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Lower Bounds on the Dimension of the
Cohomology of Bianchi Groups via Sczech

Cocyles

par Mehmet Haluk ŞENGÜN et Seyfi TÜRKELLI

Résumé. En utilisant les cocyles de Sczech, nous calculons les
traces de certaines involutions sur la cohomologie d’Eisenstein
pour les sous-groupes de congruence principaux de groupes de
Bianchi. Ces traces, combinées avec les résultats de [13, 14, 2],
donnent des bornes inférieures explicites pour la cohomologie cus-
pidale de ces groupes. Les bornes asymptotiques inférieures qui
découlent de nos résultats complètent les bornes asymptotiques
supérieures récemment obtenues dans [4, 5, 12].

Abstract. Using Sczech cocyles, we compute the traces of cer-
tain involutions on the Eisenstein cohomology of principal congru-
ence subgroups of Bianchi groups. These traces, combined with
results of [13, 14, 2], give explicit lower bounds for the cuspidal
cohomology of these groups. The asymptotic lower bounds that
follow from our results complement the recent asymptotic upper
bounds found in [4, 5, 12].

1. Introduction

Let K be an imaginary quadratic field with ring of integers O and let
Γ denote a principal congruence subgroup of the Bianchi group SL2(O)
associated to K. In this paper, we compute the trace of certain involu-
tions on the Eisenstein cohomology of Γ. A novel aspect of our approach
is the use of the so-called Sczech cocycles whose traditional application has
been, mainly, to the computation of the special values of L–functions. Our
trace computations, when combined with well-known work of Rohlfs on the
Lefschetz numbers of finite order automorphism of arithmetic groups, give
rise to explicit lower bounds for the cuspidal cohomology of Γ. The asymp-
totic lower bounds that follows complement the asymptotic upper bounds
obtained in [4, 5, 12] nicely.
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Mathematics Subject Classification. 11F75.
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More precisely, fix a square-free negative integer d 6= −1,−3, let K be
the imaginary quadratic field Q(

√
d) with ring of integers O. Let G be the

associated Bianchi group SL2(O) and Γ(N) denote the principal congruence
subgroup ofG of level (N)CO for any given rational integerN . Let σ denote
involution induced on the Eisentein cohomology of Γ(N) by the nontrivial
automorphism of K.

Theorem 1.1. Assume that K is of class number one and let p be a rational
prime that is inert in K. Then we have

tr(σ | H1
Eis(Γ(pn),C)) =

{
−(p2 + 1), if n = 1,
−(p2n − p2n−2), if n > 1.

As is well-known, there are only nine imaginary quadratic fields of class
number one and thus our result has a limited scope. A complete result can
be obtained1 by employing Harder’s theory of “Eisenstein Cohomology" [8].
Nevertheless, we believe that our result has merit in the simplicity and
novelty of its proof. The proof, which is in Section 4.2.4, employs the explicit
cocycles of Sczech [17] (defined by means of certain elliptic analogues of
classical Dedekind sums) and utilizes results of Ito [9, 10] (see Section 4.2.3).

Dealing with the second degree Eisenstein cohomology is easier as the
whole discussion can be transferred to an investigation of the cohomology
of 2-tori. In particular, we are able relax the hypothesis greatly and also
work with non-trivial coefficient modules of arithmetic interest. Given any
nonnegative integer k, let Ek be the space of homogeneous polynomials
over C in two variables of degree k with the following SL2(C)–action: given
a polynomial p(x, y) ∈ Ek,

p(x, y) ·
(
a b
c d

)
= p(ax+ by, cx+ dy).

Consider the SL2(C)–module Ek,k := Ek⊗CEk where the action of SL2(C)
on the second factor is twisted by the conjugation. The proof of the following
result is contained in Section 4.2.2.

Theorem 1.2. Let t be the number of distinct prime divisors of the dis-
criminant of K/Q. Let N = pn1

1 . . . pnrr be a positive integer whose prime
divisors pi are unramified in K.

We have

tr(σ | H2
Eis(Γ(N), Ek,k)) = −2t−r−1 ·

r∏
i=1

(p2ni
i − p2(ni−1)

i ) + δ(0, k),

1At the end of [6], Harder reports the trace for general class number K. He does not provide a
proof however informs us that he uses the adelic setting and representation theoretic approach for
his computations and that his final result depends on certain factors in the functional equation
of associated Hecke L–series.
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where δ is the Kronecker δ–function, in other words, δ(0, k) = 0 unless
k = 0 in which case δ(0, k) = 1. In particular,

tr(σ | H2
Eis(SL2(O), Ek,k)) = −2t−1 + δ(0, k).

Once the traces are computed, one can use, as explained in Section 2.1,
results of Rohlfs [13] and Blume-Nienhaus [2] to obtain explicit lower bounds
for the cuspidal cohomology of Γ. All that is missing is a Lefschetz number
computation which we do in Section 3.2.

Proposition 1.3. Let N > 2. Then

L(σ,Γ(N), Ek,k) =


(A+ 2B)−N

3

12
∏
p|N

(1− p−2) · (k + 1) if N is even,

(A+ 3B)−N
3

12
∏
p|N

(1− p−2) · (k + 1) if N is odd.

where A,B are explicit constants depending on the ramification data of
K/Q.

The explicit lower bounds lead to the following asymptotic bounds which
are discussed in Section 5. For a related result, see [16].

Corollary 1.4. Let p be a rational prime that is unramified in K. Then,
as k increases and n is fixed

dimH1
cusp(Γ(pn), Ek,k)� k

where the implicit constant depends on the level Γ(pn) and the field K.
Assume further that K is of class number one and that p is inert in K.
Then, as n increases

dimH1
cusp(Γ(pn),C)� p3n

where the implicit constant depends on the field K.

We also consider the Lefschetz numbers and the Eisenstein traces for the
involution given by the GL2/SL2–twist of σ. The results, when combined
with those for σ, give a closed formula for the trace of σ on the first coho-
mology of GL2(O), see Theorem 5.3. This implies the following asymptotics
for the cohomology of GL2(O), see Corollary 5.4.

Corollary 1.5. Let D be the discriminant of K/Q and OK be its ring of
integers. As K/Q is fixed and k →∞, we have

dimH1(GL2(OK), Ek,k)� k

where the implicit constant depends on the discriminant D. As k is fixed
and |D| → ∞, we have

dimH1(GL2(OK), Ek,k)� ϕ(D)
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where ϕ is the Euler ϕ function and the implicit constant depends on the
weight k.

As H1(GL2(O), Ek,k) embeds into H1
cusp(SL2(O), Ek,k), the asymptotic

lower bounds of the above corollary also applies to H1
cusp(SL2(O), Ek,k).

Rohlfs showed in [14] that H1
cusp(SL2(O),C)� ϕ(D) as |D| → ∞, yielding

the same asymptotic as ours. We note that Krämer [11] produces the upper
bound

dimH1
cusp(SL2(O),C)� |D|3/2.

For pedagogical purposes, the contents of the paper proceed in the reverse
order the way they were summarized here.

Acknowledgments. We thank Steffen Kionke and Joachim Schwermer
for bringing to our attention a mistake in an earlier version of this paper.
Both authors thanks the Max Planck Institute for Mathematics in Bonn
for the hospitality they received (on separate occasions) during the the
preparation of this paper. Finally, we thank the anonymous referee for
helpful comments.

2. A Lefschetz fixed point theorem

As above, let K be an imaginary quadratic field with ring of integers O
and G be the associated Bianchi group SL2(O). We consider G as a lattice
inside the real Lie group SL2(C) and thus view it as a discrete group of
isometries of the hyperbolic 3–spaceH. Let ρ ∈ Aut(G) be an involution and
g = {1, ρ} be the subgroup of the automorphism group Aut(G) (note that
Out(G) is finite elementary abelian 2-group which is explicitly determined
by Smillie and Vogtmann in [20]). Let Γ be a g–stable torsion-free finite
index subgroup of G considered as a normal subgroup of the semidirect
product Γ̃ = Γ o g. The group Γ̃ has a natural action on H that extends
the action of Γ. Thus, Γ̃ acts on hyperbolic 3–manifold YΓ = Γ\H.

Let E be a Γ–module with a g–action such that this action is compatible
with the action on Γ, that is, ρ(g ·e) = ρg ·ρe. Then g acts on the cohomology
groups H i(YΓ, E) where E is the locally constant sheaf on YΓ induced by E.
Therefore, we can define the Lefschetz number

L(ρ,Γ, E) =
∑
i

(−1)itr(ρ | H i(YΓ, E)).

Let Y ρ
Γ be the set of fixed points of the ρ–action on YΓ. Let Eρ denote

the restriction of the sheaf E to Y ρ
Γ . Then ρ acts on the stalk of Eρ and

L(ρ, Y ρ
Γ , Eρ) is defined. As shown in [15, p.152], one has that

L(ρ,Γ, E) = L(ρ, Y ρ
Γ , E

ρ).
The connected components of Y ρ

Γ can be parametrized by the first non-
abelian (Galois) cohomologyH1(g,Γ). If γ is a cocycle forH1(g,Γ), we have
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a γ–twisted ρ–action on H given by x 7→ ρxγ−1. The fixed point set H(γ)
of the γ–twisted action on H is non-empty and its image in YΓ, denoted
F (γ), is a locally symmetric subspace of Y ρ

Γ .
There is also a γ–twisted ρ–action on Γ given by g 7→ γ ρgγ−1 for g ∈ Γ.

Let Γ(γ) denote the set of fixed points of this action. When Γ is torsion-free,
the canonical map

πγ : Γ(γ)\H(γ)→ YΓ

is injective. The image of πγ is homeomorphic to F (γ).
There is a twisted ρ–action on E as well, given by e 7→ ρeγ for e ∈ E. The

trace of this action on E does not depend on the choice of the cocycle γ in
its class and therefore will be written as tr(ργ | E). We have the following
geometric reformulation of the Lefschetz trace formula for the torsion-free
case.

Theorem 2.1 (Rohlfs). Assume that Γ is torsion-free. Then

L(ρ,Γ, E) =
∑

γ∈H1(g,Γ)
χ(F (γ))tr(ργ | E).

A more general version of the above theorem that treats Γ with possibly
torsion elements is given by Blume-Nienhaus in [2, I.1.6].

2.1. Lower bounds for the cohomology via Lefschetz numbers.
For the rest of the section, assume that ρ is orientation-reversing, as it will
be the case with the specific involutions that we will work with in Section
3. In this section, we want to give a lower bound for the dimension of the
cuspidal cohomology in terms of the Lefschetz number of ρ.

Let XΓ denote the Borel-Serre compactification of YΓ. This is a compact
manifold with boundary whose interior is homeomorphic to YΓ. Moreover,
the embedding YΓ ↪→ XΓ is homotopy equivariant, giving an isomorphism

H i(YΓ, E) ' H i(XΓ, Ē)

where Ē is a certain sheaf on XΓ that extends E .
Consider the long exact sequence

. . .→ H i
c(XΓ, Ēn)→ H i(XΓ, Ēn)→ H i(∂XΓ, Ēn)→ . . .

where H i
c denotes the compactly supported cohomology.

The cuspidal cohomology H i
cusp is defined as the image of the compactly

supported cohomology. The Eisenstein cohomology H i
Eis is a certain com-

plement of the cuspidal cohomology inside H i and it is isomorphic to the
image of the restriction map inside the cohomology of the boundary. As-
sume that the action of ρ on YΓ extends to XΓ, which will be the case
for our specific involutions of Section 3. This induces involutions on the
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terms of the above long exact sequence. We therefore have, in the obvious
notation, that

tr(ρi) = tr(ρicusp) + tr(ρiEis).
Poincaré duality implies that H1

cusp ' H2
cusp. Since ρ is an orientation

reversing involution, it follows that tr(ρ1
cusp) = −tr(ρ2

cusp). Hence we get

L(ρ,Γ, E) = tr(ρ0)− 2tr(ρ1
cusp)− tr(ρ1

Eis) + tr(ρ2
Eis),

and this implies the following proposition.
Proposition 2.2. With the above notation, we have

dimH1
cusp(Γ, E) ≥ 1

2

∣∣∣∣L(ρ,Γ, E) + tr(ρ1
Eis)− tr(ρ2

Eis)− tr(ρ0)
∣∣∣∣.

Proof. Since ρ is an involution, the eigenvalues of ρ1
cusp are ±1, and so

dimH1(Γ, E) ≥ |tr(ρ1
cusp)|.

The result now follows from the identity above. �

Note that when E = Ek,k with k > 0, tr(ρ0) = 0 as E is an irreducible
Γ–representation.

3. Lefschetz numbers for specific involutions

Let σ be complex conjugation. Its action on H is defined by (z, r) 7→
(z̄, r). It also acts on SL2(C) by acting on the entries of a matrix in the
obvious way. IfM ∈ SL2(C), then we write σM , or simply M̄ , for the image
of M under the action of σ.

Below, we will also consider twisted complex conjugation, which will be
denoted by τ . It acts on H via (z, r) 7→ (−z̄, r) where z̄ denotes the complex
conjugate of z. Its action on SL2(C) is defined as

(
a b
c d

)
7→
(

ā −b̄
−c̄ d̄

)
where

the bar in the notation denotes the complex conjugation. It is convenient
to regard τ as the composition α ◦ σ = σ ◦ α where α

(
a b
c d

)
=
(

a −b
−c d

)
=

β
(
a b
c d

)
β where β :=

(−1 0
0 1

)
, for every

(
a b
c d

)
∈ SL2(C) and α(z, r) = (−z, r)

for every (z, r) ∈ H.
Both σ and τ are orientation-reversing and they can be extended to the

Borel-Serre compactification naturally (see [14] Section 1.4). The action of
σ on Ek,k can be described as follows: σ(P ⊗ Q) = Q ⊗ P . Similarly, we
have τ(P ⊗ Q) =

(−1 0
0 1

)
Q ⊗

(−1 0
0 1

)
P . These actions are compatible with

those on SL2(C).
In this section, we discuss the Lefschetz numbers for these two involu-

tions. We will use the symbol ρ when we want to state results which are
true for both of them. We start with a useful lemma (see [2, I.4.3] for a
proof).
Lemma 3.1. Let γ ∈ Γ and x = (γρ)2. Then tr(γρ | Ek,k) = tr(x | Ek).
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3.1. Lefschetz numbers for Bianchi groups. Let Γ denote the full
Bianchi group SL2(O). For k = 0, that is Ek,k = C, the Lefschetz numbers
for σ and τ were computed by Krämer [11]. For general Ek,k, these numbers
were computed by Blume-Neinhaus [2].

For a rational prime p which ramifies in K and an integer a, let (a|p)
denote the Hilbert symbol. By definition, (a|p) is equal 1 if there is an
element in some finite extension of Kp, the completion of K at the unique
prime ideal over p, whose norm is equal to a, and is equal to −1 otherwise.
Equivalently, (a|p) is the value at a of the quadratic character associated
to the local extension Qp(

√
d)/Qp. Note that if p 6= 2, then (a|p) is equal

to the Legendre symbol
(
a
p

)
.

Theorem 3.2 (Blume-Nienhaus, [2]). Let D be the discriminant of K/Q
with D2 its 2-part. Let ρ represent either τ or σ. Also, put q = 1 or q = −1
depending on whether ρ = τ or ρ = σ, respectively.

(−1)kL(ρ,Γ, Ek,k)

= −q12
∏
p|D
p 6=2

(p+
(
q

p

)
)
∏
p|D
p=2

(D2 + (q|2))(k + 1)

+ q

12
∏
p|D
p 6=2

(1 +
(−q
p

)
)
∏
p|D
p=2

(4 + (−q|2))(−1)k(k + 1)

+ 1
2
∏
p|D
p 6=2

(1 +
(−2q

p

)
)
(
k + 1

4

)

+ 1
3

(∏
p|D
p 6=3

(1 + (−3q|p)) + (−1)k
∏
p|D

(1 + (−q|p))
)(

k + 1
3

)
.

Here products over empty sets are understood to be equal to 1.

Proof. Observe that in Blume-Nienhaus’ notation, Γ(1) = Γ(−1) = SL2(O).
For q = 1,−1 respectively, his involutions ( 0 1

q 0 )σ (see Theorem V.5.3. of [2])
differ from our τ = (−1 0

0 1 )σ and σ by ( 0 1
−1 0 ). However at the level of co-

homology, his involutions induce the same action as ours: conjugation by
( 0 1
−1 0 ) is an inner-automorphism of SL2(O) and hence induces trivial action

on the cohomology, see [3, p.79]. �

3.2. Lefschetz number of σ for principal congruence subgroups.
Let Γ = Γ(N) ⊆ SL2(O) be a principal congruence subgroup of level (N) /
O. Denote its image in PSL2(O) by Γ̄. Then for N > 2, Γ (and so Γ̄) is
torsion-free. As before, we put YΓ = Γ̄\H.
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In this section, we will use Theorem 2.1 to calculate the Lefschetz num-
bers L(σ,Γ(N), Ek,k). First, we need to analyze the fixed point set Y σ

Γ .
Let H(1) be the subset of H1(σ, Γ̄) consisting of the cocycles γ ∈ Γ̄ with

det(γ σγ) = 1. And, let H(2) be the subset consisting of the cocycles γ
with det(γ σγ) = −1. We have H1(σ, Γ̄) = H(1)∪H(2). If Γ is torsion free,
then H1(σ, Γ̄) = H(1).

Let γ1 = ( 1 0
0 1 ), γ′1 =

(
1
√
d

0 1

)
and γ2 =

( 0 −1
1 0

)
. Let γ′2 be

(
1+
√
d (2−d)/2

−2 −1+
√
d

)
if

d ≡ 2 mod 4, and
(√

d (d−1)/2
2

√
d

)
if d ≡ 1 mod 4. Notice that γ1, γ

′
1 ∈ H(1)

and γ2, γ
′
2 ∈ H(2).

The locally symmetric space F (γ), defined in section 2, is a surface if
γ ∈ H(1) and is a point if γ ∈ H(2). In [13], Rohlfs gives the number
of translations of the surfaces corresponding to γ1, γ

′
1 and the number of

translations of the points corresponding to γ2, γ
′
2.

Theorem 3.3 (Rohlfs, Theorem 4.1. of [13]). Let D be the discriminant
of K/Q and t be the number of distinct prime divisors of D. Let (N) =∏
p|D p

jp
p
∏
p-D(p)jp be an ideal with N > 2, and let Γ = Γ(N) be the principal

congruence subgroup of level (N). Let s = #{p prime | p|D, p 6= 2 and
jp 6= 0}.

Then Y σ
Γ consists of translations of surfaces F (γ1) and F (γ′1) and the

number of translations of these surfaces are denoted by A and B respectively
in the table below.

d j2 A B

d ≡ 1 (4) ≥ 0 2t−s 0
d ≡ 2 (4) 0 2t−s 2t−s−1

1 2t−s 2t−s−1

2 8 · 2t−s 0
≥ 3 8 · 2t−s−1 0

d ≡ 3 (4) 0 2t−s 2t−s−1

1 2t−s 0
2 8 · 2t−s 0
j2 = 2n+ 1 ≥ 3 2t−s−1 0
j2 = 2n ≥ 4 8 · 2t−s−1 0

Now, using Theorem 2.1 and Theorem 3.3, we want to calculate the
Lefschetz number for Γ(N).
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Proposition 3.4. Let Γ(N), A,B be as in the theorem above. Then

L(σ,Γ(N), Ek,k) =


(A+ 2B)−N

3

12
∏
p|N

(1− p−2) · (k + 1) if N is even,

(A+ 3B)−N
3

12
∏
p|N

(1− p−2) · (k + 1) if N is odd.

Proof. For each γ ∈ H(1), by Lemma 3.1, tr(γσ | Ek,k) = tr(1 | Ek,k) =
(k + 1). Therefore, by Theorem 2.1, we just need to calculate the Euler-
Poincare characteristics χ(Γγσ) for γ1 and γ′1.

An easy calculation shows that Γγ1σ = ΓN , the principal congruence
subgroup of SL2(Z) of level N . Let YN denote the hyperbolic surface asso-
ciated to ΓN . It is well-known that YN has 1

2N
2∏

p|N (1−p−2) cusps. If XN

denotes the compact surface obtained from YN by adding the cusps, then
by [19, 1.6.4], we have χ(XN ) = (−1/12)N2(N−6)

∏
p|N (1−p−2). Therefore

χ(ΓN ) = χ(YN ) = χ(XN )−#{cusps of YN} = (−1/12)N3∏
p|N (1− p−2).

If d ≡ 1 (mod 4), the number B of translations of the surfaces F (γ′1) is
0 as noted in the theorem above. So, below, we only need to consider the
cases d ≡ 2, 3 (mod 4).

Let h = ( 1
√
d

0 2 ). One can see that Γγ′1σ is equal to

{(
x+z
√
d y+w−x

2
√
d

2z w−z
√
d

)
∈ SL2(O) |

x− 1 ≡ w − 1 ≡ y ≡ z ≡ 0 (mod N) and w ≡ x (mod 2N)
}
.

Suppose that d ≡ 2 (mod 4). In this case, the condition that w ≡ x
(mod 2N) is redundant as it automatically follows from the condition that
the determinant of a matrix in SL2(O) is equal to 1. Therefore, in this case

Γγ′1σ =
{(

x+z
√
d y+w−x

2
√
d

2z w−z
√
d

)
∈ SL2(O) | x ≡ w ≡ 1, y ≡ z ≡ 0 (mod N)

}
.

Now, an easy calculation shows that

h−1Γγ′1σh = {( x 2y+zd
z w ) ∈ SL2(Z) | x ≡ w ≡ 1, y ≡ z ≡ 0 (mod N)} .

Thus,
h−1Γγ′1σh = ΓN ∩ Γ0(2N)

where ΓN is the principal congruence subgroup of SL2(Z) of level N , and
Γ0(2N) ⊂ SL2(Z) is the group of matrices that are lower-triangular modulo
2N . The index [ΓN : ΓN ∩Γ0(2N)] is equal to 3 if N is odd, and it is equal
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to 2 if N is even. This is a straightforward calculation; if N is odd, then
the cosets are represented by the matrices

( 1 0
0 1 ), ( 1 N

0 1 ),
(
N2+1 N3+2N
N N2+1

)
,

and when N is even, the third matrix above is in the coset of the identity
matrix.

If d ≡ 3 (mod 4) and N is even then, as above, the condition that w ≡ x
(mod 2N) is redundant because it automatically follows from the condition
that det = 1. Having noted this, now one can see that h−1Γγ′1σh = Γ′N where

Γ′N = {( x y
z w ) ∈ ΓN | y ≡ z (mod 2N)}.

In this case, [ΓN : Γ′N ] = 2 and the cosets are represented by the matrices

( 1 0
0 1 ), ( 1 0

N 1 ).

If d ≡ 3 (mod 4) and N is odd, then the condition that w ≡ x (mod 2N)
does not follow automatically. One can see that h−1Γγ′1σh = Γ′′N where

Γ′′N = {( x y
z w ) ∈ ΓN | x ≡ w and y ≡ z (mod 2N)}.

In this case, [ΓN : Γ′′N ] = 3 and the cosets are represented by the matrices

( 1 0
0 1 ), ( 1 0

N 1 ), ( 1 N
0 1 ).

Hence, when d ≡ 2, 3 (mod 4), the index [ΓN : h−1Γγ′1σh] is 2 if N is
even, and it is 3 if N is odd. This implies that

χ(Γγ′1σ) =
{

2χ(ΓN ) if N is even,
3χ(ΓN ) if N is odd.

This completes the proof. �

Corollary 3.5. Let p be an odd rational prime that is unramified over K.
Let t be the number of distinct prime divisors of D. Then, for n > 0 we
have

L(σ,Γ(pn), Ek,k) =


−2t · p

3n − p3n−2

12 ·(k + 1) if d ≡ 1 (mod 4),

−5 ·2t−1 · p
3n − p3n−2

12 ·(k + 1) if d ≡ 2, 3 (mod 4).

Proof. Since p is odd, j2 = 0. Moreover since p is the only divisor of the level,
and since it is unramified, we have s = 0. Thus in the case d ≡ 1 (mod 4),
we have A+3B = 2t. If d ≡ 2, 3 (mod 4), A+3B = 2t+3·2t−1 = 5·2t−1. �
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4. Trace on the Eisenstein cohomology

Proposition 2.2 shows that in order to obtain lower bounds for the cus-
pidal cohomology using the Lefschetz numbers, one needs to compute the
trace of the involution on the Eisenstein part of the cohomology in all de-
grees. The latter is certainly no simple task and is the topic of this section
of the paper.

In this section we study the trace of involutions induced by σ and τ on
the Eisenstein part of the cohomology.

4.1. Bianchi groups. The boundary ∂XΓ is a disjoint union of 2-tori,
each closing a cusp of YΓ. The set of cusps of Γ can be identified with the
orbit space Γ\P1(K). It is well-known that the number of cusps is h(K),
the class number of K, when Γ is the full Bianchi group.

The fundamental group of a 2-torus is a free abelian group on two gen-
erators and it is easy to compute the size of its cohomology.
Proposition 4.1. Let Γ be a congruence subgroup of a Bianchi group and
let CΓ denote the set of cusps of Γ. Then

dimH0(∂XΓ, Ēk) = dimH2(∂XΓ, Ēk) = #CΓ

dimH1(∂XΓ, Ēk) = 2 ·#CΓ.

The long exact sequence associated to the pair (XΓ, ∂XΓ) is compatible
with the action of the involution τ . It follows from algebraic topology that
for k > 0, the image of the restriction map

H i(XΓ, Ēk)→ H i(∂XΓ, Ēk)
is onto when i = 2 and its image has half the rank of the target space when
i = 1. Hence we have the following.
Corollary 4.2. Let k > 0 and Γ as above. Then

dimH0
Eis(Γ, Ek,k) = 0, and dimH i

Eis(Γ, Ek,k) = #CΓ for i = 1, 2.
In particular, for i = 0, 1, 2,

|tr(ρiEis)| ≤ #CΓ

for any involution ρ.
The following is direct consequence a result of Serre (see [18, Thm 9]).

Proposition 4.3. Let Γ = SL2(O). Then the image of the restriction map
H1(XΓ,C)→ H1(∂XΓ,C)

is inside the −1–eigenspace of complex conjugation acting on H1(∂XΓ,C).
Let us note that this result is extended to all maximal orders of M2(K)

(with complex conjugation twisted accordingly) by Blume-Nienhaus [2,
V.5.7.] and by Berger [1, Section 5.2.].
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Corollary 4.4. Let σiEis be the involution on H i
Eis(SL2(O),C) given by

complex conjugation. Then

tr(σ0
Eis) = 1, tr(σ1

Eis) = −h(K), tr(σ2
Eis) = −2t−1 + 1

where t is the number of primes that ramify in K and h(K) is the class
number of K.

Proof. For convenience, put X = XSL2(O). The claim for σ0
Eis follows from

the fact that H0
Eis(X,C) = H0(X,C) = C. The action of σ on the latter is

trivial. The claim for σ1
Eis follows immediately from Serre’s result above. It

is well-known that the set of cusps of SL2(O) is in bijection with the class
group of K and the action of complex conjugation σ on the cusps translates
to taking inverse in the class group. Hence an element of the class group
is fixed by σ if it is of order 2. Genus Theory tells us that the number of
elements of order 2 in the class group is 2t−1, implying that the trace of
the involution induced by σ on H0(∂X,C) is 2t−1. See [18, Section 9] for
more details. It follows from Poincaré duality and the orientation-reversing
nature of complex conjugation that the trace of the involution induced by
σ on H2(∂X,C) is −2t−1. The long exact sequence associated to the pair
(X, ∂X) tells us that that H2(∂X,C) ' H2

Eis(X,C)⊕H3(X, ∂X,C). Here
the last summand is isomorphic to C and σ acts on it as −1, which follows
from the fact that the action of σ on H0(X,C) is trivial. This gives the
claim for σ2

Eis. �

4.2. Principal congruence subgroups. We will now consider the case
of principal congruence subgroups, starting with a brief discussion of their
cusps.

4.2.1. The cusps. Given an ideal a ofO, let Γ = Γ(a) denote the principal
congruence subgroup of level a. Given x ∈ P1(K), let Gx,Γx denote the
stabilizer of x in G and Γ respectively. Moreover, let CG, CΓ denote the set
of cusps2 of G and Γ respectively. Then we have the following relationship

CΓ =
⊔
x∈CG

Γ\Gx.

Since Γ is normal in G, #(Γ\Gx) is the same for any x ∈ CG. Thus using
the bijection

Γ\G/Gx
g 7→gx−−−→ Γ\Gx,

we obtain the formula

#CΓ = h(K) ·#(Γ\G/G∞)

where ∞ denotes the cusp at infinity, represented by (1 : 0) ∈ P1(K).

2We will identify a cusp with any of its representatives whenever it is convenient.
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Observe that G∞ = ( ∗ ∗0 ∗ ) ∩ G =
(
±1 O
0 ±1

)
. Identifying the coset space

Γ\G with the finite group SL2(O/a), the double coset space Γ\G/G∞ can
be viewed as the coset space of

(
±1 O/a
0 ±1

)
in SL2(O/a).

The above discussion shows that when the norm Na > 2, the number of
cusps of Γ is given by the formula

(4.1) #CΓ = h(K) · [SL2(O/a) :
(
±1 O/a
0 ±1

)
] = h(K)

2 ·Na2∏
p|a

(1−Np−2).

Here the product runs over the prime factors p of the ideal a and N denotes
the norm.

We end with a lemma that will be useful in the next section.

Lemma 4.5. Let ρ denote either σ or τ and let c ∈ (CG)ρ, i.e. a cusp of
G that is ρ–invariant. Then

#(Γ\Gc)ρ = #(Γ\G∞)ρ.

Proof. Let A ∈ SL2(K) be such that ∞ · A = c. As c is fixed by ρ, it
corresponds to an element in the ideal class group of K which is of order
2 (here we use the fact that τ is a twisted form of σ). Work of Smillie and
Vogtmann [20] shows us that conjugation by A gives rise to an orientation-
preserving involutary automorphism φA of YG which commutes with the
orientation-reversing involutary automorphism of YG induced by ρ. The
automorphism φA extends to an automorphism of XG, inducing an isomor-
phism (still denoted φA) between the boundary component 2-torus at the
cusp ∞ and the boundary component 2-torus at the cusp c. The isomor-
phism φA commutes with the automorphisms induced by ρ on these two
boundary components. It follows easily that φA gives a bijection between
Γ\Gc and Γ\G∞ that commutes with the action of ρ. �

4.2.2. Trace on H2
Eis. The following theorem generalizes part of the

above Corollary 4.2 and part of the results announced by Harder at the
very end of [6] (where there is a factor of 2−r missing).

Theorem 4.6. Let K be an imaginary quadratic field and t be the number
of rational primes ramifying in K. Let N = pn1

1 . . . pnrr be a positive odd
number whose prime divisors pi are unramified in K and let Γ(N) be the
principal congruence subgroup of the Bianchi group SL2(O) of level (N).
Let ρ denote either σ or τ .Then

tr(ρ | H2
Eis(Γ(N), Ek,k)) = −2t−r−1 ·

r∏
i=1

(p2ni
i − p2ni−2

i ) + δ(0, k),

where δ is the Kronecker δ–function, in other words, δ(0, k) = 0 unless
k = 0 in which case δ(0, k) = 1. In particular, the trace of ρ2

Eis on
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H2(SL2(O), Ek,k) is
−2t−1 + δ(0, k).

Proof. Assume until the very end of the proof that k > 0. In this case the
restriction map H2(XΓ,Mk) → H2(∂XΓ,Mk) is onto and thus it suffices
to compute the trace of ρ2 on H2(∂XΓ,Mk). As before, Poincaré duality
together with the fact that ρ reverses the orientation reduce the problem
to computing the trace of ρ0 on H0(∂XΓ,Mk) instead.

The cohomology of the boundary can be expressed as a direct sum of
the cohomology of the boundary components Xc, which are 2-tori;

(4.2) H0(∂XΓ,Mk) '
⊕
c∈CΓ

H0(Xc,Mk) '
⊕
c∈CΓ

H0(Γc, Ek,k).

The last isomorphism follows from the fact that for each Xc is a K(Γc, 1)–
space for the stabilizer group Γc which consist of unipotent elements in Γ
stabilizing the cusp c (Here we used the fact the N > 2 and thus

(
−1 0
0 −1

)
is not in Γ ).

If c is a cusp, then ρ takes Γc to Γρ(c). If c 6= ρ(c), then

H0(Γc, Ek,k)⊕H0(Γσ(c), Ek,k)

is a ρ0–invariant subspace of the right hand side of (4.2). As ρ0 takes the
basis of the first summand to the basis of the second summand, the trace
of ρ0 on this subspace is 0.

If c = ρ(c), then ρ0 acts on the one-dimensional space H0(Γc, Ek,k) and
it is easy to see that the action has trace 1. Thus

tr(σ | H0(∂XΓ,Mk)) = #(CΓ)σ,

that is, the trace of σ0 is equal to the number of cusps of Γ that are invariant
under the action of σ.

Recall from Section 4.2.1 that CΓ =
⊔
x∈CG Γ\Gx. Clearly a cusp c =

gxΓ ∈ CΓ is ρ–invariant only if x ∈ CG is so. So we have

(CΓ)ρ =
⊔

x∈(CG)ρ
(Γ\Gx)ρ.

We already know that #(CG)ρ = 2t−1. By Lemma 4.5, all that is left is to
compute #(Γ\G∞)ρ.

For the rest of the proof, we put

R := O/(N) U+(R) :=
(
±1 R
0 ±1

)
, U(R) :=

( 1 R
0 1
)
.

Following our discussion in Section 4.2.1, we recast our goal as to compute

#(U+(R)\SL2(R))ρ.
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Observe that σ fixes the ideal (N) and thus its action on O descends down
to an action on R. The action of σ and τ on SL2(R) are as follows

σ
((
a b
c d

))
=
( σa σb
σc σd

)
, τ

((
a b
c d

))
=
(

σa −σb
−σc σd

)
.

We first treat the special situation where N = pn with p a rational prime.
Consider the bijections

U+(R)\SL2(R) ' U+(R)\B(R) × B(R)\SL2(R)

where B(R) is the subgroup of upper-triangular matrices. There are well-
known bijections

B(R)\SL2(R)↔ P1(R),
[
a b
c d

]
7→ (a : c)

where P1(R) denotes the projective line over R, and

U(R)\B(R)↔ R∗,
[
a b
0 a−1

]
7→ a.

These bijections lead to the identification

U+(R)\SL2(R) ' R∗/{±1} × P1(R).

It is straightforward to transfer the action of σ and τ to the right hand
side. We immediately see that

(U+(R)\SL2(R))ρ ' (R∗/{±1})ρ × P1(R)ρ.

Let us start with computing #P1(R)ρ. It can be seen that P1(Rσ) ↪→
P1(R) and in fact P1(Rσ) = P1(R)σ. Note that P1(Rσ) ' P1(Z/pnZ) and
thus has cardinality pn + pn−1. Computation shows that P1(R)τ has the
same number of elements.

Let us now consider #(R∗)ρ. The action of σ and τ is the same on R∗.
Clearly we have #(R∗/{±1})ρ = (1/2) · #(R∗)σ. When p is split in K,
we have R ' (Z/pnZ)2 and ρ acts by swapping the two coordinates. Thus
#(R∗)ρ = #(Z/pnZ)∗ = pn − pn−1. When p is inert in K, we can view R
as the quadratic extension (Z/pnZ) [ω] of the ring Z/pnZ and ρ(a+ b ·ω) =
a − b · ω. It follows that R∗ = {a + b · ω | p - a or p - b} and (R∗)ρ is
given by {a + b · ω ∈ T | p - a, b = 0} which is of cardinality pn − pn−1.
Putting things together, in both inert and split cases, we get the quantity
#(U+(R)\SL2(R))ρ = (1/2) ·

(
p2n − p2(n−1)

)
.

To finish the proof, let us assume that N = pn1
1 . . . pnrr is positive number

whose prime divisors pi are unramified in K. The result in this general case
follows from the simple fact that

SL2(O/(N)) ' SL2(O/(p1)n1)× . . . SL2(O/(pr)nr).

The case k = 0 follows from the basic observations that were employed
at the end of the proof of Corollary 4.4. �
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4.2.3. Szech Cocyles. In the next subsection, we will compute the trace
of σ on H1

Eis(Γ,C). Our strategy will be to use the explicit 1–cocycles
defined by Sczech in [17] which produce a basis for H1

Eis(Γ(N),C). In this
subsection, we review the results we need on Sczech cocycles.

Consider O as a lattice in C. For k = 0, 1, 2 and u ∈ C put
Ek(u) = Ek(u,O) =

∑
w∈O
w 6=−u

(w + u)−k|w + u|−s |s=0

where . . . |s=0 means that the value is defined by analytic continuation to
s = 0. Moreover define E(u) by setting

2E(u) =
{

2E2(0), u ∈ O
℘(u)− E1(u)2, u 6∈ O

where ℘(u) denotes the Weierstrass ℘–function.
Let N be a positive integer. Given u, v ∈ 1

NO, Sczech forms homomor-
phisms

Ψ(u, v) : Γ(N)→ C
which depend only on the classes of u and v in 1

NO/O. For A = ( a b0 d ) ∈
Γ(N), we have the simple description

Ψ(u, v)(A) = −
(
b̄
d

)
E(u)− b

dE0(u)E2(v)

where (
t
s

)
= −1 + #{y mod sO | y2 ≡ t mod sO}

is the Legendre symbol. For non-parabolic A ∈ Γ(N) there is a similar
but more complicated description which uses finite sums that involve the
Ek’s, generalizing the classical Dedekind sums. Note that E(−u) = E(u)
and Ek(−u) = Ek(u) for even k. So, Ψ(−u,−v) = Ψ(u, v) on parabolic
elements. In fact, using the definition in [17, Section 4], one can see that
Ψ(−u,−v) = Ψ(u, v).

It is shown by Sczech that the collection Ψ(u, v) with (u, v) ∈ ( 1
NO/O)2

live in the Eisenstein part of the cohomology and that the number of linearly
independent such homomorphisms is equal to the number of cusps of Γ.
Thus they generate H1

Eis(Γ(N),C).
Ito showed in [9] that, see also Weselmann [21], up to a coboundary, the

cocycles of Sczech are integrals of closed harmonic differential forms given
by certain Eisenstein series defined on the hyperbolic 3-space H. Following
Ito, we can form an Eisenstein series E(u,v)(τ, s) for (τ, s) ∈ H × C with
values in C3 associated to each cusp of Γ(N). As a function of s, E(u,v)(τ, s)
can be analytically continued to all of C and work of Harder [7] shows that
differential 1-form on the hyperbolic 3-space induced by E(u,v)(τ, s) is closed
for s = 0. Ito showed that the cocycle given by the integral of this closed dif-
ferential 1-form differs from the cocycle Ψ(u, v) of Sczech by a coboundary.
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The fact that the above Eisenstein series associated to different cusps are
linearly independent (they are non-vanishing only at their associated cusp)
implies that the cohomology classes of Sczech cocycles which are associated
to the cusps of Γ(N) form a basis of H1

Eis(Γ(N),C).
In another paper [10], Ito provides us the following results:

Ψ(0, 0)(Ā) = −Ψ(0, 0)(A)

where bar means that we take the complex conjugates of the entries of the
matrix A. More generally, he proves that

Ψ(u, v)(Ā) = −1
N2

∑
s,t∈ 1

N O/O

φ(sv̄ − tū)Ψ(s, t)(A)

where φ(z) := exp(2πi(z − z̄)/D) with D denoting the discriminant of K.
Observe that when (s, t) = (u, v) or (s, t) = (0, 0), we have φ(sv̄ − tū) = 1.
Using this, let us write this summation in a more suggestive way:

Ψ(u, v)(Ā) = −1
N2

[( ∑
s,t∈ 1

N O/O
(s,t)6=(u,v)
(s,t)6=(0,0)

φ(sv̄−tū)Ψ(s, t)(A)
)

+Ψ(u, v)(A)+Ψ(0, 0)(A)
]

The latter formula sheds light onto the action of complex conjugation σ
on the Sczech cocycles which is given by

σ(Ψ(u, v))(A) := Ψ(u, v)(Ā).

We see that σ(Ψ(u, v)) is expressed as summation over all the Sczech co-
cycles. We will regard σ as a linear operator on the formal space C[ΨN ] for
which the Sczech cocycles are taken as basis.

The pair (0, 0) in ( 1
NO/O)2 never corresponds to a cusp of Γ(N), so let us

eliminate the term Ψ(0, 0) from the big summation. Using Ito’s summation
formula for the case (u, v) = (0, 0), we get

Ψ(0, 0)(Ā) = −1
N2

[( ∑
s,t∈ 1

N O/O
(s,t)6=(0,0)

Ψ(s, t)(A)
)

+ Ψ(0, 0)(A)
]

Now plug in the identity Ψ(0, 0)(Ā) = −Ψ(0, 0)(A), we get

Ψ(0, 0)(A) = 1
N2 − 1

∑
s,t∈ 1

N O/O
(s,t) 6=(0,0)

Ψ(s, t)(A).
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Now for (u, v) 6= (0, 0), we have

Ψ(u, v)(Ā) = −1
N2

[( ∑
s,t∈ 1

N O/O
(s,t) 6=(0,0)

φ(sv̄ − tū)Ψ(s, t)(A)
)

+ Ψ(0, 0)(A)
]
.

Substituting Ψ(0, 0)(A), we get the following expression for Ψ(u, v)(Ā)

(4.3) −1
(N2)(N2 − 1)

∑
s,t∈ 1

N O/O
(s,t)6=(0,0)

Ψ(s, t)(A)+ −1
N2

∑
s,t∈ 1

N O/O
(s,t)6=(0,0)

φ(sv̄−tū)Ψ(s, t)(A).

Since Ψ(−u,−v) = Ψ(u, v), we can define C[Ψ∗N ] to be the formal vector
space generated by the basis

{Ψ(u, v) | (u, v) ∈ ( 1
NO/O)2/± 1 and (u, v) 6= (0, 0)}.

Having eliminated Ψ(0, 0) in Equation (4.3), we can regard σ as a linear
operator on the formal space C[Ψ∗N ]. After noting that Ψ(−u,−v) = Ψ(u, v)
and φ(−uv̄ + vū) = φ(uv̄ − vū) = 1, we see that the coefficient of the
summand Ψ(u, v)(A) on the right hand side of the equality (4.3) is

−ξ(u,v)
(N2)(N2−1) + −ξ(u,v)

N2 = −ξ(u,v)
N2−1

where ξ(u, v) = ]{±(u, v)} = 1 or 2. This implies that the trace of σ on
C[Ψ∗N ] is

(4.4) (N4 − 1) −1
N2−1 = −(N2 + 1).

4.2.4. Trace on H1
Eis. Our goal is to apply the above results to the

computation of the trace of σ on H1
Eis(Γ(pn),C) for some rational prime

p which is unramified in K. We were able to do this only when K is of
class number one and p is inert in K. In this case, the cusps of Γ(pn)
are in bijection with the sets {±(x̄, ȳ)} ⊂ (O/(pn))2 such that the order
of (x̄, ȳ) is pn (via the map x

y 7→ (y,−x)). One can see that c(Γ(pn)) =
1
2(p2n)2 − (p2n−2)2 if pn > 2, and that c(Γ(pn)) = (p2n)2 − (p2n−2)2 if
pn = 2 (because (x̄, ȳ) has order 2 and so (x̄, ȳ) = −(x̄, ȳ)).

In the rest of this subsection, we will prove the following result which is
a partial generalization of a result announced by Harder in [6].

Theorem 4.7. Assume that K is of class number one and let p be a rational
prime that is inert in K. Then we have

tr(σ | H1
Eis(Γ(pn),C)) =

{
−(p2 + 1), if n = 1
−(p2n − p2n−2), if n > 1.
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Proof. We will proceed by induction. Let n = 1. Then by a comparison
with the number of cusps of Γ(p), we see that the Sczech cocyles in the set

{Ψ(u, v) | (u, v) ∈ (1
pO/O)2/± 1 and (u, v) 6= (0, 0)}

form a basis of H1
Eis(Γ(p),C). Thus the trace of σ on C[Ψ∗pn ] is equal to the

trace of σ on H1
Eis(Γ(p),C). By our observation above, we get the claim for

n = 1.
Before we proceed with the inductive step, let us discuss the structure

of cusps. The following diagram is commutative.

O/(p) ε // O/(p2) ε // O/(p3) ε // . . .

1
pO/O

OO

ε′ // 1
p2O/O

OO

ε′ // 1
p3O/O

OO

ε′ // . . .

The maps ε are the natural inclusion maps [x] 7→ [px]. the vertical ar-
rows are the natural bijections that we mentioned above and the maps
ε′ are induced by the natural inclusions 1

pO ⊂
1
p2O. The crucial obser-

vation is that the set of elements of order pn in (O/(pn))2 is exactly
(O/(pn))2\(ε(O/(pn−1)))2. Hence in order to find the trace of σ on the
Sczech cocyles which are associated to the cusps of Γ(pn), all we need to
do is to compute the difference between the traces of σ on C[Ψpn ] and
C[Ψpn−1 ]. This is the same as the difference between the traces of σ on
C[Ψ∗pn ] and C[Ψ∗pn−1 ] which we already computed in Equation 4.4:

−(p2n + 1)− (−(p2n−2 + 1)) = −(p2n − p2n−2)

as claimed. �

Remark 4.8.
(1) The above proof does not carry over to the case where p is split.

To see this, put (p) = pp̄. Then the set of cusps of Γ(pn), which
has cardinality (p2n(1 − p−2))2, is in bijection with the Cartesian
product of the set of cusps of Γ(pn) and the set of cusps of Γ(p̄n).
Both of the latter sets are in bijection with the set of elements of
order pn of Z/pnZ. In a very similar way to the one in the proof,
we have a commutative diagram

. . . // (O/pn−1)2 × (O/p̄n−1)2 εp×εp̄// (O/pn)2 × (O/p̄n)2 // . . .

. . . // ( 1
pn−1O/O)2

OO

ε′ // ( 1
pnO/O)2

OO

// . . .
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However, unlike in the inert case, the subset of elements in ( 1
pnO/O)2

which correspond to the cusps of Γ(pn) is not the complement of
the image of ( 1

pn−1O/O)2 in ( 1
pnO/O)2. This obstructs the recursive

use of Equation 4.4 in this case. In fact, the subset of elements in
( 1
pnO/O)2 which correspond to the cusps of Γ(pn) is given by(

(O/pn)2\Im(εp)
)
×
(
(O/p̄n)2\Im(εp̄)

)
.

However we do not see a way to isolate this set in a recursive way.
(2) In order to treat H1

Eis(Γ(N), Ek,k) using our approach, a vector-
valued version of Sczech’s cocycles should be developed. We do not
attempt to do this here.

These Eisenstein trace results together with Lefschetz number computa-
tions of previous sections can be plugged in the formula of Proposition 2.2,
giving explicit lower bounds for the cuspidal cohomology of Bianchi groups.
We leave such tasks to the interested reader as the formulas will be quite
complicated.

5. Asymptotic lower bounds

In [4], Calegari and Emerton considered how the size of the cohomology,
with fixed coefficient module, varied in a tower of arithmetic groups. Their
general result when applied to our situation gives the following.

Theorem 5.1 (Calegari-Emerton [4]). Let Γ(pn) denote the principal con-
gruence subgroup of level pn of a Bianchi group SL2(O) where p is an un-
ramified prime ideal of O. Fix E. Then

(1) if the residue degree of p is one, then

dimH1(Γ(pn), E)� p2n,

(2) if the residue degree of p is two, then

dimH1(Γ(pn), E)� p5n

as n increases.

Note that the trivial upper bounds are p3n and p6n respectively. It is
natural to look at these asymptotics from the perspective of the volume
which is a topological invariant in our setting. Observe that the volume
of YΓ(pn) is given by a constant times the index of Γ(pn) in the Bianchi
group SL2(O). Thus asymptotically, the trivial asymptotic upper bound
for the above cohomology groups is linear in the volume and the above
upper bounds of Calegari and Emerton can be interpreted as sublinear.

Using the techniques discussed in this paper, we can derive the following
lower bounds.
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Proposition 5.2. Let p be a rational prime that is unramified in K and let
Γ(pn) denote the principal congruence subgroup of level (p)n of a Bianchi
group SL2(O).

(1) Then
dimH1

cusp(Γ(pn), Ek,k)� k

as k increases and n is fixed,
(2) Assume further that K is of class number one. Then

dimH1
cusp(Γ(pn),C)� p3n

as n increases.

Proof. Recall from Proposition 2.2 that

dimH1
cusp(Γ, Ek,k) ≥

1
2

(
L(σ,Γ, k) + tr(σ1

Eis,Γ, k)− tr(σ2
Eis,Γ, k)

)
.

When Γ is fixed, by Corollary 4.2 the dimension of the Eisenstein part of
the cohomology is the same for every weight k > 0. Hence, the asymptotic
for (1) is given by Corollary 3.5.

The claim in (2) follows directly from Theorems 4.7 and 4.6, together
with the Lefschetz number formula provided in Corollary 3.5. �

5.1. Lower bounds for GL2. In this section we will discuss the trace of
σ on the cohomoogy of GL2(O). For convenience let us put Γ = SL2(O)
and G = GL2(O).

Let us start with a couple of observations. As G = Γ o 〈β〉 with β :=
(−1 0

0 1 ) and β acts trivially on the cusps of Γ, the groups Γ and G have the
same cusps. Given a cusp c, its stabilizer in G (modulo ±Id) is of the form
Z2oZ/2Z. This implies that the connected components of the boundary of
Borel-Serre compactification of YG are 2-orbifolds whose underlying mani-
folds are 2-spheres. In turn, the cohomology of the boundary vanishes and
we get

H1(G,Ek,k) = H1
cusp(G,Ek,k).

From the inflation-restriction sequence we see that

H1(G,Ek,k) = H1(Γ, Ek,k)〈β〉.

The involutions σ1 and τ1 commute and σ1τ1 equals the action of β.
Hence we get

H1(G,Ek,k) = H1(Γ, Ek,k)σ
1τ1
.

Counting the dimensions of the common eigenspaces, we see by compar-
ison that

tr(τ1,Γ, Ek,k) + tr(σ1,Γ, Ek,k) = 2 · tr(σ1, G,Ek,k).
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The matrix β acts on Ek,k trivially and acts as −Id on H1(∂XΓ, Ek,k).
This implies that

tr(τ1
Eis,Γ, Ek,k) = −tr(σ1

Eis,Γ, Ek,k).

Using this last identity, together with the previous facts, we get (dropping
Ek,k from the notation for convenience)

L(τ,Γ) + L(σ,Γ)
= −4 · tr(σ1, G) + tr(τ0,Γ) + tr(σ0,Γ) + tr(τ2

Eis,Γ) + tr(σ2
Eis,Γ).

Using results from previous sections, we get the following simplified for-
mula for the trace of σ on H1(GL2(O), Ek,k).

Theorem 5.3. Let L(τ,SL2(O), Ek,k) and L(σ, SL2(O), Ek,k) be as in The-
orem 3.2. Then,

tr(σ1 | H1(GL2(O), Ek,k))

= −1
4

(
L(τ,SL2(O), Ek,k) + L(σ, SL2(O), Ek,k) + 2t − 4 · δ(k, 0)

)
where t is the number of rational primes which ramify over K and δ(k, 0)
is the Kronecker δ–function as defined in Theorem 4.6.

Using Theorem 3.2 and the fact that

dimH1(GL2(O), Ek,k) ≥ |tr(σ1,GL2(O), Ek,k)|,

we get the following asymptotics.

Corollary 5.4. Let D be the discriminant of K/Q and OK be its ring of
integers. As K/Q is fixed and k →∞, we have

dimH1(GL2(OK), Ek,k)� k

where the implicit constant depends on the discriminant D. As k is fixed
and |D| → ∞, we have

dimH1(GL2(OK), Ek,k)� ϕ(D)

where ϕ is the Euler phi-function and the implicit constant depends on the
weight k.

Note that one can write a more precise formula for the lower bounds
above. As the formulas for the Lefschetz numbers are complicated, we stated
our results in a slightly weaker form for the sake of simplicity.
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