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On the law of the iterated logarithm for
trigonometric series with bounded gaps II

par Christoph AISTLEITNER et Katusi FUKUYAMA

Résumé. Dans un article précédent, nous avons montré l’existen-
ce d’une suite (nk)k≥1 de nombres entiers positifs avec sauts bor-
nés telle que nous ayons une loi logarithm itérée (LIL) de la forme

lim sup
N→∞

∣∣∣∑N
k=1 cos 2πnkx

∣∣∣
√
N log logN

=∞ pour presque tous x.

Dans le présent travail, nous prouvons un résultat complémentaire
montrant que tout comportement limsup prescrit dans la LIL est
possible pour des suites avec sauts bornés. Plus précisément, nous
montrons que pour tout nombre réel Λ ≥ 0, il existe une suite
d’entiers (nk)k≥1 satisfaisant nk+1−nk ∈ {1, 2} telle que la limsup
dans la LIL soit égale à Λ pour presque tout x. Des résultats
similaires sont montrés pour des sommes

∑
f(nk, x) et pour la

discrépance (〈nkx〉)k≥1.

Abstract. In an earlier paper we proved that there exists a
sequence (nk)k≥1 of positive integers with bounded gaps such that
we have a law of the iterated logarithm (LIL) in the form

lim sup
N→∞

∣∣∣∑N
k=1 cos 2πnkx

∣∣∣
√
N log logN

=∞ for almost all x.

In the present paper we prove a complementary results showing
that any prescribed limsup-behavior in the LIL is possible for
sequences with bounded gaps. More precisely, we show that for
any real number Λ ≥ 0 there exists a sequence of integers (nk)k≥1
satisfying nk+1−nk ∈ {1, 2} such that the limsup in the LIL equals
Λ for almost all x. Similar results are proved for sums

∑
f(nkx)

and for the discrepancy of (〈nkx〉)k≥1.
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1. Introduction and statement of results

It is well-known that for any quickly growing sequence of positive inte-
gers (nk)k≥1 the systems (cos 2πnkx)k≥1 and (sin 2πnkx)k≥1 exhibit many
properties which are typical for sequences of independent random variables.
This similarity includes the analogs of the Kolmogorov three-series theorem
(Kolmogorov, 1924), the central limit theorem (Salem–Zygmund, 1947), the
law of the iterated logarithm (Erdős–Gál, 1955), all of which hold if (nk)k≥1
satisfies the Hadamard gap condition

(1.1) nk+1
nk
≥ q > 1, k ≥ 1.

Similar results hold if the simple functions cos 2π· and sin 2π· are replaced
by more general 1-periodic functions, satisfying some regularity conditions.
Philipp [22] proved that even an analog of the Chung–Smirnov law of the
iterated logarithm holds: for any sequence (nk)k≥1 satisfying (1.1) we have

1
4 ≤ lim sup

N→∞

ND∗N (〈n1x〉, . . . , 〈nNx〉)√
N log logN

≤ Cq for almost all x.

Here 〈·〉 stands for the fractional part of a real number, and

D∗N (y1, . . . , yN ) = sup
0≤a≤1

∣∣∣∣∣ 1
N

N∑
k=1

1[0,a](yk)− a
∣∣∣∣∣

denotes the so-called star-discrepancy of a set y1, . . . , yN of points from the
unit interval. In probabilistic terminology, the star-discrepancy is a version
of the Kolmogorov–Smirnov statistic, adjusted to the uniform distribution
on [0, 1], and usually applied to deterministic sequences. The notion of the
star-discrepancy is closely related to the theory of uniform distribution
modulo one, which is a branch of number theory that originated in the
work of Borel, Weyl and others in the early 20th century. Classical survey
papers on lacunary trigonometric series and their almost-independent be-
havior are for example [16, 19, 20]; more recent survey papers are [1, 6]. An
introduction to uniform distribution modulo one and discrepancy theory
can be found for example in the monographs [10, 21].

In some cases the gap condition (1.1) may be slightly weakened, but
in general the almost-independent behavior of (f(nkx))k≥1 for 1-periodic
f breaks down without a strong growth condition on (nk)k≥1. However,
this is only one part of the truth: while the probabilistic limit theorems
fail to hold for all sequences (nk)k≥1 without strong growth conditions,
these limit theorems still remain true for some slowly growing sequences
(nk)k≥1, or actually for all “typical” slowly growing sequences in a suitable
probabilistic model. Of fundamental importance is a paper of Salem and
Zygmund [24]. Amongst other things, they proved the following: Let (ξk)k≥1
be a sequence of independent, fair {−1, 1}-valued random variables. Then
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the systems (ξk cos 2πkx)k≥1 and (ξk sin 2πkx)k≥1 satisfy the CLT and LIL
for almost all realizations of (ξk)k≥1. Since for almost all x we have

(1.2)
N∑
k=1

cos 2πkx = O(1) and
N∑
k=1

sin 2πkx = O(1) as N →∞,

the same conclusion holds if we assume that the ξk’s are {0, 1}-valued in-
stead of {−1, 1}-valued. Then we can define a (random) sequence (nk)k≥1
as the sequence containing all the numbers {k ≥ 1 : ξk = 1}, and con-
clude that the CLT and LIL for (cos 2πnkx)k≥1 and (sin 2πnkx)k≥1 hold
for almost all sequences (nk)k≥1.

Note that a sequence (nk)k≥1 constructed in this randomized way typ-
ically grows very slowly; by the strong law of large numbers we have
nk/k → 2 almost surely, which means linear growth (in contrast to (1.1),
which implies exponential growth). However, linear growth does not nec-
essarily imply that the gaps nk+1 − nk are small for all k. Actually, by
the Erdős-Rényi “pure heads” theorem a random sequence (nk)k≥1 con-
structed in the described manner has infinitely many gaps nk+1 − nk of
size roughly log k, almost surely. Berkes [5] proved that slower growth is
possible: for any function h(k) → ∞ there exists a sequence (nk)k≥1 for
which 1 ≤ nk+1−nk ≤ h(k) such that (cos 2πnkx)k≥1 satisfies the CLT. In
a sense, Berkes’ theorem is optimal: by a result of Bobkov and Götze [8],
for (nk)k≥1 having bounded gaps, that is, satisfying 1 ≤ nk+1−nk ≤ K for
some constant K, the CLT for (cos 2πnkx)k≥1 may hold, but due to a “loss
of mass” phenomenon only with a limiting variance smaller than 1/2 (which
would be the “correct” variance, corresponding to the independent case).
For any variance less than 1/2 there actually exist appropriate sequences
having bounded gaps and satisfying the CLT; see [14, 15].

One could suspect that a similar “loss of mass” phenomenon should also
appear in case of the LIL; namely, that for any sequence (nk)k≥1 satisfying
1 ≤ nk+1 − nk ≤ K for some K the limsup in the LIL

lim sup
N→∞

∣∣∣∑N
k=1 cos 2πnkx

∣∣∣
√

2N log logN

should be less than 1/
√

2 for almost all x (which would be the “cor-
rect” value for independent random variables). However, surprisingly, the
contrary is true. In a previous paper we proved the existence of a se-
quence (nk)k≥1 satisfying the strongest possible “‘bounded gap” condition
nk+1 − nk ∈ {1, 2}, k ≥ 1, such that

(1.3) lim sup
N→∞

∣∣∣∑N
k=1 cos 2πnkx

∣∣∣
√
N log logN

=∞ for almost all x.
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Berkes asked1 whether any prescribed value for the limsup in the LIL is
possible for sequences with bounded gaps, and if such results can be gener-
alized to a larger class of 1-periodic functions f and to the discrepancy D∗N .
In both cases the answer is affirmative, as we want to show in the present
paper.

Throughout this paper, ‖·‖ denotes the L2(0, 1) norm, and ‖·‖∞ denotes
the L∞ norm. As already mentioned, 〈·〉 denotes the fractional part of a
real number. We will write µ for the Lebesgue measure. Furthermore, we
will write 1A for the indicator function of an interval A ⊂ [0, 1], and IA for
the indicator function of A, centered and extended with period one; that is,

(1.4) IA(x) = 1A(〈x〉)− µ(A).

Theorem 1.1. For any given real number Λ ≥ 0 and any function f
satisfying

(1.5) f(x+ 1) = f(x),
∫ 1

0
f(x) dx = 0, Var[0,1]f <∞

there exists a sequence of positive integers (nk)k≥1 satisfying

nk+1 − nk ∈ {1, 2}

such that we have

(1.6) lim sup
N→∞

∣∣∣∑N
k=1 f(nkx)

∣∣∣
√
N log logN

= Λ‖f‖ for almost all x.

If F is a countable class of functions satisfying (1.5), then there is a se-
quence (nk)k≥1 such that (1.6) holds for all functions f in F .

Note that Theorem 1.1 can be in particular applied to the functions
cos 2πx and sin 2πx, and shows that any prescribed limsup behavior in the
LIL is possible for these functions. In this sense Theorem 1.1 is a comple-
mentary result to (1.3).

Theorem 1.2 shows that any prescribed LIL behavior is also possible for
the discrepancy D∗N .

Theorem 1.2. For any given real number Λ > 0 there exists a sequence of
positive integers (nk)k≥1 satisfying

nk+1 − nk ∈ {1, 2}, k ≥ 1,

such that we have

lim sup
N→∞

ND∗N (〈n1x〉, . . . , 〈nNx〉)√
N log logN

= Λ for almost all x.

1At the 8th World Congress on Probability and Statistics in Istanbul, July 2012.
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It is easily seen that Theorem 1.2 remains true if the star-discrepancy
D∗N is replaced by the extremal discrepancy DN , in which the supremum
is taken over all intervals [a, b] ⊂ [0, 1] instead of all anchored intervals
[0, a] ⊂ [0, 1]. For the sake of shortness we have confined ourselves to giving
proofs only for D∗N .

We want to make some more remarks, before turning to the proofs of
Theorem 1.1 and Theorem 1.2. Both of them are proved using a probabilis-
tic construction, which is a typical feature of results about slowly grow-
ing sequences satisfying probabilistic limit theorems. As far as we know,
no explicit example of a (in some sense) slowly growing sequence (nk)k≥1
for which (f(nkx))k≥1 for some appropriate f satisfies the CLT or LIL is
known.

Our probabilistic construction is similar to the one introduced by Salem–
Zygmund, in the sense that for any k we decide independently with a certain
probability whether k should be contained in our sequence (nk)k≥1 or not
(actually, in our proof we form blocks of finitely many integers and always
either take or discard the full block, but the general philosophy is the same).
An other randomized way of generating slowly growing sequences (nk)k≥1
which are supposed to satisfy some probabilistic limit theorems is to let
(nk)k≥1 be generated by a random walk; results for this model can be
found for example in [8, 25, 27].

Theorem 1.2 has an interesting deterministic, number-theoretic counter-
part. It is well-known that when taking nk = k, k ≥ 1, then the discrepancy
of (〈nkx〉)k≥1 tends to zero almost as fast as N−1, and in particular much
faster than the speed of convergence specified by the Chung–Smirnov LIL
(see Lemma 3.2 below for details). This is due to the close connection
between the discrepancy of such a sequence and the continued fractions
expansion of x, which was first observed by Ostrowski around 1920. Thus
for almost all x we have

(1.7) lim sup
N→∞

ND∗N (〈x〉, 〈2x〉, . . . , 〈Nx〉)√
N log logN

= 0.

On the other hand, Arnol′d [3] constructed numbers x for which the discrep-
ancy D∗N (〈x〉, 〈2x〉, . . . , 〈Nx〉) is large; his proof could be easily modified in
order to obtain, for any given Λ, a number x such that the limsup in (1.7)
is at least Λ. We do not know if there also exists a construction of a real
number x for which the value of the limsup in (1.7) is precisely Λ. Such an
example would be quite interesting, particularly for Λ = 1/

√
2, since in this

case the discrepancy of (〈kx〉)k≥1 would show exactly the same behavior as
the discrepancy of a random sequence.

Another interesting question is the following. Koksma’s inequality (see
Lemma 3.4 below) implies that for the sequence (nk)k≥1 satisfying (1.3) we
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have

lim sup
N→∞

ND∗N (〈n1x〉, . . . , 〈nNx〉)√
N log logN

=∞ for almost all x.

Now it is a natural question to ask what for a sequence (nk)k≥1 having
bounded gaps the slowest possible order of decay of D∗N (〈n1x〉, . . . , 〈nNx〉)
for almost all x is, and whether this order of decay can be significantly
slower that

√
log logN/

√
N . A closely related question is the following: for

any strictly increasing sequence (nk)k≥1 (not necessarily having bounded
gaps), what is the slowest possible order of decay of D∗N (〈n1x〉, . . . , 〈nNx〉)
for almost all x in terms of the largest frequency nN? It is known that for
any strictly increasing (nk)k≥1 we have

ND∗N (〈n1x〉, . . . , 〈nNx〉) = O
(√

N(logN)3/2+ε
)

for almost all x (Baker [4]), and that there exists a sequence (nk)k≥1 for
which

lim sup
N→∞

ND∗N (〈n1x〉, . . . , 〈nNx〉)√
N logN

=∞

for almost all x (Berkes–Philipp [7]). However, the sequence (nk)k≥1 in the
Berkes–Philipp theorem grows very quickly (almost as fast as e

√
k), and

it would be very interesting to know if a similarly large discrepancy (for
almost all x) is also possible for slowly growing (nk)k≥1. These problems
are related to Carleson’s theorem on the almost everywhere convergence of
Fourier series, and also have a relation to certain sums involving greatest
common divisors (see [2]).

Finally, we want to mention the relation between our results and some
problems in analysis. A Littlewood polynomial is a polynomial all of whose
coefficients are either 1 or −1; that is, it is of the form

p(x) =
N∑
k=0

akx
k, where ak ∈ {−1, 1}, 0 ≤ k ≤ N.

It is a classical problem of analysis to study the possible size of p(z) with
respect to Lp norms on the complex unit circle, in terms of N (see for
example [12] for a survey, and [9] for such polynomials in the context of
random trigonometric series). The proof of Theorem 1.1, together with (1.2)
and (1.3), yields the following result, which can be seen as a result on the
real parts of a sequence of Littlewood polynomials.

Corollary 1.3. For any Λ ∈ [0,∞] there exists a sequence (ak)k≥1 ∈
{−1, 1}N such that

lim sup
N→∞

∣∣∣∑N
k=1 ak cos 2πkx

∣∣∣
√
N log logN

= Λ for almost all x.
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A similar result holds if cos 2π· is replaced by sin 2π·. Similar to the
aforementioned problems concerning the discrepancy of (〈nkx〉)k≥1 (and
actually closely related to those problems), it would be interesting to know
what the largest possible order of growth of∣∣∣∣∣

N∑
k=1

ak cos 2πkx
∣∣∣∣∣ , ak ∈ {−1, 1}, k ≥ 1,

for almost all x is. By Carleson’s theorem this sum is of order

O
(√

N(logN)1/2+ε
)

for almost all x; there is a gap between this upper bound and the lower
bound contained in Corollary 1.3, which remains open.

2. The probabilistic model

Let a real number p ∈ (0, 1) and a positive integer λ be given. Let
(Ω,A,P) be a probability space, on which we can define a sequence ξ1, ξ2, . . .
of independent, identically distributed (i.i.d.) random variables, such that
P(ξk = 1) = p and P(ξk = 0) = 1− p for each k ≥ 1. We are going to assign
to each k ≥ 1 a set Sk of λ positive integers. Then the sequence (mk)k≥1 will
be defined in such a way that it consists of all elements of Sk for those k for
which ξk = 1, sorted in increasing order. Clearly a sequence (mk)k≥1 defined
in this way is random, in the sense that it depends on an ω ∈ Ω. Finally,
to obtain the sequence (nk)k≥1 satisfying the conclusion of Theorem 1.1
and Theorem 1.2, we choose the parameters p and λ appropriately and
take a sequence which consists of all odd numbers and all numbers of the
form 2mk for a “typical” realization of a random sequence (mk)k≥1. This
construction ensures that the difference between two consecutive elements
of (nk)k≥1 is always either 1 or 2.

More precisely, we define positive integers ψ(r), r ≥ 1, satisfying the
recursive relation

ψ(1) + 2ψ(2) + · · ·+ r(ψ(r)− 1) < rr ≤ ψ(1) + 2ψ(2) + · · ·+ rψ(r).

Then we also have

ψ(1) + 2ψ(2) + · · ·+ (r − 1)ψ(r − 1)
≥ (r − 1)r−1

> ψ(1) + 2ψ(2) + · · ·+ (r − 1)(ψ(r − 1)− 1),

and consequently

r(ψ(r)− 1) < rr − (r − 1)r−1 < rψ(r) + r − 1
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and ∣∣∣∣∣ψ(r)− rr − (r − 1)r−1

r

∣∣∣∣∣ < 1.

This implies that
ψ(r) ∼ rr−1 as r →∞.

We set
Ψ(r) = ψ(1) + 2ψ(2) + · · ·+ rψ(r).

Then since by construction Ψ(r)− r < rr ≤ Ψ(r), we have
Ψ(r) ∼ rr as r →∞.

Now let any k ≥ 1 be given. Then there exists a number r = r(k) such
that k ∈ (Ψ(r − 1),Ψ(r)]. We can write k in the form
(2.1) k = Ψ(r − 1) + νr + ρ

for some numbers ν = ν(k) ∈ {0, 1, . . . , ψ(r)−1} and ρ = ρ(k) ∈ {1, . . . , r}.
For each k we define a set Sk, which consists of the numbers

Sk = {λΨ(r − 1) + λνr + ρ+ jr : j = 0, 1, . . . , λ− 1}.
Thus for k ∈ (Ψ(r−1),Ψ(r)], the elements of the set Sk form an arithmetic
progression of λ elements, with step size r. More specifically, we have
SΨ(r−1)+1

=
{
λΨ(r − 1) + 1, λΨ(r − 1) + r + 1, . . . , λΨ(r − 1) + (λ− 1)r + 1

}
,

SΨ(r−1)+2

=
{
λΨ(r − 1) + 2, λΨ(r − 1) + r + 2, . . . , λΨ(r − 1) + (λ− 1)r + 2

}
,

...
SΨ(r−1)+r

=
{
λΨ(r − 1) + r, λΨ(r − 1) + 2r, . . . , λΨ(r − 1) + (λ− 1)r + r︸ ︷︷ ︸

=λr

}
.

This means that the sets SΨ(r−1)+1, . . . ,SΨ(r−1)+r are interlaced in such a
way that they form a partition of the set {λΨ(r−1)+1, . . . , λΨ(r−1)+λr}.
In a similar way, the sets SΨ(r−1)+r+1, . . . ,SΨ(r−1)+2r form a partition of
the set {λΨ(r − 1) + λr + 1, . . . , λΨ(r − 1) + 2λr}, etc. Together, all the
sets (Sk)Ψ(r−1)<k≤Ψ(r) form a partition of {λΨ(r − 1) + 1, . . . , λΨ(r)}.

Saying it in a oversimplified way, the sets Sk are constructed in such a
way that the sum of the variances of the random variables ξk

∑
`∈Sk

f(`x)
over k ∈ (Ψ(r − 1),Ψ(r)] is roughly equal to λ2‖f‖2(Ψ(r) − Ψ(r − 1))Vξk
whenever x is an element of a setAr (which consists of all numbers which are
close to a rational number with denominator r). The number of indices for
which x is contained in such a set Ar will have positive relative frequency;
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consequently, the LIL will hold with right-hand side
√
λ2‖f‖2Vξk for the

sums

(2.2)
N∑
k=1

ξk
∑
`∈Sk

f(`x).

Now the random sequence (mk)k≥1 is defined such that it contains the
elements of Sk if and only if ξk = 1; then the LIL for (2.2) can be rewritten
into an LIL for

∑N
k=1 f(mkx). Finally, we will choose the parameters p and

λ in an appropriate way and define a sequence (nk)k≥1 which consists of all
odd numbers, plus of all the numbers (2mk)k≥1 for a “typical” realization
of a random sequence (mk)k≥1. This sequence (nk)k≥1 will then have the
desired properties.

The following Section 3 contains several auxiliary results. In Section 4
we will prove several properties of sums involving ξ1, ξ2, . . . , which hold
almost surely on (Ω,A,P). Subsequently in Section 5 we will show how
these results concerning sequences of random variables can be interpreted
as results concerning random sequences (mk)k≥1 of integers, and what they
imply for (nk)k≥1. Finally, in Section 6 we will prove Theorem 1.1 and 1.2.

3. Preliminaries

The following lemmas are classical results from number theory, or, more
precisely, from the theory of uniform distribution modulo one and discrep-
ancy theory. They can be found for example in [10, 21].

Lemma 3.1 (Equidistribution theorem). For any irrational real number x
and any interval A ⊂ [0, 1] we have

lim
N→∞

1
N

N∑
k=1

1A(〈kx〉) = µ(A).

Lemma 3.2. For any ε > 0 we have

(3.1) D∗N (〈x〉, 〈2x〉, . . . , 〈Nx〉) = O
(

logN(log logN)1+ε

N

)
as N →∞

for almost all real numbers x.

By changing the argument from x to 2x, it is easily seen that the dis-
crepancy estimate (3.1) implies that we also have

D∗N (〈2x〉, 〈4x〉, . . . , 〈2Nx〉) = O
(

logN(log logN)1+ε

N

)
as N →∞

for almost all x; that is, the conclusion of Lemma 3.2 remains valid if
we replace the sequence (k)k≥1 of all positive integers by the sequence
(2k)k≥1 of even positive integers. Since N can be partitioned into even and
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odd numbers, a similar result must also hold for (2k − 1)k≥1. This is the
statement of the following lemma.

Lemma 3.3. For any ε > 0 we have

D∗N (〈x〉, 〈3x〉, . . . , 〈(2N − 1)x〉) = O
(

logN(log logN)1+ε

N

)
as N →∞

for almost all real numbers x.

Lemma 3.4 (Koksma’s inequality). Let f be a function which has bounded
variation on the unit interval. Let y1, . . . , yN be points in [0, 1]. Then∣∣∣∣∣ 1

N

N∑
k=1

f(yk)−
∫ 1

0
f(y) dy

∣∣∣∣∣ ≤ (Var[0,1]f
)
D∗N (y1, . . . , yN ).

For the proof of Lemma 4.1 we will need the following simple fact. For a
proof, see for example [23, Theorem 2].

Lemma 3.5. Let (ck)k≥1 be a non-increasing sequence of non-negative real
numbers. Let N denote a subset of N which has positive lower asymptotic
density. Then

∞∑
k=1

ck =∞ implies that
∑
k∈N

ck =∞.

4. Sequences of random variables

In this section we prove several auxiliary results concerning sums which
involve the random variables ξ1, ξ2, . . . defined in Section 2. We first state
all results, and give proofs afterward.

Lemma 4.1. For any trigonometric polynomial without constant term g(x)
we have, P-almost surely, that

lim sup
N→∞

∣∣∣∑N
k=1 ξk

∑
`∈Sk

g(`x)
∣∣∣

√
N log logN

=
√

2p(1− p) λ‖g‖ for almost all x.

Lemma 4.2. For any function h(x) satisfying (1.5) we have, P-almost
surely, that

lim sup
N→∞

∣∣∣∑N
k=1 ξk

∑
`∈Sk

h(`x)
∣∣∣

√
N log logN

≤ λ√
2
‖h‖ for almost all x.

The functions I appearing in the next lemma were defined in (1.4).
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Lemma 4.3. For any fixed L ≥ 1 we have, P-almost surely, that

lim sup
N→∞

max
s=0,...,2L−1

sup
0≤a≤2−L

∣∣∣∑N
k=1 ξk

∑
`∈Sk

I[s2−L,s2−L+a](`x)
∣∣∣

√
N log logN

≤ 5λ3/2
√

2−L

for almost all x.

Proof of Lemma 4.1. Let g(x) be a trigonometric polynomial without con-
stant term. We may assume that g 6≡ 0, since otherwise the Lemma is
trivial. For simplicity of writing we assume that g is an even function (in
other words, that it consists only of cosine-terms); the proof in the general
case is exactly the same. We write

g(x) =
d∑
j=1

aj cos 2πjx,

and define
(4.1) Gk(x) =

∑
`∈Sk

g(`x)

and
Xk = Xk(ω, x) = ξk(ω)Gk(x).

Note that for every fixed x the sequence X1, X2, . . . is a sequence of inde-
pendent random variables on (Ω,A,P). We clearly have

EXk = pGk(x)
and

VXk = p(1− p)Gk(x)2.

For n ≥ 1 we have

µ
(
x ∈ [0, 1] : | sinλπnx| ≤ n−2

)
= µ

(
x ∈ [0, 1] : | sin πx| ≤ n−2

)
≤ 2
πn2 ,

where µ denotes the Lebesgue measure. The term on the right-hand side
of this inequality is summable in n. Consequently by the Borel–Cantelli
lemma we have

| sinλπnx| > n−2 eventually, for almost all x ∈ [0, 1].
In other words, there exists a positive function s(x) such that for almost
all x we have

| sinλπnx| > s(x)
n2 for all n ≥ 1.

Thus for almost all x we also have

(4.2)
(sinλπnx

sin πnx

)2
≥ (sinλπnx)2 ≥ s(x)2

n4 , for all n ≥ 1.
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Using the classical formula for a sum of trigonometric functions having
frequencies along an arithmetic progression, for k ∈ (Ψ(r − 1),Ψ(r)] for
some r we obtain the identity

Gk(x) =
d∑
j=1

aj
sinλπrjx
sin πrjx cos ((2λΨ(r − 1) + 2λνr + 2ρ+ (λ− 1)r)πjx) ,

where ν = ν(k) and ρ = ρ(k) are as in (2.1). Furthermore, also for Ψ(r−1) <
k ≤ Ψ(r) for some r, we have

Gk(x)2 =
d∑
j=1

a2
j

2

(sinλπrjx
sin πrjx

)2
+ Ck(x),

where, writing cosk[m] = cos ((2λΨ(r − 1) + 2λνr + 2ρ+ (λ− 1)r)πmx),
the function Ck(x) is defined as

Ck(x) =
∑

1≤j1,j2≤d,
j1 6=j2

aj1aj2
2

(sinλπrj1x
sin πrj1x

)(sinλπrj2x
sin πrj2x

)
cosk[j1 − j2]

+
∑

1≤j1,j2≤d

aj1aj2
2

(sinλπrj1x
sin πrj1x

)(sinλπrj2x
sin πrj2x

)
cosk[j1 + j2].

Note that we have

(4.3)
(sinλπrjx

sin πrjx

)2
≤ λ2, for all r ≥ 1 and 1 ≤ j ≤ d.

Let ε > 0 be fixed. Using the orthogonality of the trigonometric system it
is easy to show that for any fixed j1 6= j2 the sum

N∑
k=1

cos ((2λΨ(r − 1) + 2λνr + 2ρ+ (λ− 1)r)π(j1 − j2)x)

is of order O(N1/2+ε) for almost all x as N →∞ (note that all frequencies
in this sum are different, for different values of k). The same conclusion
holds if (j1− j2) is replaced by (j1 + j2), where the condition j1 6= j2 is not
necessary. Consequently, we also have that for almost all x

N∑
k=1

Ck(x) = O(N1/2+ε) as N →∞.

Consequently, by (4.3), for any (fixed) ε > 0 we have for almost all x that

(4.4)
N∑
k=1

VXk ≤ (1 + ε)λ2p(1− p)‖g‖2N
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for sufficiently large N . Furthermore, writing

(4.5) Vr =
Ψ(r)∑

k=Ψ(r−1)+1
VXk(x)2, r ≥ 1,

for almost all x we have

(4.6) Vr = (Ψ(r)−Ψ(r−1))p(1−p)
d∑
j=1

a2
j

2

(sinλπrjx
sin πrjx

)2
+O

(
(Ψ(r))1/2+ε

)
as r → ∞. Remember that Ψ(r) ∼ rr. Thus by (4.2) for almost all x we
have

(4.7) Vr ≥ (1− ε)p(1− p)‖g‖2(Ψ(r)−Ψ(r − 1))s(x)2

d4r4

for all sufficiently large r, which implies that for almost all x

(4.8)
Ψ(r)∑
k=1

V(Xk)→∞ as r →∞.

Now (4.8), together with the fact that the random variables Xk are uni-
formly bounded (we have |Xk| ≤ λ‖g‖∞), implies that by Kolmogorov’s
law of the iterated logarithm for almost all x we have

lim sup
N→∞

∣∣∣∑N
k=1(Xk − EXk)

∣∣∣√
2 (V(X1) + · · ·+ V(XN )) log log (V(X1) + · · ·+ V(XN ))

= 1

almost surely. By (4.4) we can conclude that for almost all x
(4.9)

lim sup
N→∞

∣∣∣∑N
k=1(Xk − EXk)

∣∣∣
√
N log logN

≤
√

2(1 + ε)p(1− p)λ‖g‖ almost surely.

This establishes the upper bound in the LIL.
Next we want to apply the Berry–Esseen theorem to get the lower bound

in the LIL in Lemma 4.1. We have

E(|Xk − EXk|3) ≤ |Gk(x)|3 E(|ξk − Eξk|3)︸ ︷︷ ︸
≤1

≤ λ‖g‖∞Gk(x)2,

which together with (4.3) and (4.6) implies that for almost all x we have

(4.10)
Ψ(r)∑

k=Ψ(r−1)+1
E(|Xk − EXk|3) = O (Ψ(r)−Ψ(r − 1)) as r →∞.
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By the Berry–Esseen theorem there exist an absolute constant cabs such
that for all y ∈ R we have

(4.11)

∣∣∣∣∣∣P
 Ψ(r)∑
k=Ψ(r−1)+1

(Xk − EXk) ≤ y
√
Vr

− Φ(y)

∣∣∣∣∣∣
≤ cabs

∑Ψ(r)
k=Ψ(r−1)+1 E(|Xk − EXk|3)

V
3/2
r

,

where Φ denotes the standard normal distribution and Vr was defined
in (4.5). By (4.7) and (4.10) the expression on the right-hand side of (4.11)
is for almost all x of order

(4.12) O
(

r6

(Ψ(r)−Ψ(r − 1))1/2

)
= O

(
r−r/2+6

)
as r →∞.

For some fixed ε > 0 we set, for r ≥ 1,

pr = P

∣∣∣∣∣∣
Ψ(r)∑

k=Ψ(r−1)+1
(Xk − EXk)

∣∣∣∣∣∣ ≥
√

2(1− ε)Vr log r

 ,
and we write qr for the probability of the set∣∣∣∣∣∣

Ψ(r)∑
k=Ψ(r−1)+1

(Xk − EXk)

∣∣∣∣∣∣ ≥
√

2(1− ε)3‖g‖2λ2Ψ(r)p(1− p) log log Ψ(r)

 .
Then by (4.11) and (4.12) for almost all x we have

(4.13) pr = 2− 2Φ
(√

2(1− ε) log r
)

︸ ︷︷ ︸
=:p̃r

+O
(
r−r/2+6

)
as r →∞,

which by standard estimates for the tail probabilities of the normal distri-
bution implies

(4.14)
∞∑
r=1

p̃r =∞.

Now we define sets A ⊂ [0, 1] and Ar ⊂ [0, 1], r ≥ 1, in the following way:
We set

A =

x ∈ (0, 1) :
d∑
j=1

a2
j

2

(sinλπjx
sin πjx

)2
≥ ‖g‖2λ2(1− ε)

 ,
and, for any r ≥ 1,

Ar = {x ∈ [0, 1] : 〈rx〉 ∈ A} .
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Note that A is the union of finitely many intervals. Thus by Lemma 3.1 we
have

(4.15) 1
R

R∑
r=1

1(x ∈ Ar)

= 1
R

R∑
r=1

1A(〈rx〉)→ µ(A), for almost all x, as R→∞,

where again µ denotes the Lebesgue measure. Consequently, for almost all
x the set {r ≥ 1 : x ∈ Ar} has positive asymptotic density. By (4.6) and
using the facts that Ψ(r−1) = o(Ψ(r)) and Ψ(r) ∼ rr as r →∞, for almost
all x we have

(4.16) Vr log r ≥ ‖g‖2λ2(1− ε)2Ψ(r)p(1− p) log log Ψ(r)

whenever x ∈ Ar, for all sufficiently large r. Thus for almost all x we have

qr ≥ pr · 1Ar (x)(4.17)

for sufficiently large r. Note that (p̃r)r≥1 is a non-increasing sequence of
non-negative real numbers. Thus (4.14), (4.15) and Lemma 3.5 imply that
for almost all x we have

∞∑
r=1

p̃r · 1Ar (x) =
∑

r≥1: r∈Ar

p̃r =∞.

By (4.13) this implies that for almost all x we also have∑
r≥1: r∈Ar

pr =∞,

and consequently by (4.17), also for almost all x, we have

∞∑
r=1

qr =∞.

The sets used for the definition of qr are obviously independent for different
values of r. Consequently for almost all x, by the second Borel–Cantelli
lemma, P-almost surely infinitely many events∣∣∣∣∣∣

Ψ(r)∑
k=Ψ(r−1)+1

(Xk − EXk)

∣∣∣∣∣∣ ≥
√

2(1− ε)3λ2‖g‖2Ψ(r)p(1− p) log log Ψ(r)
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occur. We clearly have

lim sup
N→∞

∣∣∣∑N
k=1(Xk − EXk)

∣∣∣
√

2N log logN
≥ lim sup

r→∞

∣∣∣∑Ψ(r)
k=1 (Xk − EXk)

∣∣∣√
2Ψ(r) log log Ψ(r)

≥ lim sup
r→∞

∣∣∣∑Ψ(r)
k=Ψ(r−1)+1(Xk − EXk)

∣∣∣√
2Ψ(r) log log Ψ(r)

− lim sup
r→∞

∣∣∣∑Ψ(r−1)
k=1 (Xk − EXk)

∣∣∣√
2Ψ(r) log log Ψ(r)

.︸ ︷︷ ︸
= 0 a.s. for a.e. x by (4.9), since Ψ(r−1) = o(Ψ(r)).

Thus we have for almost all x

lim sup
N→∞

∣∣∣∑N
k=1(Xk − EXk)

∣∣∣
√
N log logN

≥
√

2(1− ε)3p(1− p)λ‖g‖ P-almost surely

Since ε > 0 was arbitrary, together with (4.9) we have shown that for
almost all x we have

lim sup
N→∞

∣∣∣∑N
k=1(Xk − EXk)

∣∣∣
√
N log logN

=
√

2p(1− p)λ‖g‖ P-almost surely.

By Fubini’s theorem this means that P-almost surely we have

(4.18) lim sup
N→∞

∣∣∣∑N
k=1(Xk − EXk)

∣∣∣
√
N log logN

=
√

2p(1− p)λ‖g‖ for almost all x.

This is almost the conclusion of the lemma, except that in (4.18) we have
Xk − EXk instead of Xk. Clearly EXk = p

∑
k∈Sk

g(`x). By construction
the sets (Sk)k≥1 are interlaced in such a way that we have the following
fact: for given N ≥ 1 and for r such that N ∈ (Ψ(r − 1),Ψ(r)], we have

(4.19) #
{(

N⋃
k=1
Sk

)
∆ {1, . . . , λN}

}
≤ r = o (log(N)) ,

where ∆ denotes the symmetric difference. Thus we have

lim sup
N→∞

∣∣∣∑N
k=1 EXk

∣∣∣
√
N log logN

= lim sup
N→∞

p
∣∣∣∑λN

k=1 g(kx)
∣∣∣

√
N log logN

= 0 for almost all x,

by Lemma 3.2 and Lemma 3.4. Together with (4.18) this proves Lemma 4.1.
�

Proof of Lemma 4.2. We begin with the proof of Lemma 4.2 similar to that
of Lemma 4.1, with the function g replaced by h. For k ≥ 1 we set

Gk(x) =
∑
`∈Sk

h(`x)
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and
Xk = Xk(ω, x) = ξk(ω)Gk(x).

Using Hölder’s inequality we get

Gk(x)2 ≤ λ
∑
`∈Sk

h(`x)2,

which implies that

(4.20) VXk ≤
λ

4
∑
`∈Sk

h(`x)2.

Using (4.19) we have

(4.21)
N∑
k=1

∑
`∈Sk

h(`x)2 =
λN∑
k=1

h(kx)2 +O(logN) as N →∞.

Since by assumption h has bounded variation on [0, 1], the same is true for
h2 (by the well-known fact that the product of two functions of bounded
variation is also of bounded variation). By Lemma 3.2 and Lemma 3.4 we
have

lim
N→∞

∑N
k=1 h(kx)2

N
=
∫ 1

0
h(x)2 dx = ‖h‖2

for almost all x. Together with (4.20) and (4.21) this implies that

(4.22) lim sup
N→∞

∑N
k=1 VXk

N
≤ λ2

4 ‖h‖
2.

for almost all x. In the sequel we write

BN =
N∑
k=1

VXk, N ≥ 1.

If for a certain value of x we have limN→∞BN < ∞, then for this x we
clearly have

lim sup
N→∞

∣∣∣∑N
k=1(Xk − EXk)

∣∣∣
√
N log logN

= 0 a.s.

On the other hand, if for a certain x we have BN → ∞, then by Kol-
mogorov’s law of the iterated logarithm for uniformly bounded, indepen-
dent random variables we have

lim sup
N→∞

∣∣∣∑N
k=1(Xk − EXk)

∣∣∣
√

2BN log logBN
= 1 a.s.
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Together with (4.22) and applying Fubini’s theorem this implies that P-
almost surely we have

lim sup
N→∞

∣∣∣∑N
k=1(Xk − EXk)

∣∣∣
√
N log logN

≤ λ√
2
‖h‖ for almost all x.

As in the proof of Lemma 4.1 we can show that for almost all x

lim sup
N→∞

∣∣∣∑N
k=1 EXk

∣∣∣
√
N log logN

= 0.

This proves Lemma 4.2. �

Proof of Lemma 4.3. We use an argument similar to the one in [13, Lemma
4]. First we note that for any fixed j ∈ {0, . . . , 2L − 1} we have

sup
0≤a≤2−L

∣∣∣∣∣∣
N∑
k=1

(ξk − Eξk)
∑
`∈Sk

I[j2−L,j2−L+a](`x)

∣∣∣∣∣∣
≤ sup

0≤a≤2−L

∣∣∣∣∣∣
N∑
k=1

(ξk − Eξk)
∑
`∈Sk

1[j2−L,j2−L+a](〈`x〉)

∣∣∣∣∣∣(4.23)

+ sup
0≤a≤2−L

∣∣∣∣∣λa
N∑
k=1

(ξk − Eξk)
∣∣∣∣∣ .(4.24)

To estimate (4.23), let j ∈ {0, . . . , 2L − 1} be fixed. For simplicity of
writing, we will assume that j = 0; the proof in the other cases is exactly
the same. Let J ∈ {1, . . . , λ} be a fixed number, and write s(J)

k for the J-th
element of Sk. Assume that N ≥ 1 is given. We set

AN = max
1≤n≤N

sup
0≤a≤2−L

n∑
k=1

(ξk − Eξk)1[0,a]
(〈
s

(J)
k x

〉)
.

Let M denote the cardinality of the set of all those numbers from the
sequence (〈s(J)

k x〉)1≤k≤N which are contained in the interval [0, 2−L]. We
assume that x is irrational. Then we can define indices k1 < · · · < kM such
that

{sk1 , . . . , skM
} =

{
k ≤ N :

〈
s

(J)
k

〉
∈ [0, a]

}
and 〈

s
(J)
k1
x
〉
< · · · <

〈
s

(J)
kM
x
〉
.

Furthermore, we define

Tm,n = {j ≤ m : kj ≤ n} and Am,n =
∑

k∈Tm,n

(ξk − Eξk).
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Then we have
AN = max

1≤n≤N
max

1≤m≤M
Am,n.

Let y > 1 be a real number, to be determined later. We define random
variables n̄ and m̄ by

n̄ = min
{
n : max

1≤m≤M
Am,n > y

}
, m̄ = min {m : Am,n̄ > y} .

Then, writing Cm,n for the sets {n̄ = n, m̄ = m} we have a disjoint
decomposition

{AN > y} =
⋃

1≤n≤N, 1≤m≤M
Cm,n.

The set Cm,n belongs to the σ-field generated by ξ1, . . . , ξn, and as a
consequence it is independent of Am,N − Am,n, which only depends on
ξn+1, . . . , ξN . It is known that the median of a random variable X hav-
ing binomial distribution B(n, p) must always be one of numbers bnpc and
dnpe, which implies that P(X ≥ np− 1) ≥ 1/2 (see [18]). Applying this to
our situation we get P(Am,N −Am,n ≥ −1) ≥ 1/2. Consequently we have

P(Cm,n) ≤ 2P (Cm,n)P(Am,N −Am,n ≥ −1)

≤ 2P (Cm,n ∩ {Am,N > y − 1})

≤ 2P
(
Cm,n ∩

{
max
r≤M

Ar,N > y − 1
})

.

Summing over m and n we obtain

P(AN > y) ≤ 2P
(
AN > y, max

r≤M
Ar,N > y − 1

)
= 2P

(
max
r≤M

Ar,N > y − 1
)

= 2P

 max
1≤r≤M

r∑
j=1

1[0,2−L]

(〈
s

(J)
kj

〉)
(ξk − Eξk) > y − 1

 .(4.25)

By the maximal version of Bernstein’s inequality (see for example [11,
Lemma 2.2]), for any independent, zero-mean random variables Z1, . . . , ZM
having variances σ2 each and satisfying |Zk| ≤ 1, k ≥ 1, we have

(4.26) P
(

max
1≤r≤M

r∑
k=1

Zk > t

)
≤ exp

(
−t2

2σ2M + 2t/3

)
, for any t > 0.

By (4.19) we have s
(J)
k ≤ λk + o(log k) as k → ∞. Consequently, by

Lemma 3.1, for almost all x for sufficiently large N we have
N∑
k=1

1[0,2−L]

(〈
s

(J)
k x

〉)
≤

λN+logN∑
k=1

1[0,2−L](〈kx〉) ≤ 2−L+1λN.
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Combining this fact with (4.26) we obtain the upper bound

2 exp
(

−(y − 1)2

2−L+2λN + 2y/3

)
for the term in (4.25). Using this estimate for N = 2n and for

y =
√

2λ2n2−L+2 log log 2n + 1,

we get
∞∑
n=1

P
(
A2n >

√
8λ2n2−L log log 2n

)
<∞.

Consequently, by the Borel–Cantelli lemma, for almost all x we have

lim sup
N→∞

sup
0≤a≤2−L

∑N
k=1 1[0,a]

(〈
s

(J)
k x

〉)
(ξk − Eξk)

√
N log logN

≤ 4
√
λ2−L

almost surely. Repeating the same argument with negative signs, we obtain

lim sup
N→∞

sup
0≤a≤2−L

∣∣∣∑N
k=1 1[0,a]

(〈
s

(J)
k x

〉)
(ξk − Eξk)

∣∣∣
√
N log logN

≤ 4
√
λ2−L

almost surely. This result holds independent of the choice of J . Since
N∑
k=1

(ξk − Eξk)
∑
`∈Sk

1[0,a] (〈`x〉) =
λ∑

J=1

N∑
k=1

(ξk − Eξk)1[0,a]
(〈
s

(J)
k

〉)
,

this implies that for almost all x

lim sup
N→∞

sup
0≤a≤2−L

∣∣∣∑N
k=1(ξk − Eξk)

∑
`∈Sk

1[0,a] (〈`x〉)
∣∣∣

√
N log logN

≤ 4λ3/2
√

2−L

almost surely. For the term in (4.24), by the LIL for i.i.d. random variables
we have

lim sup
N→∞

sup
0≤a≤2−L

∣∣∣λa∑N
k=1(ξk − Eξk)

∣∣∣
√
N log logN

≤ λ2−L lim sup
N→∞

∣∣∣∑N
k=1(ξk − Eξk)

∣∣∣
√
N log logN

≤ λ2−L√
2

almost surely,

where we used Vξk ≤ 1/4. This proves that for almost all x we have

lim sup
N→∞

sup
0≤a≤2−L

∣∣∣∑N
k=1(ξk − Eξk)

∑
`∈Sk

I[0,a] (〈`x〉)
∣∣∣

√
N log logN

≤ 5λ3/2
√

2−L
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almost surely. As in the proof of Lemma 4.1 and Lemma 4.2 we can use
Lemma 3.2 to show that for almost all x we have

lim sup
N→∞

sup
0≤a≤2−L

∣∣∣∑N
k=1 Eξk

∑
`∈Sk

I[0,a] (〈`x〉)
∣∣∣

√
N log logN

= 0.

Thus for almost all x we have

(4.27) lim sup
N→∞

sup
0≤a≤2−L

∣∣∣∑N
k=1 ξk

∑
`∈Sk

I[0,a] (〈`x〉)
∣∣∣

√
N log logN

≤ 5λ3/2
√

2−L

almost surely. Again by Fubini’s theorem we can conclude that P-almost
surely the asymptotic result (4.27) holds for almost all x. The same re-
sult holds with the intervals [0, a] replaced by [j2−L, j2−L + a] for some
j ∈ {1, . . . , 2L − 1}. This proves the lemma. �

5. Random sequences

As already mentioned in §2, we can use the random variables ξ1, ξ2, . . .
and the sets Sk, k ≥ 1, to define a (random) sequence (mk)k≥1 of positive
integers in the following way: for ω ∈ Ω we require that the sequence
(mk)k≥1 = (mk(ω))k≥1 consists of all the numbers which are contained in
the sets Sk for which ξk = 1, sorted in increasing order.

Note that a typical realization of a sequence (mk)k≥1 does not satisfy
the assumptions of Theorem 1.1 and 1.2, since by the Erdős–Rényi “pure
heads” theorem with probability one such a sequence will have gaps for
mk+1−mk of order roughly log k, infinitely often (see for example [17, 26]).
Thus we define a second sequence (nk)k≥1 = (nk(ω))k≥1 which for a given
ω and corresponding random sequence (mk)k≥1 contains all the number

2k − 1, k ≥ 1, and 2mk, k ≥ 1,

sorted in increasing order. Thus independent of ω the sequence (nk)k≥1
always contains all odd numbers, which implies that nk+1 − nk ≤ 2 for
all ω.

For any N ≥ 1 we define a random variable K(N) by

K(N) =
N∑
k=1

ξk.

Then by the strong law of large numbers we have

(5.1) lim
N→∞

K(N)
N

= p, P-almost surely.

Furthermore, by (4.19) we have

(5.2) # {{k : mk ≤ N} ∆ {1, . . . ,K(bN/λc)}} = o(logN)



412 Christoph Aistleitner, Katusi Fukuyama

and

(5.3) #

{mk : mk ≤ N} ∆

 ⋃
k≤N/λ: ξk=1

Sk


 = o(logN)

as N →∞. By (5.3) for any function f satisfying (1.5) we have

(5.4) lim sup
N→∞

∣∣∣∑k: mk≤N f(mkx)
∣∣∣

√
N log logN

= lim sup
N→∞

∣∣∣∑k≤N/λ ξk
∑
`∈Sk

f(`x)
∣∣∣

√
N log logN

.

For any given N ≥ 1 we have

(5.5) {nk : nk ≤ N} = {2k − 1 : 2k − 1 ≤ N} ∪ {2mk : 2mk ≤ N}.

Thus for any trigonometric polynomial g without constant term we have,
P-almost surely, that

lim sup
N→∞

∣∣∣∑k: nk≤N g(nkx)
∣∣∣

√
N log logN

= lim sup
N→∞

∣∣∣∑dN/2ek=1 g((2k − 1)x) +
∑
k: 2mk≤N g(2mkx)

∣∣∣
√
N log logN

= lim sup
N→∞

∣∣∣∑k: 2mk≤N g(2mkx)
∣∣∣

√
N log logN

(5.6)

=
√
p(1− p)

√
λ‖g‖ for almost all x,(5.7)

where we used (5.4) and Lemma 4.1 to calculate (5.6), and Lemma 3.3 and
Lemma 3.4 to show that

lim sup
N→∞

∣∣∣∑dN/2ek=1 g((2k − 1)x)
∣∣∣

√
N log logN

= 0 for almost all x.

By (5.1), (5.2) and (5.5) we have, P-almost surely, that

#{k : nk ≤ N} ∼
N

2 +K(bN/(2λ)c) ∼ N
(1

2 + p

2λ

)
︸ ︷︷ ︸
=(λ+p)/(2λ)

as N →∞.

Consequently by (5.7) we have, P-almost surely, that

lim sup
N→∞

∣∣∣∑N
k=1 g(nkx)

∣∣∣
√
N log logN

=
√
p(1− p)

√
λ

√
2λ√
λ+ p

‖g‖

= λ
√

2p(1− p)√
λ+ p

‖g‖ for almost all x.(5.8)
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In a similar way we can modify Lemma 4.2 and Lemma 4.3, and reformu-
late them in terms of (nk)k≥1. Instead of Lemma 4.2 we get the following:
for any function h(x) satisfying (1.5) we have,P-almost surely, that

(5.9) lim sup
N→∞

∣∣∣∑N
k=1 h(nkx)

∣∣∣
√
N log logN

≤ λ√
2
√
λ+ p

‖h‖ for almost all x.

Instead of Lemma 4.3 we get the following: for any fixed L ≥ 1 we have,
P-almost surely, that
(5.10)

lim sup
N→∞

max
s=0,...,2L−1

sup
0≤a≤2−L

∣∣∣∑N
k=1 I[s2−L,s2−L+a](nkx)

∣∣∣
√
N log logN

≤ 5λ3/2
√
λ+ p

√
2−L

for almost all x.
Note that every function f satisfying (1.5) can be split into a sum g+ h

of a trigonometric polynomial g (without constant term) and a remain-
der function h, where ‖h‖ can be made arbitrarily small. Combining (5.8)
and (5.9) and letting ‖h‖ → 0 we obtain the following lemma.

Lemma 5.1. For any function f(x) satisfying (1.5) we have, P-almost
surely, that

lim sup
N→∞

∣∣∣∑N
k=1 f(nkx)

∣∣∣
√
N log logN

= λ
√

2p(1− p)√
λ+ p

‖f‖ for almost all x.

For the following calculations, we have to introduce the modified dis-
crepancies D(≥2−L)

N and D(≤2−L)
N , which only consider “large” and “small”

intervals, respectively. More precisely, for any integer L ≥ 1 and points
y1, . . . , yN , we set

D
(≥2−L)
N (y1, . . . , yN ) = max

s=0,...,2L−1
sup

0≤a≤2−L

∣∣∣∣∣
N∑
k=1

I[s2−L,s2−L+a](yk)
∣∣∣∣∣

and

D
(≤2−L)
N (y1, . . . , yN ) = max

0<s<2L

∣∣∣∣∣
N∑
k=1

I[0,s2−L](yk)
∣∣∣∣∣ .

Note that any subinterval of [0, 1] which has one vertex at the origin can be
written as the disjoint union of (at most) one interval of the form [0, s2−L]
for some appropriate s and (at most) one interval of the form [s2−L, s2−L+
a] for appropriate s and a; consequently, for any points y1, . . . , yN we always
have

D
(≥2−L)
N (y1, . . . , yN ) ≤ D∗N (y1, . . . , yN )

≤ D(≥2−L)
N (y1, . . . , yN ) +D

(≤2−L)
N (y1, . . . , yN ).(5.11)
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By Lemma 5.1, and since for the discrepancy D(≥2−L)
N only finitely many

indicator functions are considered, we have, P-almost surely, that

lim sup
N→∞

ND
(≥2−L)
N (〈n1x〉, . . . , 〈nNx〉)√

N log logN
= λ

√
2p(1− p)√
λ+ p

max
0≤s<2L

‖I[0,s2−L]‖︸ ︷︷ ︸
=1/2

= λ
√
p(1− p)√

2
√
λ+ p

for almost all x.(5.12)

Clearly L can be made arbitrarily large. Thus by (5.10), (5.11) and (5.12)
we obtain the following lemma.

Lemma 5.2. For P-almost all sequences (nk)k≥1 we have

lim sup
N→∞

ND∗N (〈n1x〉, . . . , 〈nNx〉)√
N log logN

= λ
√
p(1− p)√

2
√
λ+ p

for almost all x.

6. Proof of the theorems

Theorem 1.1 follows from Lemma 5.1. In fact, assume that a real number
Λ ≥ 0 is given. If Λ = 0, then we may choose nk = k, k ≥ 1. By Lemma 3.2
this sequence satisfies the conclusion of Theorem 1.1. If Λ > 0, then we
choose a positive integer λ and a real number p ∈ (0, 1) such that

Λ = λ
√

2p(1− p)√
λ+ p

.

For these values of λ and p, we can use the probabilistic construction from
Section 2 to construct a class of random sequences (nk)k≥1 as described in
the previous sections, each of them satisfying the growth condition nk+1 −
nk ∈ {1, 2}. By Lemma 5.1 for P-almost all such sequences (nk)k≥1 we have,
for any fixed function f satisfying (1.5), that

(6.1) lim sup
N→∞

∣∣∣∑N
k=1 f(nkx)

∣∣∣
√
N log logN

= Λ‖f‖ for almost all x.

This proves Theorem 1.1. Theorem 1.2 can be deduced from Lemma 5.2
in a similar way. subset with respect to the L2-norm (namely the set of
all trigonometric polynomials with rational coefficients). Then P-almost
surely (6.1) holds for all functions from this countable subset, and from (5.9)
we can deduce that actually P-almost surely (6.1) holds for all functions
satisfying (1.5). Thus we can choose a realization (nk)k≥1 for which the
conclusion of Theorem 1.1 holds simultaneously for all functions f satis-
fying (1.5). This proves Theorem 1.1. Theorem 1.2 can be deduced from
Lemma 5.2 in a similar way.
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