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Unit L-Functions for étale sheaves of modules
over noncommutative rings

par Malte WITTE

Résumé. Soit s : X → SpecF un schéma séparé de type fini
sur un corps fini F de caractéristique p, soit Λ une Zp-algèbre
avec un nombre fini d’éléments, non nécessairement commutative,
et soit F• un complexe parfait de Λ-faisceaux sur le site étale
de X. Nous prouvons que le quotient L(F•, T )/L(R s!F•, T ), qui
est a priori un élément de K1(Λ[[T ]]), a un antécédent canonique
dans K1(Λ[T ]). Nous utilisons cela pour prouver une version de la
conjecture principale d’Iwasawa non-commutative pour des revê-
tements de Lie p-adiques de X.

Abstract. Let s : X → SpecF be a separated scheme of finite
type over a finite field F of characteristic p, let Λ be a Zp-algebra
with finitely many elements, not necessarily commutative, and let
F• be a perfect complex of Λ-sheaves on the étale site of X. We
show that the ratio L(F•, T )/L(R s!F•, T ), which is a priori an
element of K1(Λ[[T ]]), has a canonical preimage in K1(Λ[T ]). We
use this to prove a version of the noncommmutative Iwasawa main
conjecture for p-adic Lie coverings of X.

1. Introduction

Let p be a prime number and F the finite field with q = pv elements, and
s : X → SpecF a separated finite type F-scheme. Let further Λ be an adic
Zp-algebra, i. e. Λ is compact for the topology defined by the powers of its
Jacobson radical Jac(Λ). For any perfect complex of Λ-sheafs F• on the
étale site of X we have defined in [16] an L-function L(F•, T ) attached to
F•. This is an element in the first K-group K1(Λ[[T ]]) of the power series
ring Λ[[T ]] in the formal variable T commuting with the elements of Λ. The
total higher direct image R f!F• is again a perfect complex of Λ-sheaves
and so we may form the L-function L(R f!F•, T ), which is also an element
of K1(Λ[[T ]]). Different from the situation where Λ is an adic Z`-algebra
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with ` 6= p dicussed in [16], the ratio L(F•, T )/L(R f!F•, T ) does not need
to be 1 in K1(Λ[[T ]]).

Let
Λ〈T 〉 = lim←−

k

Λ/ Jac(Λ)k[T ]

denote the Jac(Λ)-adic completion of the polynomial ring Λ[T ] and let

K̂1(Λ〈T 〉) = lim←−
k

K1(Λ/ Jac(Λ)k[T ])

denote its first completed K-group. If Λ is commutative, then

K̂1(Λ〈T 〉) = K1(Λ〈T 〉) = Λ〈T 〉×

is a subgroup of K1(Λ[[T ]]) = Λ[[T ]]× and Emerton and Kisin [6] show that
L(F•, T )/L(R f!F•, T ) ∈ Λ〈T 〉×. If Λ is not commutative, the canonical
homomorphism

K̂1(Λ〈T 〉)→ K1(Λ[[T ]])
is no longer injective in general. Nevertheless, we shall prove:

Theorem 1.1 (see Thm. 5.1). There exists a unique way to associate to
each separated F-scheme s : X → SpecF of finite type, each adic Zp-algebra
Λ, and each perfect complex of Λ-sheaves F• on X an element Q(F•, T ) ∈
K̂1(Λ〈T 〉) such that

(1) the image of Q(F•, T ) in K1(Λ[[T ]]) is the ratio

L(F•, T )/L(R s!F•, T ),

(2) Q(F•, T ) is multiplicative on exact sequences of perfect complexes
and depends only on the quasi-isomorphism class of F•,

(3) Q(F•, T ) is compatible with changes of the ring Λ.

Aside from the result of Emerton and Kisin, a central ingredient for the
proof is the recent work of Chinburg, Pappas, and Taylor [2, 3] on the first
K-group of p-adic group rings. In fact, the main strategy of the proof is to
reduce the assertion first to the case Λ = Zp[G] for a finite group G and
then use the results of Chinburg, Pappas, and Taylor to reduce it further
to the case already treated by Emerton and Kisin. In particular, we use
almost exclusively methods from representation theory, whereas the result
of Emerton and Kisin itself may be considered as the geometric input.

As an application, we deduce the following version of a noncommutative
Iwasawa main conjecture for varieties over finite fields. Assume for the
moment that X is geometrically connected and let G be a factor group of
the fundamental group of X such that G ∼= H o Γ where H is a compact
p-adic Lie group and

Γ = Gal(Fqp∞/F) ∼= Zp.
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We write
Zp[[G]] = lim←−Zp[G/U ]

for the Iwasawa algebra of G. Let

S = {f ∈ Zp[[G]] : Zp[[G]]/Zp[[G]]f is finitely generated over Zp[[H]]}

denote Venjakob’s canonical Ore set and write Zp[[G]]S for the localisation
of Zp[[G]] at S. We turn Zp[[G]] into a smooth Zp[[G]]-sheafM(G) on X by
letting the fundamental group π1

ét(X) of X act contragrediently on Zp[[G]],
i. e. σ ∈ π1

ét(X) acts on f ∈ Zp[[G]] by f [σ]−1, where [σ] denotes the image
of σ in G. Let R Γc(X,F) denote the étale cohomology with proper support
of a flat constructible Zp-sheaf F on X.

For every continuous Zp-representation ρ of G, there exists a homomor-
phism

ρ : K1(Zp[[G]]S)→ Q(Zp[[Γ ]])×

into the units Q(Zp[[Γ ]])× of the field of fractions of Zp[[Γ ]]. It is induced
by sending g ∈ G to det([g]ρ(g)−1), with [g] denoting the image of g in
Γ (see [4] for the explicit construction, but note the difference in the sign
convention). On the other hand, ρ gives rise to a flat and smooth Zp-sheaf
M(ρ) on X.

Theorem 1.2.
(1) R Γc(X,M(G)⊗ZpF) is a perfect complex of Zp[[G]]-modules whose

cohomology groups are S-torsion. In particular, it gives rise to a
class

[R Γc(X,M(G)⊗Zp F)]−1

in the relative K-group K0(Zp[[G]],Zp[[G]]S).
(2) There exists an element L̃G(X/F,F) ∈ K1(Zp[[G]]S) with the fol-

lowing properties:
(a) (Characteristic element) The image of L̃G(X/F,M(ρ)⊗Zp F)

under the boundary homomorphism

d : K1(Zp[[G]]S)→ K0(Zp[[G]],Zp[[G]]S)

is
[R Γc(X,M(G)⊗Zp F)]−1.

(b) (Interpolation with respect to all continuous representations)
Assume that ρ is a continuous Zp-representation of G. We let
γ denote the image of the geometric Frobenius in Γ . Then

ρ(L̃G(X/F,F)) = L(M(ρ)⊗Zp F , γ−1)

in Q(Zp[[Γ ]])×.
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This enhances the main result of [1], which also asserts the existence of
L̃G(X/F,F), but requires only that it satisfies the interpolation property
with respect to finite order representations. In fact, we will prove in Sec-
tion 6 an even more general version of this theorem in the style of [17],
replacing Zp by arbitrary adic Zp-algebras and allowing schemes and cov-
erings which are not necessarily connected.

We refer to [1] and [13] for applications of Thm. 1.2.

2. Preliminaries on completed K-Theory

For any topological ring R (associative and with unity) we let IR denote
the lattice of all two-sided open ideals of R. For any n ≥ 0 we call

K̂n(R) = lim←−
I∈IR

Kn(R/I)

the n-th completed K-group of R. The group K̂n(R) becomes a topological
group by equipping each Kn(R/I) with the discrete topology.

Recall that we call R an adic ring if R is compact and the Jacobson
radical Jac(R) is open and finitely generated, or equivalently,

R = lim←−
k

R/ Jac(R)k

with R/ Jac(R)k a finite ring. Fukaya and Kato showed that for adic
rings the canonical homomorphism K1(R) → K̂1(R) is an isomorphism [7,
Prop. 1.5.1]. The same is true if R = A[G] with G a finite group and A
a commutative, p-adically complete, Noetherian integral domain with frac-
tion field of characteristic 0 [3, Thm. 1.2]. We can add the following rings
to the list.

Proposition 2.1. Let R be a commutative topological ring such that
(1) the topology of R is an ideal topology, i. e. IR is a basis of open

neighbourhoods of 0,
(2) R = lim←−

I∈IR
R/I,

(3) the Jacobson radical Jac(R) is open.
Then K1(R)→ K̂1(R) is an isomorphism.

Proof. For any commutative ring A we have an exact sequence

1→ 1 + Jac(A)→ K1(A)→ K1(A/ Jac(A))→ 1.

Since R/ Jac(R) carries the discrete topology we have

K1(R/ Jac(R)) = K̂1(R/ Jac(R)).
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Because of the completeness of R and because Jac(R) is open we have
1 + Jac(R) = lim←−

I∈IR
1 + Jac(R)/ Jac(R) ∩ I.

The claim now follows from the snake lemma. �

Let Λ be an adic ring. We are mainly interested in the topological rings
Λ〈T 〉 = lim←−

I∈IΛ

Λ/I[T ]

where we give the polynomial ring Λ/I[T ] the discrete topology. As every
open two-sided ideal I of Λ is finitely generated as left or right ideal, we
note that IΛ〈T 〉 = ker(Λ〈T 〉 → Λ/I[T ]) and Jac(Λ〈T 〉) = Jac(Λ)Λ〈T 〉. In
particular, the open ideals of Λ〈T 〉 are again finitely generated.

We suspect that for all these rings K1(Λ〈T 〉) and K̂1(Λ〈T 〉) agree, but we
were not able to prove this in general. By the above results they do agree
if either Λ is commutative or Λ = Zp[G] for a finite group G and this is
all we need for our purposes. The following result is therefore only for the
reader’s edification.

Proposition 2.2. Let Λ be an adic ring. Then the homomorphisms

Λ〈T 〉× → K1(Λ〈T 〉)→ K̂1(Λ〈T 〉)
are surjective.

Proof. We note that Λ/ Jac(Λ) is a finite product of finite-dimensional ma-
trix rings over finite fields. In particular,

Kn(Λ/ Jac(Λ)[T ]) = Kn(Λ/ Jac(Λ))
for all n by a celebrated result of Quillen. Since Λ/ Jac(Λ) is semi-simple,
the homomorphism Λ/ Jac(Λ)× → K1(Λ/ Jac(Λ)) is surjective. Moreover,
K2(Λ/ Jac(Λ)) = 0 since this is true for all finite fields.

By a result of Vaserstein (see [9, Thm. 1.5]) we have for any ring R and
any two-sided ideal I ⊂ Jac(R) an exact sequence

1→ V (R, I)→ 1 + I → K1(R, I)→ 1
with V (R, I) the subgroup of 1 + I generated by the elements (1 + ri)(1 +
ir)−1 with r ∈ R and i ∈ I. Choosing R = Λ〈T 〉 and I = Jac(Λ)Λ〈T 〉 we
conclude that Λ〈T 〉× → K1(Λ〈T 〉) is surjective.

Since the homomorphisms
V (Λ〈T 〉, Jac(Λ〈T 〉))→ V (Λ/I[T ], Jac(Λ/I[T ]))

are surjective for any open two-sided ideal I ⊂ Jac(Λ) of Λ, we conclude
that

R1 lim←−
k

V (Λ/ Jac(Λ)k[T ], Jac(Λ)Λ/ Jac(Λ)k[T ]) = 0.
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Hence,

K1(Λ〈T 〉, Jac(Λ〈T 〉))→ lim←−
k

K1(Λ/ Jac(Λ)k[T ], Jac(Λ)Λ/ Jac(Λ)k[T ])

is surjective. Passing to the limit over the exact sequences

1→ K1(Λ/ Jac(Λ)k[T ], Jac(Λ)Λ/ Jac(Λ)k[T ])
→ K1(Λ/ Jac(Λ)k[T ])→ K1(Λ/ Jac(Λ)[T ])→ 1

and comparing it to the corresponding sequence for Λ〈T 〉 we conclude that

K1(Λ〈T 〉)→ K̂1(Λ〈T 〉)

is surjective. �

If Λ is an adic ring and P a finitely generated, projective left Λ-module,
we set

P [T ] = Λ[T ]⊗Λ P, P 〈T 〉 = Λ〈T 〉 ⊗Λ P, P [[T ]] = Λ[[T ]]⊗Λ P

Note that

P 〈T 〉 = lim←−
k

P/ Jac(Λ)kP [T ], P [[T ]] = lim←−
k

P/ Jac(Λ)kP [[T ]],

and that Λ[[T ]] is again an adic ring.
If Λ′ is another adic ring acting on P from the right such that P be-

comes a Λ-Λ′-bimodule, then P/ Jac(Λ)kP [T ] is annihilated by some power
Jac(Λ′)m(k) of the Jacobson radical of Λ′. This shows that P 〈T 〉 is a Λ〈T 〉-
Λ′〈T 〉-bimodule and therefore induces homomorphisms

ΨP 〈T 〉 : Kn(Λ′〈T 〉)→ Kn(Λ〈T 〉).

At the same time, this shows that the system (P/ Jac(Λ)kP [T ])k≥1 of
Λ/ Jac(Λ)k-Λ′/ Jac(Λ′)m(k)-bimodules induces homomorphisms

ΨP 〈T 〉 : K̂n(Λ′〈T 〉)→ K̂n(Λ〈T 〉),

which are compatible with the above homomorphisms. The construction of
ΨP 〈T 〉 extends in the obvious manner to complexes P • of Λ-Λ′-bimodules
which are strictly perfect as complexes of Λ-modules. By a similar reasoning
we also obtain change-of-ring homomorphisms

ΨP [[T ]]• : Kn(Λ′[[T ]])→ Kn(Λ[[T ]]),

as well as the corresponding versions for the completed K-theory.
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3. On K1(Zp[G]〈T 〉)

In this section, we use the results of Chinburg, Pappas, and Taylor [2, 3]
to analyse K1(Zp[G]〈T 〉) for a finite group G.

For a noetherian integral domain of finite Krull dimension R with field
of fractions Q(R) of characteristic 0 we set

SK1(R[G]) = ker(K1(R[G])→ K1(Q(R)[G])),
Det(R[G]×) = im(R[G]× → K1(R[G])/ SK1(R[G]).

Here, Q(R) denotes a fixed algebraic closure of Q(R). For any subgroup
U of R[G]× we write Det(U) for its image in Det(R[G]×). We are mainly
interested in the cases R = OK〈T 〉 or R = OK [[T ]] with OK the valuation
ring of a finite extension K/Qp.

Assume that L/K is a finite extension such that L is a splitting field
for G, i. e. L[G] is a finite product of matrix algebras over L. LetM be a
maximal Zp-order inside L[G] containing OL[G]. ThenM is a finite product
of matrix algebras over OL such that

K1(M〈T 〉)→ K1(Q(OK〈T 〉)[G])
is injective. In particular, we have

SK1(OK [G]〈T 〉) = ker(K1(OK [G]〈T 〉)→ K1(M〈T 〉)).
The same reasoning also applies to SK1(OK [G][[T ]]). Moreover, note that
the group K1(M〈T 〉) injects into K1(M[[T ]]), such that we also have an
injection Det(OK [G]〈T 〉×) ⊂ Det(OK [G][[T ]]×).

Lemma 3.1. For any finite group G and any finite field extension K/Qp,
the inclusion OK [G]→ OK [G][[T ]] induces an isomorphism

SK1(OK [G]) ∼= SK1(OK [G][[T ]]).
In particular,

K1(OK [G][[T ]], TOK [G][[T ]]) = Det(1 + TOK [G][[T ]]).

Proof. The first equality is proved in [16, Prop. 5.4]. Since T ∈
Jac(OK [G][[T ]]), the map

1 + TOK [G][[T ]]→ K1(OK [G][[T ]], TOK [G][[T ]])
is surjective by the result of Vaserstein [9, Thm. 1.5] that we already used
in the proof of Prop. 2.2. The decomposition

K1(OK [G][[T ]]) = K1(OK [G])×K1(OK [G][[T ]], TOK [G][[T ]])
induced by the inclusion OK [G] → OK [G][[T ]] and the evaluation T 7→ 0
shows that

SK1(OK [G][[T ]]) ∩K1(OK [G][[T ]], TOK [G][[T ]]) = 1. �
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Lemma 3.2. Let L/K/Qp be finite extensions such that L is a splitting
field for G and letM be a maximal Zp-order inside L[G] containing OL[G].
Assume that f is in the intersection of K1(M〈T 〉, Jac(M〈T 〉)) and Det(1+
Jac(OK [G])OK [G][[T ]]) inside K1(M[[T ]]). Then there exists n ≥ 0 such
that fpn ∈ Det(OK [G]〈T 〉).

Proof. Let pk be the order of a p-Sylow subgroup of G. SinceM/pk+2M is
a finite ring, some power of Jac(M) is contained in pk+2M. Now pkM ⊂
OL[G] [9, Thm. 1.4]. For large n we thence have

fp
n ∈ Det(1 + p2OL[G]〈T 〉) ∩Det(1 + p2OK [G][[T ]]).

By [2, Prop. 2.4] the p-adic logarithm induces R-linear isomorphisms

v : Det(1 + p2R[G])→ p2R[CG]

where CG is the set of conjugacy classes of G and R is equal to either
OK〈T 〉 or OK [[T ]] for any K. In particular,

v(fpn) ∈ p2OL[CG]〈T 〉 ∩ p2OK [[T ]][CG] = p2OK〈T 〉[CG].

Hence, fpn ∈ Det(1 + p2OK [G]〈T 〉). �

For any finite group G we let [G,G] denote the commutator subgroup of
G and set Gab = G/[G,G].

Lemma 3.3. Let G be a finite p-group and K/Qp a finite unramified ex-
tension. Let further A denote the kernel of OK [G]→ OK [Gab]. The abelian
group

Det(1 +AOK [G][[T ]])/Det(1 +AOK [G]〈T 〉)
is torsionfree.

Proof. Let R be equal to either OK〈T 〉 or OK [[T ]]. Write CG for set of the
conjugacy classes of G and let φ(AR[G]) denote the kernel of the natural
R-linear map R[CG] → R[Gab]. Note that φ(AR[G]) is finitely generated
and free as an R-module. For any choice of Frobenius lifts compatible with
the inclusion OK [G]〈T 〉 ⊂ OK [[T ]] we obtain a commutative diagram

Det(1 +AOK [G]〈T 〉) //

∼=ν

��

Det(1 +AOK [G][[T ]])
∼=ν

��
pφ(AOK [G]〈T 〉) // pφ(AOK [G][[T ]])

with the horizontal arrows induced by the natural inclusion and the vertical
isomorphisms induced by the integral group logarithm [2, Thm. 3.16]. Since
OK [[T ]]/OK〈T 〉 is a torsionfree abelian group, the same is true for the group
pφ(AOK [G][[T ]])/pφ(AOK [G]〈T 〉). �
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Recall that a semi-direct product G = Z/sZ o P with s prime to p is
called p-Qp-elementary if P is a p-group and the image of t : P → (Z/sZ)×
given by the action of P on Z/sZ lies in Gal(Qp(ζs)/Qp) ⊂ (Z/sZ)×. For
any divisor m of s, and R = Zp, R = Zp〈T 〉, or R = Zp[[T ]] we set

R[m] = Z[ζm]⊗Z R

and let R[m][P ; t] denote the twisted group ring for t, i. e. σr = t(σ)(r)σ
for elements r ∈ R[m], σ ∈ P . Set

Hm = ker(t : P → Gal(Qp(ζm)/Qp)), Bm = P/Hm.

We may write
R[G] =

∏
m|s

R[m][P ; t]

[9, Prop. 11.6]. We then see that R[G] is a finitely generated, projective
module over the subring∏

m|s
R[m][Hm] ⊂

∏
m|s

R[m][P ; t].

We let
r : Det(R[G]×)→

∏
m|s

Det(R[m][Hm]×)

denote the corresponding restriction map. We further set

A = ker(Zp[G]→
∏
m|s

Zp[m][P/[Hm, Hm]; t]),

Am = ker(Zp[m][Hm]→ Zp[m][Hab
m ]),

and let bm denote the order of Bm.

Lemma 3.4. With the notation as above,
(1) R[m][P/[Hm, Hm]; t] is isomorphic to the ring of bm × bm matrices

over its centre R[m][Hab
m ]Bm,

(2) r induces an isomorphism

r : Det(1 +AR[G])→
∏
m|s

Det(1 +AmR[m][Hm])Bm .

(3) Det(1 + AZp[G][[T ]])/Det(1 + AZp[G]〈T 〉) is a torsionfree abelian
group.

Proof. Assertion (1) is a theorem of Wall [10, Thm. 8.3]. Assertion (2)
follows from [2, Thm 6.2 and Diagram (6.7)]. Assertion (3) is then a con-
sequence of Lemma 3.3 and (2). �
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We now return to the case thatG is an arbitrary finite group. For R = Zp,
R = Zp〈T 〉, and R = Zp[[T ]] and any subgroup H ⊂ G we write ResGH for
the change-of-ring homomorphism K1(R[G]) → K1(R[H]) induced by the
Zp[H]-Zp[G]-bimodule Zp[G].
Lemma 3.5. Let f ∈ K1(Zp[G][[T ]]) such that

(1) for any p-Qp-elementary group H, ResGH f is in the image of the
homomorphism K1(Zp[H]〈T 〉)→ K1(Zp[H][[T ]]),

(2) fpn is in the image of K1(Zp[G]〈T 〉) → K1(Zp[G][[T ]]) for some
n ≥ 0.

Then f is in the image of K1(Zp[G]〈T 〉)→ K1(Zp[G][[T ]]).
Proof. The homomorphisms K1(Zp[G]〈T 〉)→ K1(Zp[G][[T ]]) for each finite
group G constitute a homomorphism of Green modules over the Green ring
G 7→ G0(Zp[G]) [3, §4.3]. Hence, [3, Thm. 4.3] implies that f ` is in the
image of K1(Zp[G]〈T 〉) → K1(Zp[G][[T ]]) for some integer ` prime to p.
Because of (2) we may choose ` = 1. �

Finally, we need the following vanishing result for SK1, which is a variant
of [7, Prop. 2.3.7].
Proposition 3.6. Let K/Qp be unramified and R = OK〈T 〉 or R =
OK [[T ′]]〈T 〉 for some indeterminate T ′. (More generally, R can be any ring
satisfying the standing hypothesis of [3].) Let further G be a profinite group
with cohomological p-dimension cdp G ≤ 1. For any open normal subgroup
U ⊂ G there exists an open subgroup V ⊂ U normal in G such that the
natural homomorphism

SK1(R[G/V ])→ SK1(R[G/U ])
is the zero map.
Proof. For any finite group G, let Gr denote the set of p-regular elements,
i. e. those elements in G of order prime to p. The group G acts on Gr via
conjugation. Write Zp[Gr] for the free Zp-module generated by Gr. By [3,
Thm. 1.7] there exists a natural surjection

R⊗Zp H2(G,Zp[Gr])→ SK1(R[G]).
Since H2(G,Zp[Gr]) is finite for all finite groups G, it suffices to show that

lim←−
U⊂G

H2(G/U,Zp[(G/U)r]) = 0,

where the limit extends over all open normal subgroups of G. After taking
the Pontryagin dual we deduce the latter from

lim−→
U⊂G

H2(G,Map((G/U)r,Qp/Zp)) = 0.

�
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4. L-functions of perfect complexes of adic sheaves

We will briefly recall some notation from [16] (see also [14] and [17]). Let
F be the finite field with q = pv elements and fix an algebraic closure F of
F. For any scheme X in the category Schsep

F of separated schemes of finite
type over F and any adic ring Λ we introduced a Waldhausen category
PDGcont(X,Λ) of perfect complexes of adic sheaves on X [16, Def. 4.3].
The objects of this category are certain inverse systems over the index set
IΛ such that for I ∈ IΛ the I-th level is a perfect complex of étale sheaves
of Λ/I-modules.

Let us write K0(X,Λ) for the zeroth Waldhausen K-group of the Wald-
hausen category PDGcont(X,Λ), i. e. the abelian group generated by quasi-
isomorphism classes of objects in the category PDGcont(X,Λ) modulo the
relations

[G•][F•]−1[H•]−1

for any sequence
0→ F• → G• → H• → 0

in PDGcont(X,Λ) which is exact (in each level I ∈ IΛ).
For any morphism f : X → Y in Schsep

F we have Waldhausen exact
functors

f∗ : PDGcont(Y,Λ)→ PDGcont(X,Λ),
R f! : PDGcont(X,Λ)→ PDGcont(Y,Λ)

that correspond to the usual inverse image and the direct image with proper
support. As Waldhausen exact functors they induce homomorphisms

f∗ : K0(Y,Λ)→ K0(X,Λ), R f! : K0(X,Λ)→ K0(Y,Λ).

If Λ′ is a second adic ring we let Λop-SP(Λ′) denote the Waldhausen cate-
gory of complexes of Λ′-Λ-bimodules which are strictly perfect as complexes
of Λ′-modules. For each such complex P • we have a change-of-ring homo-
morphism

ΨP • : K0(X,Λ)→ K0(X,Λ′).
The compositions of these homomorphisms behave as expected. In partic-
ular, ΨP • commutes with f∗ and R f!, for f : X → Y , g : Y → Z we have
(g ◦ f)∗ = f∗ ◦ g∗, R(f ◦ g)! = R f! ◦ R g!, and R f ′! g

′∗ = g∗R f! if

W
f ′ //

g′

��

X

g

��
Y

f // Z

is a cartesian square [16, §4].
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For any A ∈ K0(X,Λ) we define the L-function L(A, T ) ∈ K1(Λ[[T ]]) as
follows. First, assume that X = SpecF′ for a finite field extension F′/F of
degree d, that Λ is finite and that A is the class of a locally constant flat étale
sheaf of Λ-modules on X. This sheaf corresponds to a finitely generated,
projective Λ-module P with a continuous action of the absolute Galois
group of F′, which is topologically generated by the geometric Frobenius
automorphism FF′ of F′. We then let L(A, T ) be the inverse of the class of
the automorphism id−FF′T

d of Λ[[T ]]⊗Λ P in K1(Λ[[T ]]). If A is the class
of any perfect complex of étale sheaves of Λ-modules on SpecF′, we replace
it by a quasi-isomorphic, strictly perfect complex P• and define L(A, T ) as
the alternating product

L(A, T ) =
∏
k

L(Pk, T )(−1)k .

This then extends to a group homomorphism K0(SpecF′,Λ)→ K1(Λ[[T ]]).
If Λ is an arbitrary adic ring and A ∈ K0(SpecF′,Λ), then L(A, T ) is given
by the system (L(ΨA/I(A), T ))I∈IΛ in

K1(Λ[[T ]]) = lim←−
I∈IΛ

K1(Λ/I[[T ]]).

Finally, if X is any separated scheme over F, we let X0 denote the set of
closed points of X and

x : Spec k(x)→ X

the closed immersion corresponding to any x ∈ X0. We set

L(A, T ) =
∏
x∈X0

L(x∗(A), T ) ∈ K1(Λ[[T ]]).

The product converges in the topology of K1(Λ[[T ]]) induced by the adic
topology of Λ[[T ]] because T ∈ Jac(Λ[[T ]]) and for any d there are only
finitely many closed points of degree d in X. We have thus constructed a
group homomorphism

L : K0(X,Λ)→ K1(Λ[[T ]]), A 7→ L(A, T ),

for any X in Schsep
F and any adic ring Λ.

This construction agrees with [16, Def. 6.4]. If Λ is commutative, such
that K1(Λ[[T ]]) ∼= Λ[[T ]]× via the determinant map, it is also seen to agree
with the classical definition used in [6]. Moreover, we note that for any pair
of adic rings Λ and Λ′ and any complex P • of bimodules in Λop-SP(Λ′),
we have

L(ΨP •(A), T ) = ΨP [[T ]]•(L(A, T ))

for A ∈ K1(X,Λ).
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Remark 4.1. Note that L(A, T ) depends on the base field F. If F′ ⊂ F is
a subfield, then the L-function of A with respect to F′ is L(A, T [F:F′]) [16,
Rem. 6.5].

5. The construction of unit L-functions

In this section, we prove the following theorem.

Theorem 5.1. Let s : X → SpecF be a separated F-scheme of finite type.
There exists a unique way to associate to each adic Zp-algebra Λ a homo-
morphism

Q : K0(X,Λ)→ K̂1(Λ〈T 〉), A 7→ Q(A, T ),
such that for A ∈ K0(X,Λ)

(1) the image of Q(A, T ) in K1(Λ[[T ]]) is the ratio L(A, T )/L(R s!A, T ),
(2) if Λ′ is a second adic ring and P • is in Λ′op-SP(Λ), then

ΨP 〈T 〉•(Q(A, T )) = Q(ΨP •(A), T ).

Proof. If we restrict to the class of adic rings Λ which are full matrix alge-
bras over commutative adic Zp-algebras, then the natural homomorphism
K̂1(Λ〈T 〉) → K1(Λ[[T ]]) is injective and the existence of Q : K0(X,Λ) →
K̂1(Λ〈T 〉) follows from [6, Cor. 1.8] and Morita invariance. In fact, we even
know that the image of Q lies in the subgroup K1(Λ〈T 〉, Jac(Λ)TΛ〈T 〉).
(The result of Emerton and Kisin is stated only for F = Fp, but the re-
sult for general F follows from Remark 4.1 and the simple observation that
λ(T ) ∈ Λ[[T ]] is in Λ〈T 〉 if and only if for some n > 0 λ(Tn) ∈ Λ〈T 〉.) We
note further that it suffices to prove the assertion of the theorem for the
class of finite Zp-algebras. The general case then follows by taking projective
limits.

We proceed by induction on dimX, starting with the empty scheme ∅ of
dimension −1. Since K0(∅,Λ) = 1, there is nothing to prove in this case.
So, we assume that the theorem has already been proved for all schemes
in Schsep

F of dimension less than dimX. Note that any open subscheme
j : U → X with closed complement i : Z → X induces a decomposition

K0(U,Λ)×K0(Z,Λ)
∼=−→ K0(X,Λ), (A,B) 7→ (R j!A)(R i!B)

and if the theorem is true for U and Z, then it is also true for X. In
particular, we may reduce to the case that X is an integral scheme (if
dimX = 0, this means X is a point).

If Λ is finite then each object F• in PDGcont(X,Λ) is quasi-isomorphic
to a strictly perfect complex P• of étale sheaves of Λ-modules on X. This
means, Pn is flat and constructible and for |n| sufficiently large, Pn = 0.
In particular, we may choose j : U → X open and dense such that j∗Pn
is locally constant for each n (if dimX = 0, this means U = X). We may
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then find a finite connected Galois covering g : V → U with Galois group
G and a complex P • in Zp[G]op-SP(Λ) such that

j∗P• ∼= ΨP •(g!g
∗Zp)

[16, Lemma 4.12]. Here, we consider g!g
∗Zp as an object in the category

PDGcont(U,Zp[G]). Since the function field of X is of characteristic p, the
cohomological p-dimension of its absolute Galois group is 1. So, we may
apply Prop. 3.6 and choose G (after possibly shrinking U) large enough
such that

ΨP 〈T 〉• : K0(Zp[G]〈T 〉)→ K0(Λ〈T 〉)
factors through Det(Zp[G]〈T 〉×).

Let s : U → SpecF be the structure map. We will now show that
α = L(g!g

∗Zp, T )/L(R s!(g!g
∗Zp), T ) ∈ K1(Zp[G][[T ]])

has a preimage in K1(Zp[G]〈T 〉). First, we note that by construction, α
is in the subgroup K1(Zp[G][[T ]], TZp[G][[T ]]). Further, by [5, Fonction
L mod `n, Theorem 2.2.(b)], we know that the image of α in the group
K1(Zp[G]/ Jac(Zp[G])[[T ]]) vanishes. Hence, using Lemma 3.1, we may view
α as an element of the group Det(1 + Jac(Zp[G])TZp[G][[T ]]). From [6,
Cor. 1.8] and Lemma 3.2 we conclude that αpn is in Det(Zp[G]〈T 〉×) for
some n ≥ 0. By Lemma 3.5 it thence suffices to show that for every Qp-p-
elementary subgroup H ⊂ G, the element

ResHG α = L(ResHG g!g
∗Zp, T )/L(R s! ResHG g!g

∗Zp, T ) ∈ K1(Zp[H][[T ]])
has a preimage in K1(Zp[H]〈T 〉). Choosing the ideal A ⊂ Zp[H] as in
Lemma 3.4 and noting that by part (1) of this lemma, Zp[H]/A is a finite
product of full matrix rings over commutative adic rings, we can again
apply [6, Cor. 1.8] to see that the image of ResHG α in

K1(Zp[H]/A[[T ]])/K1(Zp[H]/A〈T 〉)
= Det(Zp[H]/A[[T ]]×)/Det(Zp[H]/A〈T 〉×)

vanishes. From the exact sequence

Det(1 +AZp[H][[T ]])/Det(1 +AZp[H]〈T 〉)
→ Det(Zp[H][[T ]]×)/Det(Zp[H]〈T 〉×)

→ Det(Zp[H]/A[[T ]]×)/Det(Zp[H]/A〈T 〉×)→ 0

and part (3) of Lemma 3.4 we conclude that ResHG α does indeed have
a preimage in K1(Zp[H]〈T 〉). Thus, the element α has a preimage α̃ in
K1(Zp[G]〈T 〉).

We return to the complex F• and define
Q(F•, T ) = Q(i∗F•, T ) ·ΨP 〈T 〉•(α̃).
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We need to check that this definition does not depend on the choices of
U , V , P •, and α̃. For this, let j′ : U ′ → U be an open dense subscheme
with closed complement i′ : Z ′ → U . Then g : U ′ ×U V → U ′ is still a finite
connected Galois covering with Galois group G. Let h : V ′ → U ′ ×U V be
a finite connected Galois covering with Galois group H and assume that
g′ = h ◦ g is Galois with Galois group G′ such that G′/H = G. Assume
further that P ′• is a complex in Zp[G′]op-SP(Λ) such that ΨP ′•(g′!g′∗Zp) is
quasi-isomorphic to (j′ ◦ j)∗F•. By taking the stalks of ΨP ′•(g′!g′∗Zp) and
ΨP •(g!g

∗Zp) at any geometric point of U ′, we see that P ′• ⊗Zp[G′] Zp[G] is
quasi-isomorphic to P • in Zp[G]op-SP(Λ). In particular,

ΨP ′〈T 〉• = ΨP 〈T 〉• ◦ΨZp[G]〈T 〉 : K1(Zp[G′]〈T 〉)→ K1(Λ〈T 〉).

As above, we construct a preimage α̃′ of

L(g′!g′∗Zp, T )/L(R(s ◦ j′)!(g′!g′∗Zp), T )

in K1(Zp[G′]〈T 〉). Since

Det(Zp[G]〈T 〉×)→ Det(Zp[G][[T ]]×)

is injective, we see that the image of α̃/ΨZp[G]〈T 〉(α̃′) in Det(Zp[G]〈T 〉×)
must agree with the unique preimage of

L(i′∗g!g
∗Zp, T )/L(R(s ◦ i′)!i

′∗g!g
∗Zp, T ),

which in turn agrees with the image of Q(i′∗g!g
∗Zp, T ) by the induction

hypothesis. Hence,

ΨP 〈T 〉•(α̃) = ΨP 〈T 〉•(Q(i′∗g!g
∗Zp, T )ΨZp[G]〈T 〉(α̃′)) = Q(i′∗F•, T )ΨP ′•(α̃′).

Let i′′ : Z ′′ → X be the closed complement of U ′ in X. By the uniqueness
of Q for Z ′′ we conclude

Q(i′′∗F•, T ) = Q(i′∗F•, T )Q(i∗F•, T )

and so, the above definition of Q(F•, T ) is independent of all choices.
Assume now that Λ′ is a second finite Zp-algebra and that W • is in

Λop-SP(Λ′). Then

ΨW 〈T 〉•(Q(F•, T )) = ΨW 〈T 〉•(Q(i∗F•, T )ΨP 〈T 〉•(α̃))
= Q(i∗ΨW •(F•), T )ΨW⊗ΛP 〈T 〉•(α̃)
= Q(ΨW •(F•), T ).

It is immediately clear from the definition that Q(F•, T ) does only de-
pend on the quasi-isomorphism class of F•. Moreover, if Λ is finite, any
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exact sequence in PDGcont(X,Λ) can be completed to a diagram

0 // P•1 //

��

P•2 //

��

P•3 //

��

0

0 // F•1 // F•2 // F•3 // 0

where the top row is an exact sequence of strictly perfect complexes, the
bottom row is the original exact sequence, the downward pointing arrows
are quasi-isomorphisms, and the squares commute up to homotopy. Then
one finds j : U → X, i : Z → X, g : V → U , G as above and an exact
sequence

0→ P •1 → P •2 → P •3 → 0
of complexes in Zp[G]op-SP(Λ) such that for k = 1, 2, 3,

ΨP •
k
(g!g

∗Zp) ∼= j∗P•k .

Choosing α̃ as above, we conclude

Q(F•2 , T ) = Q(i∗F•1 , T )Q(i∗F•3 , T )ΨP 〈T 〉1•(α̃)ΨP 〈T 〉3•(α̃)
= Q(F•1 , T )Q(F•3 , T ).

Thus, Q is well-defined as homomorphism K0(X,Λ) → K1(Λ〈T 〉) and sat-
isfies properties (1) and (2) of the theorem.

It remains to prove uniqueness. So let Q′ be a second family of homo-
morphisms K0(X,Λ) → K̂1(Λ〈T 〉) ranging over all adic rings Λ such that
(1) and (2) are satisfied. If i : Z → X is any closed subscheme, then

K0(Z,Λ)→ K̂1(Λ〈T 〉), A 7→ Q′(i∗A, T ),

still satisfies (1) and (2). Thus, by the induction hypothesis, we must have

Q′(i∗A, T ) = Q(A, T ).

If Λ is finite and G is a finite group and P • a complex in Zp[G]op-SP(Λ)
such that ΨP 〈T 〉• factors through Det(Zp[G]〈T 〉×), then by the injectivity
of

Det(Zp[G]〈T 〉×)→ Det(Zp[G][[T ]]×)
and properties (1) and (2) we must have

Q′(ΨP 〈T 〉•(B), T ) = Q(ΨP 〈T 〉•(B), T )

for all B ∈ K0(X,Zp[G]). By the construction of Q we thus see that Q = Q′.
This completes the proof of the theorem. �

We conclude with some ancillary observations. First, we note that Q
depends in the same way as the L-function on the choosen base field F:
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Proposition 5.2. Let X be a separated scheme of finite type over F and
F′ ⊂ F be a subfield. Write Q′ : K0(X,Λ) → K̂1(Λ〈T 〉) for the homomor-
phism resulting from applying Thm. 5.1 to X considered as F′-scheme. Then

Q′(A, T ) = Q(A, T [F:F′])

for every A ∈ K0(X,Λ).

Proof. By Remark 4.1, the given equality holds for the images in K1(Λ[[T ]]).
Now one proceeds as in the proof of the uniqueness part of Thm. 5.1 to
show that it also holds in K̂1(Λ〈T 〉). �

As in [6], we can also define a version of Q relative to a morphism f : X →
Y in Schsep

F by setting

Q(f) : K0(X,Λ)→ K̂1(Λ〈T 〉)
A 7→ Q(f,A, T ) = Q(A, T )/Q(R f!A, T ),

and extend [6, Lemma 2.4, 2.5] as follows.

Proposition 5.3. Let A be an object in K0(X,Λ).
(1) If f : X → Y , g : Y → Z are two morphisms in Schsep

F , then

Q(g ◦ f,A, T ) = Q(g,R f!A, T )Q(f,A, T ).

(2) If f : X → Y is quasi-finite, then

Q(f,A, T ) = 1.

Proof. Assertion (1) follows immediately from the definition. For the second
assertion, we note that for f : X → Y quasi-finite,

L(R f!A, T ) =
∏
y∈Y 0

L(y∗f!A, T )

=
∏
y∈Y 0

∏
x∈f−1(y)0

L(x∗A, T )

=
∏
x∈X0

L(x∗A, T ) = L(A, T ).

In particular, the images of Q(A, T ) and Q(R f!A, T ) in K1(Λ[[T ]]) agree.
By the uniqueness of Q, we must have

Q(A, T ) = Q(R f!A, T )

in K̂1(Λ〈T 〉). �

Finally, setting
K̂0(X,Λ) = lim←−

I∈IΛ

K0(X,Λ/I),
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we observe that the constructions of the L-function and of Q extends to

L : K̂0(X,Λ)→ K1(Λ[[T ]]), Q : K̂0(X,Λ)→ K̂1(Λ〈T 〉).

We cannot say much about the canonical homomorphism

K0(X,Λ)→ K̂0(X,Λ),

but we suspect that it might be neither injective nor surjective in general.

6. A noncommutative main conjecture for separated schemes
over F

In this section, we will complete the ` = p case of the version of the
noncommutative Iwasawa main conjecture for separated schemes X over
F = Fq considered in [17]. We will briefly recall the terminology of the cited
article.

Recall from [17, Def. 2.1] that a principal covering (f : Y → X,G) of
X with G a profinite group is an inverse system (fU : YU → X)U∈NS(G) of
finite principal G/U -coverings (not necessarily connected), where U runs
through the lattice NS(G) of open normal subgroups of G. As a particular
case, for k prime to p and Γkp∞ = Gal(Fkp∞q /Fq), we have the cyclotomic
Γkp∞-covering

(Xkp∞ = X ×SpecFq SpecFqkp∞ → X,Γkp∞)

[17, Def. 2.5]. We will only consider principal coverings (f : Y → X,G) such
that there exists a closed normal subgroub H ⊂ G which is a topologically
finitely generated virtual pro-p-group and such that the quotient covering
(fH : YH → X,G/H) is the cyclotomic Γp∞-covering. These coverings will
be called admissible coverings for short [17, Def. 2.6]. For such a group
G = H o Γp∞ , if Λ is any adic Zp-algebra, then the profinite group ring
Λ[[G]] is again an adic Zp-algebra [17, Prop. 3.2].

For any admissible covering (f :Y→X,G) we constructed in [17, Prop.6.2]
a Waldhausen exact functor

f!f
∗ : PDGcont(X,Λ)→ PDGcont(X,Λ[[G]])

by forming the inverse system over the intermediate finite coverings. As
before, we will denote the induced homomorphism

f!f
∗ : K0(X,Λ)→ K0(X,Λ[[G]])

by the same symbol.
We also constructed a localisation sequence

1→ K1(Λ[[G]])→ Kloc
1 (H,Λ[[G]]) d−→ Krel

0 (H,Λ[[G]])→ 1



Unit L-functions 107

with
Kloc

1 (H,Λ[[G]]) = K1(wHPDGcont(Λ[[G]])),
Krel

0 (H,Λ[[G]]) = K0(PDGcont,wH (Λ[[G]]))
and certain Waldhausen categories

wHPDGcont(Λ[[G]]) and PDGcont,wH (Λ[[G]]),
respectively [17, §4], [15, Cor. 3.3]. Whenever Λ[[H]] is noetherian, there
exists a left denominator set S such that

Kloc
1 (H,Λ[[G]]) = K1(Λ[[G]]S),

Krel
0 (H,Λ[[G]]) = K0(Λ[[G]],Λ[[G]]S),

where Λ[[G]]S is the localisation of Λ[[G]] at S and the K-groups on the
right-hand side are the usual groups appearing in the corresponding local-
isation sequence of higher K-theory [15, Thm. 2.18, Prop. 2.20,Rem 2.22].
In particular, if Λ is commutative (hence, noetherian) and G = Γkp∞ , then
the Ore set S is given by

S = {λ ∈ Λ[[Γkp∞ ]] : λ is a nonzerodivisor in Λ/ Jac(Λ)[[Γkp∞ ]]}
and

Kloc
1 (H,Λ[[G]]) = K1(Λ[[G]]S) = Λ[[Γkp∞ ]]×S .

Let Λ′ be a second adic ring and M• a complex in Λ[[G]]op−SP(Λ′).
Then

M̃• = ΨM•(f!f
∗Λ)

is a perfect complex of smooth Λ′-adic sheaves on X with an additional
right Λ-module structure. Using this complex we obtain a homomorphism

Ψ
M̃•

: K0(X,Λ)→ K0(X,Λ′).
Furthermore, we can form the complex

M [[G]]δ• = Λ′[[G]]⊗Λ M
•

in Λ[[G]]op-SP(Λ[[G]]) with the canonical left G-action and the diagonal
right G-action.

If G acts trivially on M•, then Ψ
M̃•

is just the homomorphism

ΨM• : K0(X,Λ)→ K0(X,Λ′)
that we have already used above. Moreover, we have

ΨM [[G]]δ•f!f
∗A = f!f

∗Ψ
M̃•

(A)

[17, Prop. 6.7]. Note thatM [[G]]δ• also induces compatible homomorphisms
on the groups K1(Λ[[G]]), Kloc

1 (H,Λ[[G]]) and Krel
0 (H,Λ[[G]]) [17, Prop. 4.6].

As a special case we may take Λ = Λ′ = Zp and let ρ : G → GLn(Zp)
be a continuous left G-representation as in the introduction. We may then
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choose M to be the Zp-Zp[[G]]-module obtained from ρ by letting G act
contragrediently on Znp from the right. The sheaf M̃ is then just the smooth
Λ-adic sheafM(ρ) associated to ρ and Ψ

M̃
corresponds to taking the (com-

pleted) tensor product with this sheaf over Zp.
In [17, Thm. 8.1] we have already shown that for each complex F•

in the Waldhausen category PDGcont(X,Λ) and each admissible covering
(f : Y → X,G) the complex of Λ-adic cohomology with proper support

R Γc(X, f!f
∗F•)

is an object of PDGcont,wH (Λ[[G]]). Hence, we obtain a homomorphism

K0(X,Λ)→ Krel
0 (H,Λ[[G]]), A 7→ R Γc(X, f!f

∗A).
We have also contructed an explicit homomorphism

K0(X,Λ)→ Kloc
1 (H,Λ[[G]]), A 7→ LG(X/F, A),

such that
dLG(X/F, A) = R Γc(X, f!f

∗A)−1

[17, Def. 8.3].
We let γ denote the image of the geometric Frobenius automorphism FF

in Γkp∞ . If Ω is a commutative adic Zp-algebra, we write S̃ ⊂ Ω〈T 〉 for
the denominator set consisting of those elements which become a unit in
Ω[[T ]]. The proof of [17, Lemma 8.5] shows that the evaluation T 7→ γ−1

extends to a ring homomorphism
Ω〈T 〉

S̃
→ Ω[[Γkp∞ ]]S , ω(T ) 7→ ω(γ−1).

Note that Ω〈T 〉
S̃
is a semilocal ring, hence

Ω〈T 〉×
S̃

= K1(Ω〈T 〉
S̃

).

Let s : X → SpecF be the structure map. Then the proof of [17, Thm. 8.6]
shows that for every M• in Λ[[G]]op-SP(Ω) and every A ∈ K0(X,Λ), we
have

L
(
R s!ΨM̃•

(f!f
∗A), T

)
∈ K1(Ω〈T 〉

S̃
)

and that
ΨΩ[[Γkp∞ ]]ΨM [[G]]δ•(LG(X/F, A)) = L

(
R s!ΨM̃•

(f!f
∗A), γ−1

)
in

Kloc
1 (H,Ω[[Γkp∞ ]]) = Ω[[Γkp∞ ]]×S .

So, LG(X/F, A) satisfies the desired interpolation property with respect
to the functions L

(
R s!ΨM̃•

(f!f
∗A), γ−1

)
, but not with respect to the func-

tions L(Ψ
M̃•

(f!f
∗A), γ−1). We will construct a modification of LG(X/F, A)

below.
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For any adic ring Λ, the evaluation map T 7→ 1 induces a homomorphism

K̂1(Λ〈T 〉)→ K1(Λ), λ(T ) 7→ λ(1).

We also obtain an evaluation map

K̂1(Λ〈T 〉)→ K1(Λ[[Γkp∞ ]]), λ(T ) 7→ λ(γ−1),

as composition of T 7→ 1 with the automorphism of K̂1(Λ[[Γkp∞ ]]〈T 〉) in-
duced by T 7→ γ−1T and the injection

ΨΛ[[Γkp∞ ]]〈T 〉 : K̂1(Λ〈T 〉)→ K̂1(Λ[[Γkp∞ ]]〈T 〉).

Definition 6.1. For any admissible covering (f : Y → X,G) and any A ∈
K0(X,Λ) we set

L̃G(X/F, A) = LG(X/F, A)Q(f!f
∗A, 1).

Since Q(f!f
∗A, 1) ∈ K1(Λ[[G]]), we still have

Theorem 6.2.
dL̃G(X/F, A) = R Γc(X, f!f

∗A)−1

in Kloc
0 (H,Λ[[G]]).

We will now investigate the transformation properties of L̃G(X/F, A).

Theorem 6.3. Consider a separated scheme X of finite type over a finite
field F. Let Λ be any adic Zp algebra and let A be in K0(X,Λ).

(1) Let Λ′ be another adic Zp-algebra. For any complex M• in Λ[[G]]op-
SP(Λ′), we have

ΨM [[G]]δ•(L̃G(X/F, A)) = L̃G(X/F,Ψ
M̃•

(A))

in Kloc
1 (H,Λ′[[G]]).

(2) Let H ′ be a closed virtual pro-p-subgroup of H which is normal in
G. Then

ΨΛ[[G/H′]](L̃G(X/F, A)) = L̃G/H′(X/F, A)

in Kloc
1 (H ′,Λ[[G/H ′]]).

(3) Let U be an open subgroup of G and let F′ be the finite extension
corresponding to the image of U in Γp∞. Then

ΨΛ[[G]]
(
L̃G(X/F, A)

)
= L̃U (YU/F′, f∗UA)

in K1(H ∩ U, (Λ[[U ]])).

Proof. In [17, Thm. 8.4] we have already proved that LG(X/F, A) satis-
fies the given transformation properties. To prove the same properties for
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Q(f∗f∗A, 1), one uses the general transformation rule for Q(A, T ) and Ψ
and the equalities

ΨM [[G]]δ•f!f
∗A = f!f

∗Ψ
M̃•

(A)
ΨΛ[[G/H′]]f!f

∗A = fH′ !f
∗
H′A

ΨΛ[[G]]f!f
∗A = R fU !f

U
! f

U ∗f∗UA

with (fU : Y → YU , U) the restriction of the covering to the subscheme
U [17, Prop. 6.5, 6.7]. For (3) it remains to notice that the evaluation
Q(A, 1) does not depend on the base field F by Prop. 5.2. �

Proposition 6.4. Consider the admissible covering (f : Xkp∞ → X,Γkp∞).
For any adic ring Λ and any A ∈ K1(X,Λ),

Q(f!f
∗A, T ) = Q(ΨΛ[[Γkp∞ ]](A), γ−1T )

in K̂1(Λ[[Γkp∞ ]]〈T 〉).

Proof. We may assume that Λ is finite. Let s : X → F denote the structure
map. From [17, Prop. 7.2] it follows that

L(R s!f!f
∗A, T ) = L(R s!ΨΛ[[Γkp∞ ]](A), γ−1T ).

By applying this to x∗A for each closed point x : Spec k(x)→ X of X and
using

f!f
∗x∗A = x∗f!f

∗A

[17, Prop. 6.4.(1)] we see that

L(f!f
∗A, T ) = L(ΨΛ[[Γkp∞ ]](A), γ−1T ).

Hence, the images of Q(f!f
∗A, T ) and Q(ΨΛ[[Γkp∞ ]](A), γ−1T ) agree in the

group K1(Λ[[Γkp∞ ]][[T ]]).
If a : X ′ → X is a morphism in Schsep

F and (f : X ′ → X,Γkp∞) is the
cyclotomic Γkp∞-covering of X ′, then

R a!f!f
∗A = f!f

∗R a!A

by [17, Prop. 6.4.(2)]. In particular, this applies to open and closed immer-
sions. By induction on the dimension of X we can thus reduce to the case
X integral and A = ΨP •(g!g

∗Zp) for some finite connected Galois covering
(g : Y → X,G) and some complex P • in Zp[G]op-SP(Λ). With the complex

P [[Γkp∞ ]]• = Λ[[Γkp∞ ]]⊗Λ P
•

in Zp[[G× Γkp∞ ]]-SP(Λ[[Γkp∞ ]]) we have

ΨP [[Γkp∞ ]]•(f!f
∗g!g

∗Zp) = f!f
∗A,

ΨP [[Γkp∞ ]]•(ΨΛ[[Γkp∞ ]](g!g
∗Zp)) = ΨΛ[[Γkp∞ ]](A).
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Applying Prop. 3.6 to
R = Zp[[Γkp∞ ]]〈T 〉 ∼= Zp[Z/kZ][[T ′]]〈T 〉

we may assume that ΨP [[Γkp∞ ]]〈T 〉• factors through Det(Zp[[G×Γkp∞ ]]〈T 〉×).
We conclude

Q(f!f
∗A, T ) = ΨP [[Γkp∞ ]]〈T 〉•(Q(f!f

∗g!g
∗Zp, T ))

= ΨP [[Γkp∞ ]]〈T 〉•(Q(g!g
∗Zp, γ−1T ))

= Q(A, γ−1T ).
�

The following theorem shows that L̃G(X/F, A) satisfies the right inter-
polation property.

Theorem 6.5. Let X be a scheme in Schsep
F and let (f : Y → X,G) be

an admissible principal covering containing the cyclotomic Γkp∞-covering.
Furthermore, let Λ and Ω be adic Zp-algebras with Ω commutative. For
every A ∈ K0(X,Λ) and every M• in Λ[[G]]op-SP(Ω), we have

L(Ψ
M̃•

(A), T ) ∈ K1(Ω〈T 〉
S̃

)
and

ΨΩ[[Γkp∞ ]]ΨM [[G]]δ•
(
L̃G(X/F, A)

)
= L(Ψ

M̃•
(A), γ−1)

in K1(Ω[[Γkp∞ ]]S).

Proof. As remarked above, the corresponding statement for the elements
L(R s!ΨM̃•

(A), T ) and LG(X/F, A) follows from [17, Thm. 8.6]. Since

L(Ψ
M̃•

(A), T ) = Q(Ψ
M̃•

(A), T )L(R s!ΨM̃•
(A), T ),

an application of Prop. 6.4 concludes the proof of the theorem. �

As in the case where p is not equal to the characteristic of F, the element
L(A, γ−1) interpolates the values L(A(εn), 1), where A(εn) denotes the twist
of A by the n-th power of the cyclotomic character ε for n ∈ Z. However,
different from the situation that p 6= charF, we do not expect a direct
relation between L(A(εn), 1) and the values L(A, q−n) for n 6= 0 in the
p = charF case. In the case Λ = Zp and smooth and proper schemes X/Fq,
the p-adic valuation of L(Zp, q−n) may instead be connected to the Euler
characteristics of the étale cohomology of the logarithmic deRham-Witt
sheaves Zp(n) and of truncated deRham complexes by a classical result of
Milne [8]. So, one might hope to find an analogous formula for any adic
Zp-algebra Λ and any Λ-sheaf F , describing L(F , q−n) in terms of the étale
cohomology of F ⊗Zp Zp(n) and an error term coming from the deRham
complex of X. In the case of a smooth curve X, n = 1, g : Y → X a at most
tamely ramified finite Galois covering with Galois group G, Λ = Zp[G] and
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F = g!g
∗Zp, such a formula has already been considered in the thesis [12].

However, Wan shows in [11] that there exist Zp-sheafs F such that L(F , T )
may not be meromorphically continued to the entire p-adic plane, so that
we are not even able to give a definition of L(F , q−n) for positive n in
general. Note that for negative n, we have L(F , q−n) ∈ Z×p , such that the
p-adic valuation is trivial.
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