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Unobstructed Hilbert modular deformation
problems

par Adam GAMZON

Résumé. Soit ρf,λ une représentation galoisienne `-adique as-
sociée à une forme de Hilbert nouvelle f , et soit ρ̄f,λ sa réduc-
tion semi-simple modulo `. En généralisant l’approche de Weston,
nous démontrons que l’anneau de déformations universel de ρ̄f,λ
de déterminant donné est non obstrué pour presque tout `. Nous
donnons également un exemple explicite pour illustrer comment
obtenir une borne inférieure sur les ` tels que l’anneau de déforma-
tions universel de ρ̄f,λ de déterminant donné soit non obstrué pour
tout λ divisant `.

Abstract. Let ρf,λ be an `-adic Galois representation associ-
ated to a Hilbert newform f . Consider its semisimple mod ` reduc-
tion ρ̄f,λ. This paper discusses how, under certain conditions on f ,
the universal ring for deformations of ρ̄f,λ with fixed determinant
is unobstructed for almost all primes. We follow the approach of
Weston, who carried out a similar program for classical modular
forms in 2004. As such, the problem essentially comes down to
verifying that various local invariants vanish at all places dividing
` or the level of the newform. We conclude with an explicit ex-
ample illustrating how one can in principle find a lower bound on
` such that the universal ring for deformations of ρ̄f,λ with fixed
determinant is unobstructed for all λ over `.

1. Introduction

Let f be a newform of level N and weight k ≥ 2. Let Kf be the number
field obtained from f by adjoining its Hecke eigenvalues to Q. For each
prime λ in Kf , Deligne constructed a semisimple mod ` representation
ρ̄f,λ. In [13], Mazur conjectured that the universal deformation ring of this
residual representation ρ̄f,λ is unobstructed for almost all λ. Weston [16]
gave a positive answer to Mazur’s question in 2004 assuming that k ≥ 3. He
was also able to obtain some results for weight two modular forms, showing
that Mazur’s conjecture holds on a set of primes of density one. We show
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that Weston’s methodology and results essentially carry over to the Hilbert
modular form setting with a few minor adjustments.

More specifically, let F be a totally real extension of Q of degree d > 1
and let f be a Hilbert newform on F of level n ⊂ OF and weight k =
(kτ1 , . . . , kτd). Here the τi denote the embeddings of F into R. We assume
that kτi ≥ 2 for all i and that they satisfy the parity condition kτ1 ≡
· · · ≡ kτd mod 2. As in the previous paragraph, let Kf be the number field
generated over Q by the Hecke eigenvalues of f and let OKf its ring of
integers. For each prime λ of Kf , let

ρ̄f,λ : GF,S → GL2(kf,λ)
be the semisimple mod ` Galois representation attached to f by Carayol
and Taylor. Here kf,λ = OKf /λ and GF,S = Gal(FS/F ), where FS is the
maximal algebraic extension of F , unramified outside of a finite set of places
S = {v|n`} ∪ {v|∞}.

Let Ddet=δ
ρ̄f,λ

denote the functor that associates to a coefficient ring R

the set of all deformations of ρ̄f,λ to R with fixed determinant (see Sec-
tion 2 for precise definitions regarding deformation theory). Note that ρ̄f,λ
is absolutely irreducible for almost all λ [4, Proposition 3.1]. For such λ,
the functor Ddet=δ

ρ̄f,λ
is representable by the universal deformation ring Rf,λ

for deformations with fixed determinant. Then our main theorem is the
following.

Theorem 1.1. Suppose that f has no CM, is not a twist of a base change
of a Hilbert newform on E ( F , and kτi ≥ 3 for all i. Then Rf,λ is
unobstructed for almost all λ.

Remark 1.2. Weston [16] did not have this additional condition of de-
formations with fixed determinant, but in general there are obstructions
that come from lifting the determinant, so there is no way around this. For
details about calculating dimFp H

2(GF,S ,Z/pZ), see [14, Theorem 10.7.3].

Remark 1.3. The hypotheses that f has no CM and is not a twist of
a base change come from ensuring that certain Selmer groups vanish for
almost all λ (see Proposition 2.4, [5, Theorem B(i)] and [6, Theorem 2.1]).
It is an open problem as to whether or not these hypotheses can be relaxed.

The strategy for proving Theorem 1.1 is to use a generalization of a
criterion for unobstructedness (Proposition 2.4) due to Weston [16]. Using
this proposition and results of Dimitrov ([5] and [6]), the proof is reduced
to checking that for all v ∈ S, the local cohomology groups H0(Gv, ε̄ ⊗
ad0 ρ̄f,λ) = 0 for almost all λ. Here ε is the `-adic cyclotomic character,
Gv is a decomposition group a v and ad0 ρ denotes the restriction of the
adjoint representation of ρ to the trace-zero matrices. Section 3 addresses
those v ∈ S such that v - `, while section 4 shows that for almost all λ,
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this vanishing cohomology condition holds for v|`. We also give a proof of
Theorem 1.1 in section 4. We conclude in Section 5 with an explicit example
of determining a lower bound on ` such that Rf,λ is unobstructed for all λ
over `. Here f is the unique level one newform on Q(

√
5) of weight (4,8).

It is with great pleasure that the author thanks Tom Weston for sug-
gesting this problem and for several helpful suggestions along the way.
Many thanks are also owed to Mladen Dimitrov for patiently answering
every question put to him, especially regarding the vanishing of the previ-
ously mentioned Selmer groups. The author also benefited from a number
of informative conversations with Ehud de Shalit and for this he is most
grateful. Finally, the author acknowledges with gratitude that this work
was produced while he was a postdoctoral fellow at the Hebrew University
of Jerusalem, jointly supported by the Fulbright Commission in Israel, the
United States-Israel Educational Foundation, and by the framework of the
ERC grant GLC-247049 entitled Langlands correspondence and its variants
under David Kazhdan.

Notation. For a field F , denote its absolute Galois group by GF . As above,
we let Gv denote a decomposition group at a place v of F and fix embed-
dings Gv ↪→ GF . Let Fv denote the v-adic completion of F . We use the
phrase “almost all” as a substitute for “all but finitely many.”

2. Review of Galois deformation theory

We briefly recall the theory of deformations of mod ` Galois represen-
tations in the sense of Mazur. For a more thorough introduction see [2]
or [11].

Let F be a number field and let S be a finite set of places of F . Let k be
a finite field of characteristic ` and denote the Witt vectors of k by W (k).
Consider an absolutely irreducible continuous representation

ρ̄ : GF,S → GLn(k).
Also consider the category C of complete local noetherian rings R with
residue field k. Morphisms in this category are local homomorphisms that
induce the identity on k. A lift of ρ̄ to R is a continuous representation
ρ : GF,S → GLn(R) making the following diagram commute:

GF,S
ρ
//

ρ̄
$$

GLn(R)

��

GLn(k)

where the homomorphism GLn(R) → GLn(k) is the map induced by the
reduction homomorphism R→ k. We say that two lifts ρ and ρ′ of ρ̄ to R
are strictly equivalent if γργ−1 = ρ′ for some γ ∈ ker(GLn(R)→ GLn(k)).
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Definition 2.1. A deformation of ρ̄ to R is a strict equivalence class of
lifts of ρ̄ to R.

Consider the functor Dρ̄ : C → SETS given by
Dρ̄(R) = {deformations of ρ̄ to R}.

Call such a functor a deformation problem.

Theorem 2.2 (Mazur). If ρ̄ is absolutely irreducible then Dρ̄ is repre-
sentable by a complete local noetherian ring Rρ̄ and

Rρ̄ ∼= W (k)[[x1, . . . , xd1 ]]/I.

Here di = dimkH
i(GF,S , ad ρ̄) and I is generated by at most d2 elements.

Definition 2.3. The deformation problem Dρ̄ is unobstructed if d2 = 0.

We can also consider subfunctors of Dρ̄ where we ask our deformations to
satisfy certain prescribed properties. For example, we can ask for deforma-
tions with fixed determinant. By this we mean that det ρ is the composition
of the canonical homomorphism W (k) → R (making R a W (k)-algebra)
with a fixed continuous character δ : GF,S → W (k). When this occurs, we
say that a deformation ρ has det = δ. Denote by Ddet=δ

ρ̄ the subfunctor
given by

Ddet=δ
ρ̄ = {deformations of ρ̄ to R with det = δ}.

Note that for the deformation problem Ddet=δ
ρ̄ , an analogue to Theorem 2.2

holds where we replace ad ρ̄ by ad0 ρ̄ in the statement of the theorem.
We now specialize to two-dimensional residual representations ρ̄ : GF,S →

GL2(k). Let K be a finite extension of Q` and let O be its ring of integers.
Assume that we have a (fixed) continuous representation

ρ : GF,S → GL2(O)

lifting ρ̄. Set Vρ = K3 and Aρ = (K/O)3. Give Vρ and Aρ a GF -action
via ad0 ρ. Let Vρ(1) denote the Tate-twist of Vρ. Finally, define the Selmer
groups H1

f (GF , Vρ(1)) and H1
f (GF , Aρ) in the sense of Bloch-Kato [1]. Then

we have the following criterion for unobstructedness.

Proposition 2.4. Suppose
(1) H0(Gv, ε̄⊗ ad0 ρ̄) = 0 for all v ∈ S \ {v|∞},
(2) H1

f (GF , Vρ(1)) = 0,
(3) H1

f (GF , Aρ) = 0.
Then H2(GF,S , ad0 ρ̄) = 0. That is, Ddet=δ

ρ̄ is unobstructed.

Proof. The argument follows mutatis mutandis as in the proof of Proposi-
tion 2.2 in [16]. �
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Thus the strategy for proving Theorem 1.1 is clear. For ρ = ρf,λ, we need
to check that the hypotheses of Proposition 2.4 hold for almost all primes
λ of Kf .

3. Local invariants for ` 6= p

Let F be a number field and let v be a prime in F over a rational p ∈ Z.
In this section, we show that the local invariants H0(Gv, ε̄⊗ad0 ρ̄) are zero
for almost all λ not dividing p. We separate the proof into two cases based
on the local Langlands correspondence for GL2(Fv).

Let K be any number field with ring of integers O. For all primes λ of
O not dividing p = v ∩ Z, fix an isomorphism ιλ : C → K̄λ extending the
inclusion O ↪→ Oλ.

Let L be a finite extension of Qp. We say that a continuous character
χ : L→ C is of Galois-type with respect to ιλ if the character ιλ ◦χ extends
to a continuous character χλ : GL → K̄λ via the dense embedding L× ↪→
Gab
L of local class field theory. Call χ arithmetic if χ(L×) ⊂ Q̄×.
Let π be an irreducible admissible complex representation of GL2(Fv).

Call π arithmetic if it satisfies one of the following conditions:
• π is a subquotient of an induced representation π(χ1, χ2) where the
χi : F×v → C× are arithmetic characters (i.e., π is principal series
or special, coming from arithmetic characters),
• π is the base change of an arithmetic quadratic character χ : L× →

C× where L/Fv is a quadratic extension (i.e., π is supercuspidal
and comes from the base change of an arithmetic character),
• π is extraordinary.

Lemma 3.1. Let π be an arithmetic irreducible admissible complex repre-
sentation of GL2(Fv). Let {ρλ : Gv → GL2(K̄λ)} be a family of continuous
representations for λ not dividing p such that π and ρλ are in Langlands
correspondence with respect to ιλ for all λ. If π is principal series or super-
cuspidal then

H0(Gv, ε̄⊗ ad0 ρ̄ss
λ ) = 0

for almost all λ.

Proof. This follows precisely as in [16, Proposition 3.2], so we do not repeat
the argument here. �

Corollary 3.2. We have H0(Gv, ε̄⊗ ad0 ρ̄λ) = 0 for almost all λ.

Proof. This is clear from Proposition 3.1 since

dimF̄` H
0(Gv, ε̄⊗ ad0 ρ̄λ) ≤ dimF̄` H

0(Gv, ε̄⊗ ad0 ρ̄ss
λ ).

�
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Note that for ρλ as in Lemma 3.1,

dimF̄`
H0(Gp, ε̄⊗ ad0 ρ̄ss

λ ) = 1

for almost all λ when π is either one-dimensional or special. Although the
stronger vanishing result fails when π is either one-dimensional or special,
we can show the sufficient (and desired) vanishing of H0(Gv, ε̄⊗ad0 ρ̄λ) for
almost all λ by using a level-lowering argument.

Now suppose that π is special. That is, suppose that it is the infinite
dimensional quotient of π(χ| · |, χ) for some arithmetic character χ : F×v →
C×. Assume that ρλ : GF,S → GL2(Kλ) is a λ-adic Galois representation
such that ρλ|Gv is in Langlands correspondence with π. Then

ρλ|Gv ∼=
(
εχλ ∗
0 χλ

)
where ∗ is nonzero and ramified. Here we use the fact that the norm char-
acter corresponds to the compatible system of GF -characters {ελ := ε}λ.
Set kλ = OF /v.

Lemma 3.3. Suppose that q2 6≡ 1 mod λ where q = #(OF /v). Then

ρ̄λ|Gv ⊗ k̄λ ∼=
(
ε̄χ̄λ ∗
0 χ̄λ

)
where ∗ may be zero.

Proof. It is clear that the semi-simplification of ρ̄λ|Gv ⊗ k̄λ has the form
ε̄χ̄λ ⊕ χ̄λ, so it suffices to show that ρ̄λ|Gv ⊗ k̄λ is not of the form(

χ̄λ ν
0 ε̄χ̄λ

)
where ν is nontrivial. It is straightforward to check that ε̄−1χ̄−1

λ ν is a
1-cocycle in H1(Gv, k̄f,λ(−1)). Consider the inflation-restriction exact se-
quence

H1(GFq , k̄λ(−1)Iv)→ H1(Gv, k̄λ(−1))→ H1(Iv, k̄λ(−1))GFq

where Iv ⊂ Gv is the inertia subgroup. An easy calculation shows that
in general H1(GFq , k̄λ(−1)Iv) = 0 and that H1(Iv, k̄λ(−1))GFq = 0 when
λ - q2 − 1. �

Lemma 3.4. Suppose 2(q2 − 1) 6≡ 0 mod λ. Then H0(Gv, ad0 ρ̄λ) 6= 0 if
and only if ad0 ρ̄λ|Gv ⊗ k̄λ is semi-simple.

Proof. This is a straightforward matrix calculation using Lemma 3.3. For
example, choose the basis

(
1 0
0 −1

)
, ( 0 1

0 0 ) , ( 0 0
1 0 ) of End(V ) where V is the
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3-dimensional kf,λ-vector space endowed with a GF,S action by ad0 ρ̄f,λ. By
Lemma 3.3,

ρ̄λ ⊗ k̄λ ∼=
(
ε̄χ̄λ ν
0 χ̄λ

)
,

so

ad0 ρ̄λ|Gv ⊗ k̄λ ∼=

 1 −2χ̄−1
λ ν 0

0 ε̄ 0
ε̄−1χ̄−1

λ ν −ε̄−1χ̄−2
λ ν2 ε̄−1

 .
Thus it is clear that if ν = 0 then H0(Gv, ad0 ρ̄λ) 6= 0. Conversely, if ν is
nonzero then using the fact that it is ramified while ε̄ is not, one checks
that there are no Galois invariants. �

Let ρf,λ : GF,S → GL2(Kf,λ) be the Galois representation attached to a
Hilbert newform f of level n, weight k and character ψ by Carayol [3] and
Taylor [15]. Write ψ = ψf | · |k0−2 where ψf is a character of finite order
and | · | is the norm character. Note that det ρf,λ = ψ−1

f ε1−k0 where here
ψf also denotes by abuse of notation the corresponding Galois character.
(We find it more convenient to work with this cohomological normalization
rather than the usual normalization.)

Let π be the automorphic representation corresponding to f . Write
π = ⊗′πv for the decomposition of π into its irreducible admissible com-
plex representations of πv into GL2 Fv. Fixing isomorphisms ιλ : C→ K̄f,λ,
Carayol [3, Théorème B] showed that each πv is arithmetic and is in Lang-
lands correspondence with ρf,λ|Gv for λ not dividing p.

Remark 3.5. The irreducible admissible representation πv must be infinite
dimensional so nothing is lost by assuming that πv is special (as opposed
to one-dimensional) in what follows.

Proposition 3.6. If πv is special then

H0(Gv, ε̄⊗ ad0 ρ̄f,λ) = 0

for almost all λ.

Proof. Note that πv has central character χ2| · | where χ is an arithmetic
character giving rise to πv. By the local Langlands correspondence, this
yields the equality χ2 = ψ−1

f,v| · |−k0 where ψf,v is the v-component of ψf .
Set χ′v = χ−1| · |−k0/2. Note that χ′v has finite order. Extend χ′v to a Hecke
character χ′ and twist f by χ′ to get an eigenform f ⊗ χ′. Let f ′ denote
the newform in the eigenspace spanned by f ⊗ χ′ and let π′ denote the
corresponding automorphic representation. Then the v-component of π′ is
a subquotient of π(χχ′v| · |, χχ′v). In particular, χχ′v is unramified at v, so v
divides the level n′ of f ′ exactly once.
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Suppose λ does not divide 2(q2 − 1) and suppose that

(3.1) H0(Gv, ε̄⊗ ad0 ρ̄f,λ) 6= 0.

Then Lemma 3.4 implies that ρ̄f,λ|Gv ⊗ k̄f,λ ∼= ε̄χ̄λ ⊕ χ̄λ. This means that

ρ̄f ′,λ|Gv ⊗ k̄f,λ ∼= (ρ̄f,λ ⊗ χ̄′λ)|Gv ⊗ k̄f,λ ∼= ε̄1−k0/2 ⊕ ε̄−k0/2,

so ρ̄f ′,λ|Gv ⊗ k̄f,λ is unramified at v. Since λ does not divide q2 − 1, we
have that NF/Q(v) 6≡ 1 mod `, so we may apply [12, Theorem 0.1] to get
a congruent eigenform f ′′ of level n′/v. That is, we get a set of Hecke
eigenvalues {a(m, f ′′)} such that a(q, f ′′) ≡ a(q, f ′) mod λ for all q not
dividing n′`. By strong multiplicity one, there are only finitely many sets
of eigenvalues, each one corresponding to a newform of level dividing n′/v.
Therefore, if (3.1) holds for infinitely many λ then for some newform g of
level dividing n′/v and for all q not dividing n′,

a(q, g) ≡ a(q, f ′) mod λ

for infinitely many λ. We conclude that a(q, g) = a(q, f ′) for all q not
dividing n′, so applying strong multiplicity one again shows that g = f ′, a
contradiction. �

4. Local invariants for ` = p

We now recall the theory of Fontaine-Laffaille. Let K be a finite unram-
ified extension of Q` and let E/Q` be another finite extension containing
K. Let σ be the frobenius automorphism on K. Given an E-linear repre-
sentation V of GK , define the finite free E ⊗Q`

K-module

Dcrys(V ) = (Bcrys ⊗Q`
V )GK

where Bcrys is Fontaine’s crystalline period ring. Note that Dcrys(V ) comes
with a decreasing filtration {Dcrys(V )i}i such that

∩iDcrys(V )i = 0 and ∪i Dcrys(V ) = Dcrys(V ).

In addition, Dcrys(V ) comes with a 1E ⊗ σ-semilinear map ϕ : Dcrys(V )→
Dcrys(V ). Call V is crystalline if dimE V equals the rank of Dcrys(V ) as a
E ⊗Q`

K-module.
Suppose V is an E-linear crystalline GK-representation with Hodge-

Tate filtration in the interval [−(a + ` − 1),−a]. Consider the category
MFa,a+`(OE) of strongly divisible lattices in Dcrys(V ) whose objects con-
sist of finite free O := OE ⊗Z` OK-lattices L ⊂ Dcrys(V ) with a filtration
{Li := L ∩ Dcrys(V )i} and 1OE ⊗ σ-semilinear maps {ϕLi : Li → L} such
that

(1) Li ⊃ Li+1, La = L,La+` = 0 and each Li is a direct summand of L,
(2) ϕLi |Li+1 = `ϕLi+1 and L =

∑
i ϕ

L
i (Li).
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Then Fontaine-Laffaille [8] gives an equivalence of categories between the
category of OE [GK ]-modules that are finitely generated subquotients of
E-linear crystalline GK-representations V with Hodge-Tate weights in the
interval [−(a+ `− 1),−a] and the category MFa,a+`(OK).

Remark 4.1. Here we use the definition of the Tate twist of a strongly
divisible lattice as in Section 4 of [1] to extend the results of [8] to the case
where a 6= 0.

Example 4.2. Let ψ : GK → OE be an unramified character of finite
order and let OE(ψ) denote the OE [GK ]-module of rank one with GK-
action given by ψ. Then the strongly divisible lattice Dψ corresponding to
OE(ψ) can be described as a free rank one O-module such that L0

ψ = Lψ,
L1
ψ = 0 and ϕLψ0 is multiplication by some u ∈ O× = (O×E)[K:Q`]. Denote

this u by ψ(σ).
We adopt this notation since over some finite extension of E, we have that

Lψ is isomorphic to a strongly divisible lattice L where ϕL0 is multiplication
by (ψ(σ), 1, . . . , 1) (see [7]). In any case, the precise value of u will not be
important for our intended application.

For the remainder of the section, we assume ` is unramified in F (a
totally real extension of Q of degree d) and set K = Fv for a place v of F
dividing `.

Example 4.3. Let f be a newform on F in Sk(n, ψ). Set k0 = maxi{kτi}.
For a prime v|` of F , let E = Kf,λFv and consider the Galois representa-
tion ρf,λ|Gv : Gv → GL2(E). Let Vf,λ be a 2-dimensional E vector space
on which Gv acts by ρf,λ|Gv . The fixed embedding ι` : Q̄ ↪→ Q̄` gives a
partition of the different embeddings τi as a disjoint union of subsets Jv
where denotes the subset of τi that give the different embeddings of Fv
into Q̄` after composition with ι`. Note that Vf,λ is crystalline with labeled
Hodge-Tate weights (−k0−2+kτ

2 ,−k0−kτ
2 )τ∈Jv if ` > k0 is unramified in F

and prime to n. Fix a Gv-stable OE-lattice Tf,λ ⊂ Vf,λ. Thus for v dividing
such `, there is a Lf,λ in MF0,`(OFv) corresponding to Tf,λ. Then using the
Hodge-Tate weights, we have the following description of Lf,λ.

Let kv0 = max{kτ |τ ∈ Jv}. Set T0 = {τ ∈ Jv|kτ = kv}. For i ≥ 1, define
kvi to be the maxτ∈Jv\∪j<iTj{kτ} and set Ti = {τ ∈ Jv|kτ = kv,i}. Let s
be the index such that kvs = minτ∈Jv{kτ}. Let ei denote the element of
O = O[Fv :Q`]

E with a 1 in its ith component and zeroes everywhere else.
Finally, define d≥i =

∑
j∈∪k≥iTi ej and d<i =

∑
j 6∈∪k<iTi ej . Then there is
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an O basis x, y of Lf such that the filtration satisfies:

Lif,λ =



Ox⊕Oy, for i ≤ k0−kv0
2 ,

Ox⊕Od≥1y, for k0−kv0
2 + 1 ≤ i ≤ k0−kv1

2 ,

Ox⊕Od≥2y, for k0−kv1
2 + 1 ≤ i ≤ k0−kv2

2 ,
...

...
Ox, for k0−kvs

2 + 1 ≤ i ≤ k0−2+kvs
2 ,

Od<sx, for k0−2+kvs
2 + 1 ≤ i ≤ k0−2+kvs−1

2...
...

Od<1x, for k0−2+kv1
2 + 1 ≤ i ≤ k0−2+kv0

2 ,

0, for i ≥ k0−2+kv0
2 + 1.

This is not enough to completely identify Lf,λ up to isomorphism, but it
will be enough for our purposes.

We fix some notation for use in Proposition 4.4. Let

ϕ
Lf,λ
0 (x) = αx+ βy

for some α, β in O. So writing α = (ατ )τ∈Jv and β = (βτ )τ∈Jv , we conclude
that the λ-adic valuations vλ(ατ ) and vλ(βτ ) are at least k0−2+kv,0

2 for all
τ by condition 2 of the definition of the objects of MF0,`(OFv). Here we
normalized vλ so that vλ(`) = 1.

Proposition 4.4. Suppose f is a Hilbert newform on F of weight k =
(kτ1 , . . . , kτd), level n, and character ψ. Assume that k0 > 2. Then for
` ≥ 2kv0 − 1, unramified in F and prime to n,

H0(Gv, ε̄⊗ ad0 ρ̄f,λ) = 0.

Proof. Since det ρf,λ = ψ−1
f ε1−k0 , we have the Galois-stable lattice

ad0 Tf,λ(1) ∼= (Sym2(Tf,λ)⊗OE OE(ψf ))(k0).

Since ` ≥ 2kv0 − 1, we can apply the Fontaine-Laffaille functor to get a
corresponding L in MF−kv0 ,kv0−1(OFv). By [9, Proposition 1.7],

L ∼= (Sym2(Lf,λ)⊗O Lψf )(k0).

Note that by [1, Lemma 4.5],

(4.1) H1(Gv, ε̄⊗ ad0 ρ̄f,λ) ∼= ker(1− ϕL0 : L0/λL0 → L/λL).
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Furthermore, by the definition of Tate twists for strongly divisible lattices,
L0 = (Sym2(Lf,λ)⊗O Lψf )k0

=

{
v ⊗ w

∣∣∣∣∣v =
∑
i

ai(u⊗ u′) ∈ Sym2(Lf,λ), u ∈ Lif,λ, u′ ∈ Li
′
f,λ, i + i′ = k0

}

= L
k0−kv,0

2 +1
f,λ ⊗O L

k0−2+kv0
2

f,λ ⊗O L0
ψf

= Od<1(x⊗ x⊗ w)

where w is a generator of the rank one O-module Lψf . Set v = x⊗ x⊗ w.
Then we have

ϕL0 (ad<1v) = aσdσ<1ϕ
Lf,λ
k0−kv,0

2 +1
(x)⊗ ϕLf,λk0−2+kv0

2

(x)⊗ ϕ
Lψf
0 (w)

= (ad<1)σψf (σ)α2

`
k0−2+kv0

2 +1
x⊗ x⊗ w + · · ·

(4.2)

where the superscript σ denotes the action of 1OE ⊗σ on the given element
of O. Suppose that (4.1) is nonzero. Thus if ad<1(x⊗ x⊗ w) is a nonzero
element of the kernel of 1−ϕL0 then (4.2) implies that there is some τ ∈ Jv
such that

(ad<1)στψf (σ)α2
τ

`
k0−2+kv0

2 +1
≡ (ad<1)τ 6≡ 0 mod λ.

This implies that the λ-adic valuation of the numerator is k0−2+kv0
2 + 1.

Since vλ(aτψf (σ)) = 0, this means that

vλ(α2
τ ) = k0 − 2 + kv0

2 + 1.

But we also know that vλ(ατ ) ≥ k0−2+kv0
2 , so we have that k0 − 2 + kv0 ≤

k0−2+kv0
2 + 1, or equivalently,

k0 − 2 + kv0 ≤ 2.

As we assumed k0 > 2, this proves the proposition. �

We are now ready to prove Theorem 1.1.

Theorem 1.1. Let f be as in Proposition 4.4 and suppose that it does not
have CM and that it is not a twist of a base change of a Hilbert newform on
E ( F . Then H2(GF,S , ad0 ρ̄f,λ) = 0 for almost all primes λ of Kf . That
is, Ddet=δ

ρ̄f,λ
is unobstructed for almost all λ.

Proof. We verify that the hypotheses (1) – (3) of Proposition 2.4 hold
for almost all λ. Combining the results of Corollary 3.2, Proposition 3.6
and Proposition 4.4 shows that H0(Gv, ε̄ ⊗ ad0 ρ̄f,λ) = 0 for almost all λ.
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The Selmer group H1
f (GF , Aρf,λ) vanishes for almost all λ because of [5,

Theorem 6.6], [6, Theorem 2.1] and the fact that (in Dimitrov’s notation)
H1
f (GF , Aρf,λ) ⊂ H1

Σ(GF , Aρf,λ)
for any finite set of primes Σ.

Theorem B(i) of [5] and [6, Theorem 2.1] tell us that H1
f (GF , Vρf,λ) = 0

for almost all λ. To show the vanishing of H1
f (GF , Vρf,λ(1)), we define for

a place v|` of F the tangent space

tV = ((Bcrys/B
+
crys)⊗Q`

V )GFv

of a crystalline E-linear representation V where E is a finite extension of
Q` containing Kf,λ and Fv. Then [10, Proposition I.2.2.2(ii)] tells us that

tV ∼= Dcrys(V )/Dcrys(V )0.

In particular, for Vρf,λ , we extend scalars to a finite extension E of Q` such
that E contains Fv for all places v|` in F and set

tVρf,λ =
⊕
v|`

tVρf,λ|Gv
.

By Schur’s lemma,H0(GF , ε⊗ad0 ρf,λ) = 0, so [10, Remark II.2.2.2] implies
that
dimE H1

f (GF , Vρf,λ(1))−dimE H1
f (GF , Vρf,λ) = − dimE tVρf,λ +

∑
v|∞

dimE H0(Gv, Vρf,λ).

A straightforward computation using the Hodge-filtration on Vρf,λ shows
that the right-hand-side vanishes, so

dimE H
1
f (GF , Vρf,λ(1)) = dimE H

1
f (GF , Vρf,λ).

Thus Proposition 2.4 implies the unobstructedness of Ddet=δ
ρ̄f,λ

for almost
all λ. �

5. Explicit computations

The methods we used to prove Theorem 1.1 are essentially effective in
the sense that given enough information about the Hecke eigenvalues of a
given Hilbert newform as well as the eigenvalues of the other newforms of
the same level, one can find an explicit lower bound B such that for all
` ≥ B, the deformation problem Ddet=δ

ρ̄f,λ
is unobstructed for all λ over these

`. We illustrate this with an example.
Let F = Q(

√
5), k = (4, 8), and n = (1). Then using MAGMA we

computed that the space of cuspforms Sk(n) is one dimensional. Thus Sk(n)
is generated by a newform f whose first few Hecke eigenvalues c(f, p) we
computed in MAGMA and list in Table 1.

Remark 5.1. It can be shown that Kf = Q(
√

5) in this case.
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Table 5.1. Hecke eigenvalues of f

NF/Q(π) c(f, p)
4 −160
5 150
9 −270
11 −1800

√
5 + 2172

11 1800
√

5 + 2172
19 9000

√
5− 21340

19 −9000
√

5− 21340

Remark 5.2. In what follows, note that S = {λ} ∪ {v|∞} for ρ̄f,λ.

Proposition 5.3. The deformation problem Ddet=δ
ρ̄f,λ

is unobstructed for all
primes λ of Kf over ` ≥ 17.

Proof. Our approach is to give a lower bound on ` for which the resid-
ual representation ρ̄f,λ is absolutely irreducible and for which the three
hypotheses of Proposition 2.4 hold. We begin with absolute irreducibility.
Let ω = 3+

√
5

2 . By [4, Proposition 3.1(ii)], since ω is a totally positive
unit, we conclude that ρ̄f,λ is absolutely irreducible for all λ not dividing
NF/Q(ω − 1) = −1, NF/Q(ω2 − 1) = −5, NF/Q(ω8 − 1) = −2205, and
NF/Q(ω9 − 1) = −5776. More concretely, computing the prime factors of
the principal ideals generated by these elements, [4, Proposition 3.1(ii)] tells
us that ρ̄f,λ is absolutely irreducible for all λ over ` ≥ 17 except possibly
the primes over 19.

Note that since ρ̄f,λ is an odd representation, it is absolutely irreducible
if and only if it is irreducible. Thus to prove absolute irreducibility of ρ̄f,λ
for the remaining λ|19, it suffices to provide a prime p over p 6= 19 such that
the characteristic polynomial of ρ̄f,λ(Frobp) is irreducible over kf,λ. Recall
that the characteristic polynomial for ρ̄f,λ(Frobp) is X2 − c(f, p)X + p3 if
p splits in F . In particular, for each λ over 19, we found a prime p over 11
such that the polynomial X2− c(f, p)X + 113 is irreducible over kf,λ. Thus
ρ̄f,λ is absolutely irreducible for all λ over ` ≥ 17.

We now check hypotheses (1) – (3) of Proposition 2.4. For (1), we know
that H0(Gλ, ε̄ ⊗ ad0 ρ̄f,λ) = 0 for all λ over ` ≥ 15 by Proposition 4.4.
Regarding (2), as we discussed in the proof of Theorem 1.1, the vanishing
of H1

f (GF , Vρ̄f,λ(1)) is equivalent to the condition that H1
f (GF , Vρ̄f,λ) = 0.

Furthermore, Dimitrov [5, Theorem B] showed that H1
f (GF , Vρ̄f,λ) vanishes

as long as ` ≥ 13, and the image of IndQ
F ρ̄f,λ is “large.” (We will give more

details about this large image condition in the next paragraph.) This means
that for the desired set of primes λ, whenever this “large image” condition
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holds, hypothesis (2) of Proposition 2.4 also holds. Moreover, let ηf denote
the congruence ideal obtained from the o-algebra homomorphism Tm → o by
Ta 7→ ιλ(c(f, a)) where o = OKf ,λ, T is the Hecke algebra o[Ta|a ⊂ OF ] and
ιλ is the fixed isomorphism C→ K̄f,λ extending the embedding OKf ↪→ o.
(See [5, Definition 3.1] as well as the discussions before [5, Theorems 1.4
and 3.6] for more details about ηf .) Then [5, Theorem 3.6] implies that
for ` ≥ 13, and IndQ

F ρ̄f,λ satisfying the same large image hypothesis, the
Selmer group H1

f (GF , Aρ̄f,λ) = 0 if and only if ηf = o. That is, if and only
if λ does not divide ηf . By definition, however, λ divides ηf if and only if
there is another newform g of the same weight, level and character such that
c(f, a) ≡ c(g, a) mod λ for all a ⊂ OF . As f is the only newform in Sk(n),
this means that H1

f (GF , Aρ̄f,λ) = 0 for all such λ. That is, hypothesis (3)
also holds for all λ over ` ≥ 13, satisfying the large image condition. Thus
we are reduced to checking that this large image condition on IndQ

F ρ̄f,λ
holds for all λ over ` ≥ 17.

The large image condition on IndQ
F ρ̄f,λ that we referred to throughout

the previous paragraph is a somewhat technical hypothesis that Dimitrov
uses for Theorem 1.4 of [5]. We refer the interested reader to [5, Theorem A]
for a detailed statement of this large image hypothesis on IndQ

F ρ̄f,λ. In our
case, however, since the weight (4,8) is non-induced in the sense of [4,
Definition 3.11] and we assume that ` ≥ 17, we may instead use the large
image condition on ρ̄f,λ that Im(ρ̄f,λ) contains a conjugate of SL2(kf,λ)
(see [4, Proposition 3.13]). Moreover, since we have already shown that ρ̄f,λ
is irreducible for all λ over ` ≥ 17, we can use Dickson’s classification of
subgroups of GL2(kf,λ) in such cases. In particular, this classification states
that an irreducible subgroup of GL2(kf,λ) that does not contain a conjugate
of SL2(kf,λ) is isomorphic to either a dihedral group or one of A4, S4, or A5.
Thus we need to show that the projective image of Im(ρ̄f,λ) ⊂ GL2(kf,λ) is
not isomorphic to a dihedral group nor any of the groups A4, S4, and A5.

To check that the projective image of Im(ρ̄f,λ) is not dihedral, we use [4,
Lemma 3.4]. More specifically, assume that the image of ρ̄f,λ in PGL2(kf,λ)
is dihedral, meaning ρ̄f,λ ∼= ρ̄f,λ ⊗ χK/F where χK/F is the character of a
quadratic extension K/F . Then supposing that ` 6= 2kτi − 1 for all i where
k = (kτ1 , . . . , kτd) is the weight of f and d = [F : Q], this lemma says that
K/F is unramified outside of n. In our case, n = OF . Since F has class
number one, we conclude that no such K exists. Hence the image of ρ̄f,λ in
PGL2(kf,λ) is not dihedral.

Finally, to show that the projective image of ρ̄f,λ is not isomorphic to
A4, S4, or A5, we use Section 3.2 of [4]. The main result of this section is
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that if

`− 1 > 5
d

d∑
i=1

kτi − 1,

then the projective image of ρ̄f,λ is not isomorphic to any of the groups
A4, S4 or A5. In our case, d = 2 and k = (4, 8) so it is easy to conclude that
the image of ρ̄f,λ is not isomorphic to A4, S4, or A5 for λ over ` ≥ 25. For
λ over 19, a closer analysis of [4, Section 3.2] shows that if the projective
image of ρ̄f,λ is A4, S4, or A5 then the arguments there imply that either
±3 or ±7 has order ≤ 5 in Z/18Z, which is a contradiction. Similarly for λ
over 17, these same arguments imply that 58, 116, 122, or 244 would have
order at most five in Z/288Z if the projective image of ρ̄f,λ is A4, S4, or
A5, which is false. For λ over 23, if the projective image of ρ̄f,λ is A4, S4,
or A5 then 76, 164, 370, or 466 would have order at most five in Z/528Z,
which is also a contradiction. �
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