (T ) = πmφ0(f(T )) + . . .+ π0φm(f(T )),

with φi(f) = p0 · f0
pj + . . .+ pj · fjp

0
.

As a consequence, Theorem 1.12 answers7 the first problem studied in
the reference [15] with the closed formula (1.12). The estimates from [15,
end of Ch. 3, cf. Ch. 5] follows from the bound (take D = deg(P ) in (1.14)
or see §2.2 infra)
(2.2) χ ≥ 1− deg(P ) ≥ 1−max{pm deg f0; . . . ; deg fm}.
The algorithm accompanying [17] allows to compute the right hand side
of (1.14).

2.2. Application to comparison. Many ideas here have their roots in
Robba’s work (see for instance [22, §13.2,13.3]). We refer to [16, Ch. 1,
1.1.1–1.1.4] for a more historically oriented perspective, and to [17, §0] for
relations with [4].

7Provided one has established the link between Pulita’s π-exponentials and the exponential
sums written down in [15]. This link is claimed without proof in [15], and it is the subject of a
projected article in the series started by [17] and continued here.
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2.3. Comparison map. Let us consider the inclusion of de Rham com-
plexes, into (1.8), of

(2.3) 0 −→ K[T ] f(T )7→df−L·f ·dT−−−−−−−−−−−→ K[T ] · dT −→ 0.

The cohomology groups of (1.8) are refered sometimes as analytic cohomol-
ogy, Dwork cohomology or rigid cohomology, etc. For (2.3), one sometimes
speaks of rational or algebraic cohomology. We will use [21, §2.4] terminol-
ogy: Dwork and rational cohomology. The inclusion of complexes induces
a comparison map from rational cohomology to Dwork cohomology, say

(2.4) H0
rat

comparison0−−−−−−−→ H0 H1
rat

comparison1−−−−−−−→ H1

“easily shown”8 to be injective and surjective respectively (loc. cit.).
A recurrent difficulty has been that it is not always an isomorphism: For

example Boyarsky principle, on variation of cohomology and Gross-Koblitz
formula for the p-adic Gamma function, relies on an interplay between the
two cohomology spaces:

• a Frobenius endomorphism which comes from the Dwork cohomol-
ogy,
• a functional equation which comes from the rational cohomology.

(We refer to [8, 13].)

2.4. Comparison criterion. By injectivity and surjectivity property, the
fact that the comparison map is an isomorphism is equivalent to the equal-
ity of the dimensions of the Dwork and rational cohomology groups. We
precisely computed it for the Dwork cohomology. For the rational cohomol-
ogy, this is simply given by the degree of the polynomial coefficient L(T )
of (1.1) (cf. [22, 13.4]). We can therefore state the following.

8Let us details here the affirmation of Robba. Injectivity: two distinct solutions of (1.1)
in K[T ] defines solutions in O†, and stay distinct in O†. Surjectivity is more involved. We use
the density of K[T ] in O† and the continuity of the quotient map from O† · e · dT to the finite
dimensional H1, with respect to the separated topology on H1 (which is not a priori the quotient
topology). The image of K[T ] · e · dT will then be dense in the finite dimensional H1, and hence
will be H1 itself. Passing to the quotient we get the desired result. The topology on O† is that
of an inductive limit of Banach spaces.

• The density can be checked on each Banach space separately. It follows for the conver-
gence, with respect to the Gauss norm, of the truncated series towards a power series
converging on the closed unit disc.

• The continuity follows from [22, Proposition 7.2.2] and more precisely to the refer-
ence [13] to Grothendieck lectures [10].

The author thanks the referee, who provided the reference [5] (which also relies on [10]).
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Corollary 2.1. Consider a solvable (1.1), choose D = deg(P ) and let D =
m · pn with p - m. The comparison map (2.4) from de Rham cohomology
with coefficients in K[T ] to cohomology of (1.8) is an isomorphism if and
only if (equivalently):

• one has χ = 1−D;
• the factor êm(T ) in (1.13d) has non zero derivative at 0.

Such question was already asked and answered by Robba in [20, resp.
§10.6, §10.11], especially about the index [20, §10.7]. The novelty here is
easily the criterion given by the easily computable êm(T ), and the direct
algebraic method (Robba’s method, already algorithmic, already using the
exponentials, was recursive).

Let us note that in the special case p - D, ie D = m this reduces to an
innocuous check, namely that:

(2.5) the dominant coefficient aD of P satisfies |aD| = |π0|.

The author thanks the referee for pointing [22, 13.3.1] which already pro-
vides a very convenient alternative criterion.

Example 2.2. As an illustration consider the following example. It seems
related the conjecture formulated in [13]. Let P be a polynomial with co-
efficients in Q, and write D = deg(P ). If p is a large enough prime, then
we may assume that every coefficient of P is a p-adic unit, as well as D!.
Consider such a p, a corresponding π0, and the series e(T ) = exp(π0 ·P (T )).
Then the p-typical decomposition corresponds to the monomial decompo-
sition of P . For every monomial aiT i, the series ei(T ) = exp(π0aiT

i) is
easily seen to have radius 1, and index 1− i. The check (2.5) is satisfied for
any ei(T ) and for e(T ). We can conclude as follows.

Proposition 2.3. For all but finitely many p, the series exp(π0 · P (T ))
defines a soluble differential equation with index 1 − D and for which the
comparison of cohomologies (2.4) is an isomorphism.

For the remaining p, the equation may be trivial, not solvable or lack
comparison. For the first two issues, the computation of the radius of con-
vergence may help choose a suitable change of variable. For the lack of
comparison, the procedure below may apply.

2.5. Factorisation. Without detailing the proof, we mention a comple-
ment. Assume for convenience that κ = Z/(p). If P = a1T + apT

p + . . . +
apdT p

d is a polynomial satisfying (1.11), we define its shift as

V P = apT + ap2T p + . . .+ apdT p
d−1

.
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Proposition 2.4 (Complement to Corollary 2.1). Assume a solvable (1.1)
does not provide comparison isomorphism. Define F =V Pm(Tm)−Pm(Tm).
The decomposition

P = F + (P − F )
is such that

• the term F defines a trivial differential module;
• the term (P − F ) has degree ≤ D − 1.

In other words, the equation defined by P−F is equivalent to the one defined
by P but has strictly lower dimensional rational cohomology.

The only non elementary statement is the triviality of the differential
module attached to F . This (mostly)9 amounts to the existence of a Frobe-
nius structure.

Applied iteratively, this procedure can restore the lack of comparison
without changing the Dwork cohomology. We dedicate to yet another future
article the consequences of this application to Boyarsky principle. For future
reference, we call F the superfluous factor of degree D.

This is again similar to [22, 13.3.1], and mostly well known to Robba,
and its use in the end of the proof of [22, 13.3.2]. More precisely, Our
variant, from a computational point of view, may be more satisfactory, as
it does not involves taking arbitrary roots a1/d, as would the original [22,
13.3]. When used recursively, the extensions implied may bring with them
a computational weight.

3. Demonstrations

3.1. Products of differential equations and index. Recall that for
two non vanishing converging series with distinct radius of convergence,
the radius of the product series is the smaller of the two (distinctness is
paramount here10). A variation of this observation, coupled with the con-
tinuity of the function radius of convergence, implies the following.

Lemma 3.1 ([4], [16, Corollary 2.4.8]). Given two polynomials L1 and L2
whose corresponding equations (1.1) are solvable, but with distinct index χ1
and χ2, the product equation, with coefficient L = L1 + L2, is still solvable
and has index min{χ1;χ2}.

9The Frobenius structure is the one mentioned at the end of the proof of Lemma 3.2. The
mostly refers to the fact that in factorisation (3.5), the factor AH(wmT ) will be trivial, ≡ 1
(mod (T d+1)). Actually wm is the derivative of êm(T ) involved in Corollary 2.1.

10Starting from a product fg, we apply [23, §6.1.2 Prop. 2] to get rfg ≥ min(rf , rg) and
also rf ≥ min(rfg , r1/f ). Using [23, §6.2.2 Corr. to Th. 1 ], the nonvanishing yield r1/f ≥ rf .
Hence rf ≥ min(rfg , r1/f ) implies rf ≥ min(rfg , rf ) and thus rf ≥ rfg . Conversely rfg ≥
min(rf , rg) implies rfg ≤ rf and we are done.
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We refer to [4] for a detailed explanation, and for these other facts:
(i) For any unit u in R× the equations given by L(T ) and by L(u · T )

share the same index. (There is an obvious isomorphism of de Rham
complexes.)

(ii) For any m positive and prime to p (resp. m = p), and a soluble
equation given by L(T ) and of index χ, the derived equation given
by L(Tm) is soluble and has index χ′ such that χ′− 1 = m · (χ− 1)
(resp. χ′ = χ). (cf. [4, Proposition 2.8])

Proof of Theorem 1.12 from Theorem 1.9. The decomposition 1.6.2 induces
a corresponding decomposition of (1.1). The equation corresponding to
some Pm(T ) is eligible for Theorem 1.9: It is trivial or its index has the
form 1− pi for some i ≥ 1. By the fact (ii) above, the equation correspond-
ing to Pm(Tm) has index 1−mpi.

It follows that each of the non trivial factors of (1.1) have distinct index.
By Lemma 3.1 above, the index of (1.1) is the minimum of the index of the
factors. This yields (1.14) and concludes. �

3.2. Facts form Witt vectors theory. (cf. [17, §2.6,2.7] and references
therein.) For any algebra ring A over the local ring Z(p), recall: the nota-
tion Λ(A) = 1 + TA[[T ]]; that the Artin-Hasse series

(3.1) AH(T ) = exp(T + T p/p+ T p
2
/p2 + . . .) = 1 + T + . . .

has coefficients in Z(p), and defines an element of Λ(A). The Artin-Hasse
map

(3.2) (w0, . . . , wi, . . .) 7−→ AH(w0T ) · . . . ·AH(wiT p
i) · . . .

embeds into Λ(A) the ring W (A), of (p-typical) Witt vectors with entries
in A, mapping the unit (1, 0, 0, . . .) to (3.1).

If p is not a divisor of zero in A, then A embeds in a Q-algebra, hence
we can form the logarithm power series, and apply it to series in Λ(A).
For such A, the image of W (A) in Λ(A) describes the series in Λ(A) whose
logarithm belongs to

∏
i≥0(Q⊗A) ·T pi (compare (1.11)). Every such series

uniquely decompose as (3.2).
We denote Wd(A) the ring of truncated Witt vectors (w0, . . . , wd) of

length d+1. By quotient, the Artin-Hasse map (3.2) induces an embedding
of Wd(A) into the quotient Λ(A)/(1 + TD+1) (cf. [17, §2.6,2.7]). Every
element e in the image factors uniquely as

(3.3) e ≡ AH(w0T ) · . . . ·AH(wdT p
d) (mod (TD+1)),

where (w0, . . . , wd) ∈Wd(A) is the corresponding truncated Witt vector.
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The map (3.2) and decomposition (3.3) are functorial with respect to
the Z(p)-algebra A. In concrete terms, each wi may theoretically be com-
puted by polynomials over Z(p) in the first i coefficients of the decomposed
series ([11, §§9.28, 9.63–9.71,14.15–14.25]).

3.3. Using §3.2, we finish the proof of our results.

Proof of Theorem 1.9. The property (1.11) on P (T ) obviously extends to
P̃ (T ). Equivalently exp(P̃ (T )) is a p-typical series: it belongs to the image
of W (K) in Λ(K). Consequently, its truncation ẽ(T ) ∈ Λ(K)/(1 + TD+1)
actually comes from Wd(K).

We now use the solvability assumption of Theorem 1.9, interpreted by
condition (3) in Theorem 1.3, and conclude ẽ(T ) ∈ Λ(R)/(1 + TD+1). The
decomposition (3.2) is functorial, hence ẽ(T ) comes from Wd(R).

By functoriality of the Artin-Hasse map, the reduction map

(3.4) R
red−−→ κ induces

Wd(R) AH map for R−−−−−−−−−→ Λ(R)/(1 + TD+1)yWd(red)
yΛ(red)/(1+TD+1)

Wd(κ) AH map for κ−−−−−−−−→ Λ(κ)/(1 + TD+1),
which is commutative, by functoriality again. The truncated series ẽ(T ) has
a reduction to characteristic p in Λ(κ)/(1+TD+1), which, by commutativity,
lies in the image of Wd(κ). This reduction is by definition ê(T ) of (1.6). We
may apply (3.3) to ê(T ). This yields the factorisation, over the filed κ,

(3.5) ê(T ) = AH(w0T ) ·AH(w1T
p) · . . . ·AH(wdT p

d).
We now use the solvability assumption of Theorem 1.9, interpreted by

condition (3) in Theorem 1.3, and conclude ê 6≡ 1 (mod (TD+1)). Hence at
least one of the factors in (3.5) is not 1 (mod (TD+1)), and k = min{i | 1 ≤
i ≤ d, wi 6= 0} is well defined. As AH(T ) ≡ 1 + T (mod (T 2)), we have

AH(wiT p
i) = 1 + wiT

pi (mod T p
i+1).

From (3.5) and the definition of k, it follows that

ê(T )− 1 ≡ wkT p
k (mod T p

k+1), with wk 6= 0.

We deduce: vT (ê− 1) = pk = pmin{0≤i≤d|wi 6=0}.
The factorisation (3.5) of ê corresponds to a factorisation of (1.1) whose

factors are uniquely defined up to equivalence §1.1.2, by Remark 1.6 : A
factor of (1.1) associated with AH(wiT p

i) is obtained by lifting AH(wiT p
i)

to any series ẽi in Λ(R)/(1 + (TD+1), and using (1.5) backwards.
By Theorem 1.3, a factor AH(wiT p

i) of (3.5) such that wi = 0 is asso-
ciated with trivial equations. Otherwise, by Lemma 3.2 below, it may be
associated with an equation of index 1− pd−i. We note that the non trivial
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factors are associated with distinct indices. We may use Lemma 3.1, and
conclude the proof:

χ = min
{

1− pd−i
∣∣∣ 0 ≤ i ≤ d, wi 6= 0

}
= 1− pd−k = 1− pd

vT (ê− 1) .

�

Lemma 3.2. For any λ in κ× and any 0 ≤ i ≤ d, there is a solvable
differential equation (1.1) of index 1− pd−i such that

(3.6) ê(T ) = AH(λT pi).

Proof. Thanks to remark (i) of § 3.1, we may assume λ = 1, maybe con-
sidering an extension κ(λ1/pi) of κ. Let us denote (the “π-exponentials”
of [16], cf. [17, §B], [22, 13.2.1])

ek(T ) = exp
(
πkT + . . .+ π0T

pk
/pk

)
.

(These exponentials and their properties, were systematically studied by
Pulita. There were already proved to exists in the work of Robba, see for
instance [20, §10.8, §10.12]. Matsuda already gave some explicit exponen-
tials of such kind.)
Recall (3.1) and (1.5). An equation satisfying (3.6) is the one such that

(3.7) e(T ) = ed−i(T p
i).

Pulita proved that e(T ) = ed−i(T ) defines a solvable equation of index 1−
pd−i ([16], or [22, 13.3.1] together with the solvability in [17, §2.5]). From (ii)
in §3.1, the same holds for ed−i(T p), for ed−i(T p

2) . . . and for ed−i(T p
i). This

concludes the proof. (Actually these equations have a Frobenius structure,
cf. [16], which make them equivalent to each other.) �

Remark 3.3. The decomposition (3.3) is classical in Witt vectors theory,
at least since Cartier. We applied it to ê(T ). It applies equally to ẽ(T ). Its
counterpart for the series e(T ) itself is a decomposition into π-exponentials,
and it is due to Pulita. In a sense, we exhibit and retreive here Pulita’s
decomposition as a Cartier dual of decomposition (3.3).

Remark 3.4. Globalisation of Remark 3.3. Combining the p-typical de-
composition and π-exponential decomposition yield, for ê(T ) in Λ(κ)/(1 +
TD+1) a factorisation

ê(T ) =
∏

1≤n=mpe≤D
AH(unTn)
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which is unique11. In terms of the nullity of the ui, we recover the index as
(3.8)
χ = 1−max

{
m · pblogp(D/n)c

∣∣∣ 1 ≤ n ≤ D, un 6= 0, n = mpe, p - m
}
.

Appendix A. Polynomial complexity

Together with [17] is an algorithm which computes ẽ(T ) form P (T ).
We discuss here two points which were left untouched: the p-adic preci-
sion required; and the complexity. The main computational operation is
P̃ (T ) 7→ ẽ(T ).

Remark A.1. The following has benefited discussions with Jan Tuitman.

A.1. Complexity. Let us write L̃(T ) =
∑D−1
i=0 ciT

i the derivative of P̃ (T ).
In order to compute ẽ(T ) we do solve the differential equation y′ = L̃ · y
in K(ζ)[T ]/(TD+1). Writing ẽ(T ) =

∑D
i=0 biT

i/i!, one has b0 = 1 and the
recurrence relation of order D,

(A.1) bi+1 =
D−1∑
k=0

ck · bi−k, (with bi = 0 for i < 0)

which it will suffice to apply D−1 times. This amounts to D−1 summation
of a total of the triangular D(D − 1)/2 number of products, all to the
required precision. This amounts to O(D2) pairwise products and additions.

Assume

(A.2) precision is O(pa) and ramification index is e.

Assuming pairwise products and addition in a polynomial time O((ae)η),
this gets a complexity

(A.3) O(D2(ae)η).

We usually have e = O(D) and a = O(D) (see below). For a quasi-linear
exponent η, we get a quasi-quartic complexity. This is yet to multiply with
the complexity of the residue field operations underlying our product and
additions. (dependence in p and the residual degree).

A.2. Precision. The truncated series ẽ(T ) has finitely many p-adic coef-
ficients, all of which have infinitely many p-adic digits, provided elements
of the field K allows representation by digits.

11Unicity holds for any series AH(T ) such that vT (AH(T ) − 1) = 1. For the series 1 − T
the ui are the universal Witt vector coordinates. But for (3.8), this is important to choose
the p-typical AH(T ).
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A.2.1. Ramification. We will assume that K is a finite extension of Qp:
it hence has finite residue field, of finite degree fK over Z/(p), and finite
ramification index eK . The working field is the ramified cyclotomic ex-
tension K(ζ), with same residue field, but may have ramification index e
from pd · p−1

p ≥ D p−1
p2 up to eK · pd · p−1

p ≤ eK ·D. In order to distinguish
between the complexity originating form K and from D, we do not assume
that ζ belongs to K.

(A.4) e = Ω(D) for a given K and p, and e = O(D) for a given K.

A.2.2. Wanted precision. We still need to decide up to which precision
we want to compute the coefficients of ẽ(T ). We want enough precision to
determine the radius of convergence through formula [17, Théorème 3 (14)],
and, in the soluble case, for computing ê(T ). We will ask for enough preci-
sion in order to compute the first digit of the coefficients of ẽ(T ) achieving
the maximum in the radius formula. In the solvable case, these are the
coefficients reducing to non zero coefficients of ê(T ).

A.2.3. Preparation. It is easy to obtain the smallest k such that P̃ (πdkT )
has integer coefficients. In terms of the normalised p-adic valuation vp,

k = dmin vp(ãi)/(i · vp(πd))e where P̃ =
D∑
1
ãiT

i.

We will use the substitution of T by πdkT. This way, by integrality of P̃ the
recurrence relations (A.1) will always be computed in R. Moreover, by the
minimality condition, we obtain in the same time, the Gauss norm lower
bound

(A.5) ‖P‖ ≥ |πd|D−1 > |pπ0| = |p|p/(p−1).

Such substitution is likely to destroy the solvability property. Before re-
ducing ẽ(T ) to compute ê(T ), we must not forget to substitute back the
variable. Assuming this substitution, we will be able to express compute
uniformly our need in precision in terms of absolute precision.

A.2.4. Minoration. Identifying P̃ (T ) with a truncated series in the quo-
tient K(ζ)[T ]/(TD+1), we compute the transformation exp : P̃ (T ) 7→ ẽ(T )
from K(ζ)[T ]/(TD+1) to itself. This is a polynomial operation: we may
substitute exp with the truncated exponential

1 + P̃ + P̃ 2/2 + . . .+ P̃D/D!,

whose truncation gives ẽ(T ).
We get back P̃ (T ) from ẽ(T ) by applying the truncated power series

of log(1−X) to 1−ẽ(T ). Assuming ‖X‖ ≤ |π0| we have ‖log(1−X)‖ = ‖X‖
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for the untruncated power series, hence∥∥∥P̃∥∥∥ ≤ ‖log(1− ẽ)‖ = ‖ẽ‖.

Together with (A.5), this yields
(A.6) ‖ẽ‖ > |pπ0|.

A.2.5. Minimal radius. We seek to apply the formula for the radius.
We know that at least one coefficient of ẽ is at least |pπ0| in absolute value.
In the least favourable case, this is the coefficient of degree 1, and we need
to compute the coefficient of degree D up to precision O((pπ0)D) in order
to use [17, Théorème 3]. Finally let us note that the coefficients of ẽ are
not the ci from (A.1) but are the ci/i!. This involves an extra |i!| factor
in precision for computing ci. We recall 1/|D!| ≤ 1/|π0|D. In the end, an
absolute precision O(pa) is sufficient, with

a = D · (1 + 2vp(π0)) = D · p+ 1
p− 1 = O(D).
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